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Abstract
A particle carries an internal clock, as conjectured by de Broglie.

What if this clock runs at a varying rate and not along a ’smooth’ time-
like geodesic? Here, we investigate this possibility. If there are merits
to this assumption, we will obtain properties that are derived from the
standard theories. Interestingly, we can reconcile the following results
by assuming a particle has varying internal time rate - oscillation in
proper time:
• Schwarzschild spacetime field.
• Properties of a spin-zero bosonic field.
• Self-adjoint internal time operator.
• Proper time uncertainty relation.

These properties reconciled can reduce the differences between quan-
tum theory and general relativity, allowing a more symmetrical treat-
ment of space and time in a matter field. This assumption can also be
checked experimentally by measuring the uncertainty of a neutrino’s
arrival time. The information presented in this poster summarizes the
results from refs. [1, 2, 3, 4, 5, 6].

Proper Time Oscillator
Assumption: A particle has oscillation in proper time, i.e.

t̊f = t + t̊d = t− sin(ω0t)

ω0
. (1)

• Coordinate time t measured by an inertial observer at spatial
infinity; ω0 =de Broglie mass-energy angular frequency.

• Internal time t̊f is the assumed time of a particle’s internal
clock that runs at an oscillating rate relative to t with a fixed
amplitude 1/ω0.

• A particle will appear to travel along a ’smooth’ timelike
geodesic if the measuring instrument is not sensitive enough
to detect the oscillation.

Figure 1: A particle’s internal time with and without proper time oscillation.

Bosonic Field [1, 3]
Particles inside a plane wave can also have the assumed oscilla-
tion in proper time. Under a Lorentz transformation, matter in
the plane wave acquires oscillations in both space and time

t′f = t′ + t′d = t′ + Re(ζtk) = t′ + Tk sin(k · x′ − ωt′), (2)

x′f = x′ + x′d = x′ + Re(ζxk) = x′ +Xk sin(k · x′− ωt′), (3)

We can further define a plane wave,

ζk =
T0k
ω0

ei(k·x−ωt), (4)

such that the temporal and spatial oscillation displacements are
ζtk = ∂0ζk and ζxk = −∇ζk. Note that ζk satisfies the Klein
Gordon equation:

∂u∂
uζk + ω20ζk = 0. (5)

A real scalar field can be formed by superposition of ζk and ζ∗k
that has oscillations of metter in space and time

ζ(x) =
∑
k

(2ωω0)
−1/2[T0ke

−ikx + T ∗
0ke

ikx]. (6)

Since the number of particles is discrete, and each has a fixed
proper time amplitude, ζ(x) must be quantized and can be trans-
formed into a quantized field via canonical quantization. ζ(x)
can be related to the bosonic field φ(x) in quantum theory

φ(x) = ζ(x)

√
ω30
V

=
∑
k

(2ωV )−1/2[ake
−ikx + a

†
ke

ikx], (7)

with annihilation and creation operators

ak = ω0T0k, a
†
k = ω0T

†
0k (8)

Matter field with oscillations in time has the same properties as
a bosonic field [1, 3, 5, 6].

Self-Adjoint Internal Time Operator [5]
Conjugate momenta of ζ(x) is,

η(x) =
∂L

∂[∂0ζ(x)]
=

−iω30√
2V

∑
k

[T̃ke
−ikx − T̃

†
ke

ikx]. (9)

The displaced time is linearly related to η(x)

td(x) = ζt(x) = ∂0ζ(x) =
∑
k

−i√
2
[T̃ke

−ikx− T̃
†
ke

ikx] =
η(x)V

ω30
.

(10)
td(x) and ζ(x) form a conjugate pair and satisfy commutation
relations

(ω30V
−1)[ζ(t,x), td(t,x

′)] = iδ(x− x′), (11)

[td(t,x), td(t,x
′)] = 0. (12)

ζ(x), η(x) and td(x) are self-adjoint operators. Meanwhile, in-
ternal time in a matter field is

tf (t,x) = t + td(t,x)m (13)

where t is a parameter, but td(t,x) is a self-adjoint operator.
Thus, internal time tf is also a self-adjoint operator with no con-
flict with Pauli’s theorem since tf , and the Hamiltonian are not
a conjugate pair. [5]

Proper Time Uncertainty Relation [6]
Consider a real scalar field that has particles oscillating in proper
time only

ζ ′ =
1√
2
[ζ0 + ζ

†
0 ] =

1√
2ω0

[T0e
−iω0t + T

†
0 e

iω0t]. (14)

Displaced time t′d and displaced time rate u′d are,

t′d =
−i√
2
[T0e

−iω0t−T
†
0 e

iω0t] =
−i√
2ω0

[ae−iω0t− a†eiω0t], (15)

u′d = ∂0t
′
d =

−ω0√
2
[T0e

−iω0t+ T
†
0 e

iω0t] =
−1√
2
[ae−iω0t+ a†eiω0t].

