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I. PROBLEM OF TIME
In general relativity, there is no preferred
choice of time variable. As a consequence,
the bulk Hamiltonian is constrained to be
zero. Canonical quantisation à la Dirac leads
to the Wheeler-DeWitt equation

ĤΨ = 0⇒ Ψ =
∑

k
Ψ(k) |E = 0,k〉 ,

which implies that the wave function of the
universe does not depend on the label time t.
In this case, how to understand dynamics?

II. GAUGE INDETERMINISM

Determinism is restored by considering dif-
feomorphism invariants (or equivalence
classes) ⇒ Observables (invariant under
diffeos φ :M→M)

III. RELATIONAL OBSERVABLES

Observers record the dynamics of fields Φ
in local regions using reference fields χ
(‘generalized clocks and rods’) that define
‘generalized reference frames’. The out-
comes of their experiments are the values
of Φ relative to χ⇒ ‘relational observables’.
They completely encode the dynamics in
the region of the experiment. E.g., on 0 + 1
spacetime dimensions:

O[f |χ = s] =

∫
I dτ δ(χ(τ)− s)f(τ)∫
I dτ δ(χ(τ)− s)

(1)

These are diffeo-
invariant extensions
of tensor fields
on the worldline
and satisfy δε(τ)O∝
{O, H}|H=0 = 0 ; i.e.,
they are invariant
under infinitesimal
diffeos. A model-

independent quantization reads [1]

Ô[f ] := π~
∑
E

P̂E [f̂(τ), P̂t=s]+P̂E , (2)

P̂t ∝
∑

k |t,k〉 〈t,k| and |t,k〉 ∝
∑

E e−
i
~Et |E,k〉

[3].

IV. GENERAL QUANTUM DYNAMICS
• Fixing the gauge = choosing a time coordinate (clock). No preferred classical choice.

• In the quantum theory, define (Rieffel) inner product 〈Ψ2|Ψ1〉 :=
∑

k Ψ∗2(k)Ψ1(k).

• Operators given by (2) that are self-adjoint define diffeo-invariant observables.

– If the energy spectrum spans the real line, they reduce to Ô[f ] =
1
2

∫∞
−∞ dτ f̂(τ)P̂t=s−τ + h.c., which is analogous to the classical expression (1).

– For a general spectrum, we have Ô[1] = 1̂ [Faddeev-Popov (FP) resolution of the
identity], and the observables obey the correct dynamics (as in the classical theory):

i~
d

ds
Ô[f ] = Ô

[
i~
∂f

∂s
+ [f,H]

]
.

• Time is defined intrinsically from the energy spectrum, and the evolution is unitary as
long as a complete set of self-adjoint observables are defined.

V. WEAK-COUPLING EXPANSION: UNITARY GAUGE THEORY

• What if we cannot solve Ĥ |Ψ〉 = 0 exactly? Perturbation theory!

• Important case: the Hamilton-Jacobi Hamiltonian constraint is
κ

2
Gab(Q)

∂W

∂Qa
∂W

∂Qb
+

1

κ
V (Q) + h

(
Q;

∂W

∂q
, q

)
= 0 ,

where κ is a small coupling constant (e.g., κ = 4πG/3 or κ = 1/c2) and W is the on-shell
action. This models a heavy system Q with mass given by M

√
κ ∝ 1 (gravity) coupled

to a light system q (matter).

• WKB perturbative solution: W(Q, q) = 1
κ

∑∞
n=0 Wn(Q, q)κn =: 1

κW0(Q) + S(Q; q).

• Lowest-order (no-coupling limit): 1
2G

ab(Q)∂W0

∂Qa
∂W0

∂Qb + V (Q) = 0, induces a foliation on
config. space Q 7→ x(Q) = (t(Q), xi(Q)) where Gab ∂W0

∂Qa
∂t
∂Qb = 1 is the proper time

(conjugate to H) in the no-coupling limit.

• Higher orders: −∂S
∂t

= h− κ
4V

h2 + κ
2
gij ∂S

∂xi
∂S
∂xj

+O(κ2)⇒ t is the time that orders the
evolution of matter and of x: a choice of gauge that is “preferred” in this expansion. The
associated FP determinant is |∆| = 1 + κ h

2V
+O(κ2).

• Just as in the classical case, the WDW constraint ĤΨ = −κ2∇
2Ψ + 1

κV (Q)Ψ + ĥΨ = 0 ,
can be solved perturbatively via Ψ(Q, q) = exp

[
i 1κW0(Q, q)

]
ψ(Q; q). [Born-Oppenheimer

or semiclassical approach] Upon adopting the foliation with the “no-coupling” proper time
t, we find the corrected Schrödinger equation

i
∂ψ̃

∂t
=

[
ĥ− κ

4V
ĥ2 +

κ

2
Π̂ig

ijΠ̂†j +
Q
M

+O(κ2)

]
ψ̃ , (3)

where Q is a quantum correction to the potential and ψ̃ := |2V g| 14
(

1 + κ
2V ĥ

)
ψ +O(κ2).

Eq. (3) leads to a unitary dynamics w.r.t. the inner product

(Ψ2|Ψ1) =

∫
dQdq

√
|2V g|

∣∣∣∣ ∂x∂Q
∣∣∣∣ Ψ∗2(x, q) δ(t(Q)− s)|̂∆|Ψ1(x, q) +O(κ2) ,

where |̂∆| := 1 + κ
2V ĥ is the quantization of the (absolute value of the) FP determinant.

• No unitarity violation (as previously
thought): unitary gauge theory that can
be applied to cosmology.

• de Sitter background + perturbations:

i
∂ψ̃

∂η
=

(
Ĥ − κH

2
0η

4

2
Ĥ2

)
ψ̃ +O(κ2)

• Towards phenomenology: PS,T (k) ' PS,T ;0(k)

{
1 + κH2

0

(
k?
k

)3

[2.85− 2 log(−2kη)]

}

FUTURE WORK
Quantum gravity phenomenology via uni-
tary corrections to (and dynamical renor-
malization of) slow-roll models; singularity
resolution via invariant observables; cosmol-
ogy as unitary gauge theory, quantum foun-
dations with relational observables
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