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Quantum Foam

Aim: construct a covariant theory on the quantum foam (fluctuating spacetime).

Fig. 1: Illustration of spacetime on the
Microscopic, Mesoscopic and

Macroscopic scale

(source: pngegg.com)

We consider a mesoscopic scale. Motivation:

�There exist many different microscopic models, but these
can be grouped in a smaller set of mesoscopic universality
classes.

�Near future experiments cannot distinguish between micro-
scopic models, but may observe the mesoscopic effects.

�Microscopic scale: discrete path integrals
Mesoscopic scale: continuous path integrals
Typically, discrete models are more suited for numerical
studies, while analytical studies are easier to perform in the
continuum limit.

Problem: path integrals seem to break general covariance.
Old solution (DeWitt): consider a non-trivial geometry on the configuration space of
fields (jet bundle).
New solution (Second Order Geometry): extend the (co)tangent bundle to a second
order (co)tangent bundle and the jet bundle to a second order jet bundle.

From Path Integrals to Itô Integrals

�The Feynman-Kac theorem provides a mathematical equivalence between the Euclidean
path integral and an Itô integral along the Wiener process (a.k.a. Brownian motion).

�This equivalence can be extended to Lorentzian path integrals by considering complex
extensions of the Wiener process.

Thus, a path integral over the path space L2(Ω) can be written as an Itô integral over the
sample space Ω, i.e.∫

L2(Ω)

f (X) e−S(X(τ ))DX(τ ) =

∫
Ω

f (X) dX(τ, ω) . (1)

Right hand side (Itô integral): X : [0, T ]×Ω → M is a stochastic process that extremizes
the action E[S(X)] =

∫
Ω S(X(ω)) dP(ω) subjected to the Wiener measure dP : Ω → [0, 1].

Left hand side (path integral): For every ω ∈ Ω, one obtains a path X(·, ω) : [0, T ] → M.
The paths are weighted with the induced measure dµ : L2(Ω) → [0, 1], which is given by
dµX = d(P ◦X−1) = e−S(X(τ ))DX(τ ).

Consequence: in the standard path integral formulation, the individual paths X(·, ω) are
continuous, but neither differentiable nor causal.
Only the probabilistic average E[X ] =

∫
ΩX(ω) dP(ω) over all paths is causal.

Remarks

�The non-differentiability of the paths is related to the non-commutativity of phase space.

�The acausality of the paths is related to the presence of negative normed eigenstates.

�The causality of the process ensures that the causality violations of the paths are expo-
nentially suppressed on proper time intervals larger than the Compton wavelength.

Stochastic Calculus and Quadratic Variation

In the Itô formulation differential calculus is modified:

df = ∂µf dXµ +
1

2
∂ν∂µf d[Xµ, Xν] , (2)

d[f, g] = ∂µf ∂νg d[X
µ, Xν] , (3)

d(h ◦ f ) = (h′ ◦ f ) df +
1

2
(h′′ ◦ f ) d[f, f ] , (4)

d(f g) = f dg + g df + d[f, g] , (5)

where the bracket d[., .] is called the quadratic variation.
Deterministic theories: d[Xµ, Xν] = 0; stochastic/quantum theories: d[Xµ, Xν] ̸= 0.
Euclidean Quantum Theory: the quadratic variation satisfies the structure relation

d[Xµ, Xν](τ ) = ℏ gµνEucl(X(τ )) dτ . (6)

Lorentzian Quantum Theory: the quadratic variation satisfies the structure relation

d[Zµ, Zν](τ ) = i ℏ gµν(X(τ )) dτ , (7)

where Z = X + iY and Y is an auxiliary path.
Consequence: Ordinary (first order) differential geometry fails in quantum theories!

Properties of Quadratic Variation

� Symmetry: d[Xµ, Xν] = d[Xν, Xµ]

�Bilinearity: d[aXµ + bXν, Xρ] = a d[Xµ, Xρ] + b d[Xν, Xρ]

�Positivity: d[Xµ, Xν] is positive semi-definite

�Closure: d[[Xµ, Xν], Xρ] = 0 if X(τ ) is continuous.

Second Order Geometry

Geometric Perspective: Given a (pseudo-)Riemannian manifold M. For any x ∈ M,

the (co)tangent space T
(∗)
x M is extended to the second order (co)tangent space T̃

(∗)
x M.

