Second Order Geometry and the Quantum Foam

 Folkert Kuipers (INFN Napoli \longrightarrow LMU München)
Quantum Foam

Aim: construct a covariant theory on the quantum foam (fluctuating spacetime).
We consider a mesoscopic scale. Motivation:

- There exist many different microscopic models, but these can be grouped in a smaller set of mesoscopic universality classes.
- Near future experiments cannot distinguish between microscopic models, but may observe the mesoscopic effects.
- Microscopic scale: discrete path integrals

Mesoscopic scale: continuous path integrals
Typically, discrete models are more suited for numerical studies, while analytical studies are easier to perform in the continuum limit.

Problem: path integrals seem to break general covariance
Old solution (DeWitt): consider a non-trivial geometry on the configuration space of fields (jet bundle)
New solution (Second Order Geometry): extend the (co)tangent bundle to a second order (co)tangent bundle and the jet bundle to a second order jet bundle

From Path Integrals to Itô Integrals

- The Feynman-Kac theorem provides a mathematical equivalence between the Euclidean path integral and an Itô integral along the Wiener process (a.k.a. Brownian motion).
- This equivalence can be extended to Lorentzian path integrals by considering complex extensions of the Wiener process.
Thus, a path integral over the path space $L^{2}(\Omega)$ can be written as an Itô integral over the sample space Ω, i.e.

$$
\begin{equation*}
\int_{L^{2}(\Omega)} f(X) e^{-S(X(\tau))} D X(\tau)=\int_{\Omega} f(X) \mathrm{d} X(\tau, \omega) . \tag{1}
\end{equation*}
$$

Right hand side (Itô integral): $X:[0, T] \times \Omega \rightarrow \mathcal{M}$ is a stochastic process that extremizes the action $\mathbb{E}[S(X)]=\int_{\Omega} S(X(\omega)) d \mathbb{P}(\omega)$ subjected to the Wiener measure $d \mathbb{P}: \Omega \rightarrow[0,1]$. Left hand side (path integral): For every $\omega \in \Omega$, one obtains a path $X(\cdot, \omega):[0, T] \rightarrow \mathcal{M}$. The paths are weighted with the induced measure $\mathrm{d} \mu: L^{2}(\Omega) \rightarrow[0,1]$, which is given by $\mathrm{d} \mu_{X}=\mathrm{d}\left(\mathbb{P} \circ X^{-1}\right)=e^{-S(X(\tau))} D X(\tau)$.
Consequence: in the standard path integral formulation, the individual paths $X(\cdot, \omega)$ are continuous, but neither differentiable nor causal.
Only the probabilistic average $\mathbb{E}[X]=\int_{\Omega} X(\omega) d \mathbb{P}(\omega)$ over all paths is causal.

Remarks

- The non-differentiability of the paths is related to the non-commutativity of phase space.
- The acausality of the paths is related to the presence of negative normed eigenstates.
- The causality of the process ensures that the causality violations of the paths are exponentially suppressed on proper time intervals larger than the Compton wavelength.

Stochastic Calculus and Quadratic Variation

In the Itô formulation differential calculus is modified

$$
\begin{aligned}
\mathrm{d} f & =\partial_{\mu} f \mathrm{~d} X^{\mu}+\frac{1}{2} \partial_{\nu} \partial_{\mu} f \mathrm{~d}\left[X^{\mu}, X^{\nu}\right], \\
\mathrm{d}[f, g] & =\partial_{\mu} f \partial_{\nu} g \mathrm{~d}\left[X^{\mu}, X^{\nu}\right], \\
\mathrm{d}(h \circ f) & =\left(h^{\prime} \circ f\right) \mathrm{d} f+\frac{1}{2}\left(h^{\prime \prime} \circ f\right) \mathrm{d}[f, f], \\
\mathrm{d}(f g) & =f \mathrm{~d} g+g \mathrm{~d} f+\mathrm{d}[f, g],
\end{aligned}
$$

where the bracket $\mathrm{d}[.,$.$] is called the quadratic variation.$
Deterministic theories: $\mathrm{d}\left[X^{\mu}, X^{\nu}\right]=0$; stochastic/quantum theories: $\mathrm{d}\left[X^{\mu}, X^{\nu}\right] \neq 0$.
Euclidean Quantum Theory: the quadratic variation satisfies the structure relation

$$
\mathrm{d}\left[X^{\mu}, X^{\nu}\right](\tau)=\hbar g_{\mathrm{Eucl}}^{\mu \nu}(X(\tau)) \mathrm{d} \tau
$$

Lorentzian Quantum Theory: the quadratic variation satisfies the structure relation

$$
\begin{equation*}
\mathrm{d}\left[Z^{\mu}, Z^{\nu}\right](\tau)=\mathrm{i} \hbar g^{\mu \nu}(X(\tau)) \mathrm{d} \tau \tag{7}
\end{equation*}
$$

where $Z=X+\mathrm{i} Y$ and Y is an auxiliary path.
Consequence: Ordinary (first order) differential geometry fails in quantum theories!

