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Abstract

We investigate the multipartite entanglement of a uniformly curved subregion of

a 3D quantum spacetime slice with boundary, realised in terms of spin networks

defined on a graph with non trivial topology. The presence of intrinsic curvature in

the region is encoded in topological defects associated with tag-spins attached to

the vertices of the graph. Wemodel the generalized boundarymapping on a tripar-

tite random state and compute the logarithm negativity for the bipartite reduced

boundary, focusing on the universal typical behavior of the large spin regime. We

find three entanglement regimes, depending on the ratio between the number of

tags (curvature) and the area of the dual surface at the boundary.

Setting

Imagine to cut a generic bounded region R out of quantum 3D space.

We consider topological defect in the bulk, encoded in additional virtual spin J , or
tag, attached to the vertex.

We want to study the topology of R via measures of quantum correlations.

Extended boundary tripartition

Consider an observer having access only to the boundary system. Such an

observer is precluded from measuring the information on the bulk, Hence he

will typically describe the system via a mixed boundary state. Concretely, this

amounts to a partial tracing over the bulk.

We shall define a tripartition of the extended boundary system into three sub-

systems A1, A2, B, with A1, A2 complementary regions of the external boundary,

and B the set of tags in the bulk. This corresponds to the following factorization

of the extended boundary Hilbert space:

Hτ =
⊗
e∈A1

V je ⊗
⊗
e∈A2

V je ⊗
⊗
i∈B

V Ji .

Tracing out the tag degrees of freedom

ρA1A2 = TrB[ρτ ] .
we come up with a mixed boundary states.

We study the role of the system B as environment and how it affects boundary

correlations.

Topologial defects as candidates for curvature

1. Entanglement/area correspondence;

2. Curved areas are proportional to closure defects

From a classical viewpoint they give us insight about curvature

Area(∂Bε(p) ⊂ M)
Area(∂Bε(0) ⊂ Rn)

= 1 − R
6n

ε2 + O(ε3) .

3. Tags represent quantum topological defects.

We expect that tag induced correlations among boundary subsystems contain

information about bulk curvature.

Recipe

Figure 1. A quantum gravity chef

Entanglement negativity: good witness of quantum correlations for mixed

states; entanglement monotone under general PPT preserving operations.

EN(ρA1A2) ≡ log‖ρ
TA2
A1A2

‖1 .

Random measurement: independent Haar random vertex; we compute the

Rényi negativity in expected value

Eµ [Nk(ρA1A2)] ≡ Nk(ρA1A2) .

Large spin regime: log Rényi Negativity is well approximated by its typical value

Nk(ρA1A2) ' Nk(ρA1A2) .

Generalized Ising modelwith bulk contribution

The large spins regime allows us to approximate the Rènyi negativity as

Nk(ρA1A2) '
Tr

[(
ρ

TA2
A1A2

)k
]

(Tr [(ρA1A2)])
k

≡ Z
(k)
1

Z
(k)
0

=
∑
{gv}

e−A
(k)
1/0 ,

where A
(k)
1/0 is the action of a classical generalized Ising-like model, with spins re-

placed by elements of permutation group Sk.

Cyclic, anti cyclic and identity permutations play the role of boundary conditions

on the boundary subsystems and tags respectively.

The calculation of typical value of Rényi negativity is then mapped to the minimization

of a classical Ising action.

Rényi negativity should depend directly on the area of such minimal domain walls

in the network: thanks to the existence of a well defined loop quantum gravity

area operator acting on the edges of the spin network, we can map domain walls

areas to actual quantum geometry surfaces in our 3D space region R.

Results

Within the typical regime, the entanglement phases of the random boundary

state can be described solely in terms of the relative dimensions of the three

subsystems via the parameter

q = βtT/βE∂R = log[dim(B)]
log[dim(A1)dim(A2)]

,

which expresses the ratio of bulk curvature over boundary surface.

Hole

regime

q > 1
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lemma, see [? ]) in a sum over unitary representations of
the permutation group gv acting on the k copies of the

single vertex degeneracy space M
{je}
Jv ,

(|fvi hfv|)
⌦k =

(Dv � 1)!