Vectors v ∈ T̃xM and forms ω ∈ T̃ ∗
xM have the canonical representation

v = vµ ∂µ +
1

2
vµν2 ∂µ∂ν and ω = ωµ d2x

µ +
1

2
ωµν d[x

µ, xν] (8)

with ωµν = ∂(νωµ) and a duality pairing given by ⟨v, ω⟩ = ωµv
µ + 1

2 ωµνv
µν
2 .

Second order vectors can be interpreted as velocities along stochastic/quantum trajectories:

vµ(x, τ ) = lim
dτ→0

E
[
dXµ(τ )

dτ

∣∣∣X(τ ) = x

]
, (9)

vµν2 (x, τ ) = lim
dτ→0

E
[
d[Xµ, Xν](τ )

dτ

∣∣∣X(τ ) = x

]
. (10)

Representations (vµ, vνρ2 ) of vectors v and (ωµ, ωνρ) of forms ω don’t transform covariantly!
However, there exist covariant representations (v̂µ, v̂νρ2 ) and (ω̂µ, ω̂νρ), where

v̂µ = vµ +
1

2
Γµ
νρv

νρ
2 , ω̂µ = ωµ,

v̂µν2 = vµν2 , ω̂µν = ωµν − Γρ
µνωρ .

Algebraic Perspective: The structure group of the tangent bundle T̃M =
⊔

x∈M T̃xM
is the Itô group GI

n = GL(n,R)× Lin(Rn ⊗ Rn,Rn) with binary operation

(g′,Γ′) (g,Γ) = (g′ g, g′ ◦ Γ + Γ′ ◦ (g ⊗ g))

and left action on the fibers T̃xM ∼= Rn × Sym(TRn ⊗ TRn)

(g,Γ) (v, v2) = (g v + Γ v2, (g ⊗ g) v2)

for all g, g′ ∈ GL(n,R), Γ,Γ′ ∈ Lin(Rn ⊗ Rn,Rn), v ∈ Rn and v2 ∈ Sym(TRn ⊗ TRn).
Consequence: Consider an arbitrary vector field v(x) with canonical (first order) repre-
sentation vµ = eµa v

a. Then, if v is Lorentz invariant, va is invariant under the Lorentz
group SO+(3, 1). However, since the polyads eµa transform under GI

n instead of GL(n,R),
the representation vµ is invariant under a deformed Lorentz symmetry.
These deformations vanish in two limits:

G → 0 ⇒ Γ → 0 and ℏ → 0 ⇒ v2 → 0 . (11)

Further Results

Embeddings in higher dimension:

�Given a n-dimensional (pseudo-)Riemannian manifold equipped with second order ge-

ometry, there exists a bijective mapping to a n-dimensional brane embedded in a n(n+3)
2 -

dimensional (pseudo-)Riemannian manifold equipped with first order geometry.

�Given a (3 + 1)-dimensional Lorentzian manifold, there exists a bijective mapping to
a (3 + 1)-dimensional brane embedded in a (10 + 4)-dimensional Riemannian manifold
equipped with first order geometry.

�Using the Bianchi identities, one can reduce the dimensions of the embedding space from
n(n+3)

2 to n(n+1)
2 and from (10 + 4) to (9 + 1).

Killing equation: The second order Killing equation is

∇(µkν) = eiϕ ℏRµν . (12)

Lorentzian theory: ϕ = π
2 ; Euclidean theory: ϕ = 0.

Thus, on the quantum foam we obtain anO(l2p) deviation from the classical Killing equation.

Outlook

Second order geometry enables the construction of a covariant (continuous) path integral.
Quantum gravity may require path integrals along paths that are not continuous.
The typical example is a path with Poisson distributed jumps.
The characteristic structure relation of a compensated Poisson process is

d[X,X ](τ ) = β2 γ dτ + β dX(τ ) , (13)

where γ is the jump rate and β the jump size.
More generally, one can consider theories characterized by a structure relation

d[Xµ, Xν](τ ) = Aµν dτ +Bµν
ρ dXρ . (14)

Discrete theories, characterized by B ̸= 0, can be related to infinite derivative theories and
theories on non-commutative spacetimes. (Stay tuned!)
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