Properties of Quadratic Variation

- Symmetry: $\mathrm{d}\left[X^{\mu}, X^{\nu}\right]=\mathrm{d}\left[X^{\nu}, X^{\mu}\right]$
- Bilinearity: $\mathrm{d}\left[a X^{\mu}+b X^{\nu}, X^{\rho}\right]=a \mathrm{~d}\left[X^{\mu}, X^{\rho}\right]+b \mathrm{~d}\left[X^{\nu}, X^{\rho}\right]$
- Positivity: $\mathrm{d}\left[X^{\mu}, X^{\nu}\right]$ is positive semi-definite
- Closure: $\mathrm{d}\left[\left[X^{\mu}, X^{\nu}\right], X^{\rho}\right]=0$ if $X(\tau)$ is continuous

Second Order Geometry

Geometric Perspective: Given a (pseudo-)Riemannian manifold \mathcal{M}. For any $x \in \mathcal{M}$, the (co)tangent space $T_{x}^{(*)} \mathcal{M}$ is extended to the second order (co)tangent space $\tilde{T}_{x}^{(*)} \mathcal{M}$. Vectors $v \in \tilde{T}_{x} \mathcal{M}$ and forms $\omega \in \tilde{T}_{x}^{*} \mathcal{M}$ have the canonical representation

$$
\begin{equation*}
v=v^{\mu} \partial_{\mu}+\frac{1}{2} v_{2}^{\mu \nu} \partial_{\mu} \partial_{\nu} \quad \text { and } \quad \omega=\omega_{\mu} \mathrm{d}_{2} x^{\mu}+\frac{1}{2} \omega_{\mu \nu} \mathrm{d}\left[x^{\mu}, x^{\nu}\right] \tag{8}
\end{equation*}
$$

with $\omega_{\mu \nu}=\partial_{(\nu} \omega_{\mu)}$ and a duality pairing given by $\langle v, \omega\rangle=\omega_{\mu} v^{\mu}+\frac{1}{2} \omega_{\mu \nu} v_{2}^{\mu \nu}$.
Second order vectors can be interpreted as velocities along stochastic/quantum trajectories:

$$
\begin{align*}
v^{\mu}(x, \tau) & =\lim _{\mathrm{d} \tau \rightarrow 0} \mathbb{E}\left[\left.\frac{\mathrm{~d} X^{\mu}(\tau)}{\mathrm{d} \tau} \right\rvert\, X(\tau)=x\right], \tag{9}\\
v_{2}^{\mu \nu}(x, \tau) & =\lim _{\mathrm{d} \tau \rightarrow 0} \mathbb{E}\left[\left.\frac{\mathrm{~d}\left[X^{\mu}, X^{\nu}\right](\tau)}{\mathrm{d} \tau} \right\rvert\, X(\tau)=x\right] \tag{10}
\end{align*}
$$

Representations $\left(v^{\mu}, v_{2}^{\nu \rho}\right)$ of vectors v and $\left(\omega_{\mu}, \omega_{\nu \rho}\right)$ of forms ω don't transform covariantly! However, there exist covariant representations $\left(\hat{v}^{\mu}, \hat{v}_{2}^{\nu \rho}\right)$ and $\left(\hat{\omega}_{\mu}, \hat{\omega}_{\nu \rho}\right)$, where

$$
\begin{aligned}
\hat{v}^{\mu} & =v^{\mu}+\frac{1}{2} \Gamma_{\nu \rho}^{\mu} v_{2}^{\nu \rho}, & & \hat{\omega}_{\mu}=\omega_{\mu}, \\
\hat{v}_{2}^{\mu \nu} & =v_{2}^{\mu \nu}, & & \hat{\omega}_{\mu \nu}=\omega_{\mu \nu}-\Gamma_{\mu \nu}^{\rho} \omega_{\rho} .
\end{aligned}
$$

