

Quantum Cosmology of Pure Connection GR

Steffen Gielen Elliot Nash

Chiral Connection Formulations of GR

Chiral connection formulations are reformulations of GR that take the form of Diffeomorphism Invariant Gauge Theories. The central field is a complex SU(2) connection $A^i_{\mu}(x)$, à la Yang-Mills. They are derived from the Chiral Plebański formulation by integrating out variables.

Instanton Representation

$$S_{\text{Inst}}[A, M, \mu] = \frac{1}{16\pi Gi} \int M_{ij}^{-1} F^i \wedge F^j + \mu \left(\operatorname{tr} M - \Lambda \right)$$
(1)

 M^{ij} is a symmetric matrix field and μ is a complex 4-form. The field equations are

Homogeneous and Isotropic Connections

We consider spacetimes of the form $\mathcal{M} = \mathbb{R} \times \mathcal{N}$ where \mathcal{N} is either \mathbb{R}^3 or S^3 . Our ansatz for a Homogeneous and Isotropic Connection,

$$A^{j} = \frac{iC(t)\,\omega^{j}}{3V^{1/3}} \quad : \quad d\omega^{j} = -\sqrt{\kappa}\,\epsilon^{jkl}\,\omega^{k}\wedge\omega^{l} \,. \tag{8}$$

School of

Mathematics

& Statistics

 ω^{j} is a basis of 1-forms on \mathcal{N} that are invariant under a certain group of diffeomorphisms, and $V = \int_{\mathcal{V}} \omega^1 \wedge \omega^2 \wedge \omega^3$ is a fiducial 3-volume. The Urbantké metric is homogeneous and isotropic,

$$g = -N(t)^2 dt \otimes dt + a(t)^2 \delta_{ij} \omega^i \otimes \omega^j .$$
⁽⁹⁾

Minisuperspace Models

 $\Sigma^{i} \equiv (M^{-1})^{ij} F^{j} \quad : \quad d\Sigma^{i} + \epsilon^{ijk} A^{j} \wedge \Sigma^{k} = 0 \quad , \quad \Sigma^{i} \wedge \Sigma^{j} = \mu \,\delta^{ij} \,. \tag{2}$

Pure Connection

Fix a nowhere vanishing 4-form ε_X and define $F^i \wedge F^j = \varepsilon_X X^{ij}$,

$$S_{\rm PC}[A] = \frac{1}{16\pi G i\Lambda} \int \varepsilon_X \left(\operatorname{tr} \sqrt{X} \right)^2 \tag{3}$$

Where $(\sqrt{X})^{ij}$ is the square root of a complex matrix. This action has only one field equation,

$$\Sigma^{i} \equiv \Lambda^{-1} \operatorname{tr} \sqrt{X} (X^{-\frac{1}{2}})^{ij} F^{j} \quad : \quad d\Sigma^{i} + \epsilon^{ijk} A^{j} \wedge \Sigma^{k} = 0 .$$
 (4)

Constructing a Metric

In order to recover the equations of GR, we must construct a metric tensor from the variables present in our theories.

The Urbantké Metric

$$g_{\mu\nu}\sqrt{-g} = \frac{i}{12} \epsilon_{ijk} \,\epsilon^{\alpha\beta\gamma\delta} \,\Sigma^{i}_{\mu\alpha} \,\Sigma^{j}_{\nu\beta} \,\Sigma^{k}_{\gamma\delta} \,. \tag{5}$$

The Σ^i 2-forms satisfy $\Sigma^i \wedge \Sigma^j = \frac{1}{3}\Sigma^k \wedge \Sigma_k \delta^{ij}$, so there exists a tetrad

We construct a Minisuperspace Model by substituting our ansatz (8) into the pure connection action (3)

$$S_{\rm MS}[C] = \frac{1}{3\ell_P^2 \Lambda} \int_{t_i}^{t_f} dt \ C(C+2iK)\dot{C} = \frac{1}{3\ell_P^2 \Lambda} \left[\frac{C^3}{3} + iKC\right]_{t_i}^{t_f}$$
(10)

