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Motivations The quantization scheme Mutual information as a measure of correlations
: : : : . W impl t the di t ted in LQG in th tizati h f th del i i
= Describe the classical dynamics of a particle falling into a black hole as a KG scalar field € now implement the discreteness suggested in LQG in the quantization scheme of the mode One start with the relative entropy
excitation. i 2\ S(plo) :=Tr(plogp — plogo)
= Implement the discreteness of geometry suggested in LQG in the quantization of the o o B 0 | 1 n P_@ _ 0 which quantifies the distinguishability of p from o.
dynamics of matter and geometry. Schrodinger quantisation : g Tog \M T, ¥) =
. - If one consider the case of a system that can be decomposed into three subsystems A, B and

= Use this quantum model to investigate the information loss paradox. . .
C, one can define the mutual information by
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Model of an Hawking particle near the singularity Input : no infinitesimal shift in G allowed /\Pc>€ﬂ()\pa) BUT Apa — € | A,B (/.)AB\PA ® pB)
It quantifies how much a mixed states is distinguishable from the uncorrelated state that we

h ' h :
We firgt study_ the dynamics of a particle close to the BH singularity, representing the ingoing finite areatime can have by separating the two subsystems
Hawking particle : unitary evolution operator Moreover one has 9
o The patrticle falls with a 4 wave vector g - A\ T , A (¢0A03¢ - woAWbOBw) < I p()
. . ] ?z 1 p ~ ~ — AJB
K = —E(0,)" + pr(0,)" otymer quantisaton: | exp(ipa) [¢) —exp [ 3 | [ || da| (m+22) ) vy =0, 2A0AllIOs]
T r\Ur —— — 2 | . al, m o X X X
3 finite areatime L a . forall O = 04 ® Op such that O 4 and Opg are bounded.
FT The physical moment in the (&)adirection " ¢ ranslation The mutual information is an upper bound of the correlations between A and B.

one can obtain the full quantum dynamics from this equation
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Evolution of correlations between Hawking particle and the Planckian
geometric d.o.f
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The physical moment of the particle Is h(m, pg,a+ Al,) = e "/ p(m, py, a). We can determine the evolution of I;,, . and I;;, ,u

vanishing in the ¢, @ and (35 direction ’ ’
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The KG scalar field excitation describing the particle is homogeneous in the 15,J ¢) and direction Cb SeinistEia)e S s efplsElielr
It is possible to define a mass operator and to study its spectrum : 0006 . om
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On the other hand, the interior of a BH Is isometric to an homogenous and anisotrpic spacetime 0 ooz, — 4000 - — 4000
ﬂ Remark: [M,H] =0
) _1oo _40 T ~100
Inside of black hole + particle falling in = Homogenous & Anisotropic S.T. + massless® field : ~
g . . g " Eigenvector: [M,e) = » /cbm(pm&)pm>a>dpm suchthat M|M, e) = M|M,€) " "
| | a€le " The correlations between Hawking’s pair disappear in favor of correlations between the particle
Therefore the system is well described by : Bessel function falling inside and the Planckian geometric d.o.f.
2 2 2 2 2 _
ds® = —f(r)dt” + h(r)dr® + rdS2 and Gb — gb(’l") Moreover, one can also show that
l'ex= ++—F+—F+—T——F—+—F—F—F+—+— with e€[0,))
The actionis S = 1o~ d4a:'\/—gR + 2 K — 5/ d4$\/—g3(1¢8a¢) /\fp in,e — Lout,e
i Or k :> The mass operator is infinitly degenerate due to this € quantity representing a The particle escaping to infinity also becomes entangled with the Planckian geometric d.o.f.
. : |
After reparametrisation (7 added to the phase space), the Hamiltonian is : Planckian geometric d.o. ! S : : :
To restore unitarity, the Planckian geometric d.o.f must be taken into account.
H(f,pg,h,ph,7,pr, ¢, pgp) = 0 Dynamics of an Hawking pair on a discrete quantum geometry
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a = Amrr? Dy = — m = —fpr  Pm = —log(—f) Elements of this Hilbert space are noted |m, €, pip,, Pout)-
37T We consider the following initial state for which the two particles are maximally entangled
) = 3 [ dolmim,ec.ii)dm.
1 p2 1=
The Hamiltonian constraint simply becomes:| H = p, + — | m + ~¢ ~ e==+
2a m The dynamics gives
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