Algebraic Perspective: The structure group of the tangent bundle $\tilde{T} \mathcal{M}=\bigsqcup_{x \in \mathcal{M}} \widetilde{T}_{x} \mathcal{M}$ is the Itô group $G_{n}^{I}=\mathrm{GL}(n, \mathbb{R}) \times \operatorname{Lin}\left(\mathbb{R}^{n} \otimes \mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with binary operation

$$
\left(g^{\prime}, \Gamma^{\prime}\right)(g, \Gamma)=\left(g^{\prime} g, g^{\prime} \circ \Gamma+\Gamma^{\prime} \circ(g \otimes g)\right)
$$

and left action on the fibers $\tilde{T}_{x} \mathcal{M} \cong \mathbb{R}^{n} \times \operatorname{Sym}\left(T \mathbb{R}^{n} \otimes T \mathbb{R}^{n}\right)$

$$
(g, \Gamma)\left(v, v_{2}\right)=\left(g v+\Gamma v_{2},(g \otimes g) v_{2}\right)
$$

for all $g, g^{\prime} \in \operatorname{GL}(n, \mathbb{R}), \Gamma, \Gamma^{\prime} \in \operatorname{Lin}\left(\mathbb{R}^{n} \otimes \mathbb{R}^{n}, \mathbb{R}^{n}\right), v \in \mathbb{R}^{n}$ and $v_{2} \in \operatorname{Sym}\left(T \mathbb{R}^{n} \otimes T \mathbb{R}^{n}\right)$.
Consequence: Consider an arbitrary vector field $v(x)$ with canonical (first order) representation $v^{\mu}=e_{a}^{\mu} v^{a}$. Then, if v is Lorentz invariant, v^{a} is invariant under the Lorentz group $\mathrm{SO}^{+}(3,1)$. However, since the polyads e_{a}^{μ} transform under G_{n}^{I} instead of $\mathrm{GL}(n, \mathbb{R})$, the representation v^{μ} is invariant under a deformed Lorentz symmetry
These deformations vanish in two limits:

$$
\begin{equation*}
G \rightarrow 0 \Rightarrow \Gamma \rightarrow 0 \quad \text { and } \quad \hbar \rightarrow 0 \Rightarrow v_{2} \rightarrow 0 \tag{11}
\end{equation*}
$$

Further Results

Embeddings in higher dimension:

- Given a n-dimensional (pseudo-)Riemannian manifold equipped with second order geometry, there exists a bijective mapping to a n-dimensional brane embedded in a $\frac{n(n+3)}{2}$. dimensional (pseudo-)Riemannian manifold equipped with first order geometry.
- Given a $(3+1)$-dimensional Lorentzian manifold, there exists a bijective mapping to a $(3+1)$-dimensional brane embedded in a $(10+4)$-dimensional Riemannian manifold equipped with first order geometry.
- Using the Bianchi identities, one can reduce the dimensions of the embedding space from $\frac{n(n+3)}{2}$ to $\frac{n(n+1)}{2}$ and from $(10+4)$ to $(9+1)$
Killing equation: The second order Killing equation is

$$
\begin{equation*}
\nabla_{(\mu} k_{\nu)}=e^{\mathrm{i} \phi} \hbar \mathcal{R}_{\mu \nu} . \tag{12}
\end{equation*}
$$

Lorentzian theory: $\phi=\frac{\pi}{2}$; Euclidean theory: $\phi=0$.
Thus, on the quantum foam we obtain an $O\left(l_{p}^{2}\right)$ deviation from the classical Killing equation.

Outlook

Second order geometry enables the construction of a covariant (continuous) path integral. Quantum gravity may require path integrals along paths that are not continuous.
The typical example is a path with Poisson distributed jumps.
The characteristic structure relation of a compensated Poisson process is

$$
\begin{equation*}
\mathrm{d}[X, X](\tau)=\beta^{2} \gamma \mathrm{~d} \tau+\beta \mathrm{d} X(\tau) \tag{11}
\end{equation*}
$$

where γ is the jump rate and β the jump size.
More generally, one can consider theories characterized by a structure relation

$$
\begin{equation*}
\mathrm{d}\left[X^{\mu}, X^{\nu}\right](\tau)=A^{\mu \nu} \mathrm{d} \tau+B_{\rho}^{\mu \nu} \mathrm{d} X^{\rho} . \tag{14}
\end{equation*}
$$

Discrete theories, characterized by $B \neq 0$, can be related to infinite derivative theories and theories on non-commutative spacetimes. (Stay tuned!)

References

${ }^{1}$ P.A. Meyer, Lecture Notes in Mathematics 851, Springer Berlin Heidelberg (1981).
${ }^{2}$ L. Schwartz, Presses de l'Université de Montréal, Montreal (1984).
${ }^{3}$ M. Emery, Universitext, Springer Berlin Heidelberg (1989)
${ }^{4}$ M. Huang, J.C. Zambrini, J. Nonlinear Sci. 33, 67 (2023).
${ }^{5}$ F. Kuipers, Springer Proc. Math. Stat. 396, 395-400 (2022)
${ }^{6}$ F. Kuipers, EPJ Plus 138, 6, 542 (2023).
F. Kuipers, SpringerBriefs in Physics, Springer Cham (2023)