The resulting action is a Surface Term. We canonically extend the action by adding a conjugate momentum P

$$S_{\rm CE}[C, P, \rho] = \int dt \left(\dot{C}P - \rho \left(\ell_P^2 \Lambda P - \frac{1}{3} C(C + 2iK) \right) \right)$$
(11)

This action generates a constrained Hamiltonian system. The Urbantké Metric,

$$g = -\frac{\ell_P^2 \rho^2}{P^3} dt \otimes dt + \frac{\ell_P^2 P}{V^{2/3}} \left(\sum_{i=1}^3 \omega^i \otimes \omega^i \right) . \tag{12}$$

Reality Condtions II

The reality conditions have two solution branches

of complex 1-forms e^{I} such that

$$\Sigma^{i} = ie^{0} \wedge e^{i} - \frac{1}{2} \epsilon^{ijk} e^{j} \wedge e^{k} \quad \text{and} \quad g_{\mu\nu} = e^{I}_{\mu} e^{J}_{\nu} \eta_{IJ} . \tag{6}$$

The Urbantké metric satisfies the Einstein equations $R_{\mu\nu} = \Lambda g_{\mu\nu}$

Reality Conditions I

In general, the Urbantké metric is complex valued. We'd like to restrict to connections whose Urbantké metrics are Real Lorentzian. We need Reality Conditions,

> $F^i \wedge \overline{F^j} = 0$, $\operatorname{Re}(\Sigma^i \wedge \Sigma_i) = 0$. (7)

These are extra conditions that must be satisfied on top of the field equations. They guarantee that the Urbantké metric is Real Lorentzian up to a possibly imaginary conformal factor.

Further Reading

A comprehensive introduction to chiral connection formulations can be found in [3]. More on the pure connection formalism can be found in [4]. The following serves as a summary of some of the main results from our paper [2]

$$C=c-iK$$
 , $P=p$ or $P=ip$ (13)

For real P, we must also have a real Λ . But for imaginary P, we must have an imaginary Λ .

Quantum Cosmology

The canonically extended action for a real FLRW type connection,

$$S_R[c, p, \lambda] = \int dt \left(\dot{c}p - \lambda \left(\ell_P^2 \Lambda p - \frac{c^2 + K^2}{3} \right) \right) . \tag{14}$$

We use a Phase Space Path Integral of the real theory between initial and final connection states to compute a transition amplitude

$$\langle c_f | c_i \rangle = \int_{c_i}^{c_f} \mathcal{D}c \,\mathcal{D}p \,\mathcal{D}\lambda \,\exp iS_R \left[c, p, \lambda\right] \,.$$
 (15)

A similar calculation was carried out in [1] using metric boundary conditions. We find

$$\langle c_f | c_i \rangle = \exp \frac{i}{3\ell_P^2 \Lambda} \left(\frac{1}{3} (c_f^3 - c_i^3) + K^2 (c_f - c_i) \right)$$
 (16)

This result was obtained independently by alternative methods in [5].

Images produced by Open AI, Dall-e 2

We have a product of Chern-Simons Wave Functions,

$$\langle c_f | c_i \rangle = \psi_{CS}(c_f) \,\overline{\psi_{CS}}(c_i) \quad : \quad \psi_{CS}(c) = \exp \frac{i}{3\ell_P^2 \Lambda} \left(\frac{c^3}{3} + Kc\right) \,. \tag{17}$$

References

- Job Feldbrugge, Jean-Luc Lehners, and Neil Turok. "Lorentzian quantum cosmology". In: Physical Review D 95.10 (2017), p. 103508.
- [2] Steffen Gielen and Elliot Nash. "Quantum cosmology of pure connection general relativity". In: Classical and Quantum Gravity 40.11 (2023), p. 115009.
- Kirill Krasnov. Formulations of General Relativity: Gravity, Spinors and Differential Forms. Cambridge |3| University Press, 2020.
- Kirill Krasnov. "Pure connection action principle for general relativity". In: Physical review letters 106.25 (2011), p. 251103.
- João Magueijo. "Real Chern-Simons wave function". In: *Physical Review D* 104.2 (2021), p. 026002. |5|

https://arxiv.org/abs/2212.06198

Quantum Gravity 2023, Nijmegen