(16)
The Hamiltonian density is

H ′ =
1

2
(mω20t

′
d
2
+ P ′

d
2
/m) = ω0(a

†a +
1

2
), (17)

where P ′
d = mu′d.

Proper Time Oscilla-
tor

Quantum Harmonic
Oscillator

Hamiltonian H ′ = ω0(a
†a + 1

2) H = ω(a†a + 1
2)

Commutation
Relation

[t′d, P
′
d] = i [x,p]=i

Uncertainty
Relation

∆t′d∆P ′
d ≥

1
2 ∆x∆p ≥ 1

2

Table 1: Comparing the properties of the proper time oscillator and the quan-
tum harmonic oscillator. Displaced time t′d and the ’temporal momentum’ P ′

d

are analogies of the spatial position and momentum operators. [6]

Neutrino’s Arrival Time Uncertainty

Figure 2: A particle’s uncertainty in arrival time

Consider a normalized plane wave

ζ̃ =
ei(k·x−ωt)√

ωω30

. (18)

Observed particles in this plane wave travel at an average veloc-
ity of v = k/ω. As the particle propagates, it oscillates in time
and space. The spatial oscillation of the particle will result in
uncertainty of arrival time when we measure a large collection
of particles with the same average velocity, i.e.

∆t′ =

√
ω

2ω30
= ℏ

√
E

2m3
. (19)

At a higher energy level, the effects of the particle’s oscillations
will be easier to detect. With the arrival time uncertainty ob-
tained from experiments, the mass of a neutrino can be derived,

m = [
ℏ2E

2(∆t′)2
]1/3. (20)

The experiments on neutrinos’ speed could provide evidence for
a particle’s temporal oscillation.

Figure 3: Neutrino’s arrival time uncertainty as related to the particle’s en-
ergy given by Eq. (19). Since the mass of a neutrino is not yet known, three
different assumed masses are used in the plot.

Schwarzschild Field [2, 4]

Figure 4: Schwarzschild field of the proper time oscillator

Neglect all the quantum effects, the proper time oscillator can
be treated as a ’stationary’ classical object at the spatial origin
of a coordinate system. The proper time oscillation is a pulse
that can be Fourier decomposed using the 0-component of the
Lorentz covariant plane waves, i.e.,[

ξ̄tk
ξ̄xk

]
= −i

[
T̄k
X̄k

]
ei(k·x−ωt). (21)

However, the spatial components of the plane waves cannot be
neglected. Superpose ξ̄tk to obtain the proper time oscillation
will have spatial oscillations associated with the superposition
of ξ̄xk. After carrying out the decomposition, we find that radial
oscillations are oscillating about a thin shell Σ0 with infinitesi-
mal radius (r = ϵ/2 → 0) centered at the proper time oscillator,

r̄f (t, ϵ/2) = ϵ/2 + ℜ∞ cos(ω0t). (22)

The amplitude of the radial oscillation (ℜ∞ → ∞) is not the
motions of matter. They shall be considered spacetime geomet-
rical effects acting on an observer stationary on Σ0.

In refs. [2, 4], we demonstrate that the vacuum space-time υ+

outside a time-like hypersurface with radius r̆ and radial ampli-
tude ℜ̆ is the Schwarzschild spacetime,

ds2 = [1−
r̆ℜ̆2ω20

r
]dt2 − [1−

r̆ℜ̆2ω20
r

]−1dr2 − r2dΩ2. (23)

By Birkoff’s theorem, the thin shell can be contracted to an in-
finitesimal radius, the same infinitesimal thin shell Σ0 around the
proper time oscillator. The spacetime outside the proper time os-
cillator is Schwarzschild [4].

Conclusions
Our analyses support the assumption that a particle has oscilla-
tion in proper time (varying internal time rate).
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