(Dv + k � 1)!

X

gv2Sk

Pv(gv) , (22)

with dimension Dv = dim(M{je}
Jv ).

By performing the average, individually on each inde-
pendent random vertex state, eventually we obtain

Z
(k)
1 = C Tr

"
⇢
⌦k
tags ⌦ ⇢

⌦k
E

0

@
O

v

X

gv2Sk

Pv(gv)

1

A·

· PA(X) ⌦ PB

�
X

�1
�
⌦ PC( )

#
, (23)

where the trace factorizes over the Hilbert spaces of a)
internal edges, b) boundary spins and c) bulk intertwin-

ers, while C =
Q

v

h
(Dv�1)!

(Dv+k�1)!

i
. Z

(k)
0 has the same form

with X and X
�1 replaced by .

Now, to compute the action of the permutation oper-
ators on the di↵erent degrees of freedom at each vertex,
we factorize Pv(gv) into four di↵erent sets of operators,

Pv(gv) = Pv,0(gv) ⌦

O

eivw2ER

Pv,i(gv)⌦

⌦

O

eivv̄2E@R

Pv,i(gv) ⌦ Pv,tag(gv) , (24)

where Pv,0(gv) acts on k copies of the multiplicity inter-
twiner space,

N
eivw2ER

Pv,i(gv) acts on k copies of the

internal edges,
N

eivv̄2E@R
Pv,i(gv) acts on the boundary

semi-edges, with v̄ representing a virtual vertex which
is connected to v by the boundary edge e

i
vv̄, and finallyN

Jv
i 2TR

Pv,i(gv) acting on k copies of the tags. We indi-

cate with e
i
vw 2 ER the i

th internal edge which connects
the vertex v to the vertex w.

Accordingly, the computation of the trace can be de-
composed into four contributions, respectively for the a)
internal edges, b) boundary spins and c) tags spins d)
bulk intertwiners (for the technical aspects of the com-
putation we refer the reader to []).

As a result, the (normalised) k-th power of the parti-
tion function is mapped to the classical partition function
of a generalized Ising-like model,

Z
(k)
1/0 =

X

{gv}

e
�A(k)

1/0

⇥
{gv}

⇤
, (25)

defined by the action5

A
(k)
1

⇥
{gv}

⇤
=

X

eivw2ER

�(gv, gw) log djivw
+

+
X

eivv̄2A

�(gv, X) log djiv +
X

eivv̄2Ā

�(gv, X
�1) log djiv+

+
X

Ji
vv̄2B

�(gv, ) logDJi
v

+ Atags + ⇠ (27)

with ⇠ a constant term and

Atags = � log

(
Trbulk

h
| tagsih tags|

⌦k (⌦vPv,0(gv))
i)

(28)
the bulk state contribution. In (??) and (??).The ac-

tion A
(k)
1

⇥
{gv}

⇤
describes a two-body interaction between

permutation elements, which therefore act as generalized
spins, attached to the spin network vertices. These in-
teractions are described by the Cayley distance �(g, h),
for g, h elements of the permutation group, while the pin-
ning permutations fields X, X�1 and play the role of
boundary conditions attached to the boundary and tags
spins.6

We consider a quasi-homogeneous spin network, where
all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as

log dj ⌘ � , logDJ ⌘ �t (29)

intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.

5
and

A
(k)
0

⇥
{gv}

⇤
=

X

eivw2L

�(gv , gw) log djivw
+

+

X

Ji
vv̄2TR[E@R

�(gv , ) log djiv
+A( tags) + ⇠ , (26)

respctively.
6
One can equivalently think of the pinning permutations fields X,

X
�1

and as being attached to virtual 1-valent vertices on the

extended boundary.
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domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.
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permutation elements, which therefore act as generalized
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ning permutations fields X, X�1 and play the role of
boundary conditions attached to the boundary and tags
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same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as
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intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.
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putation we refer the reader to []).
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teractions are described by the Cayley distance �(g, h),
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boundary conditions attached to the boundary and tags
spins.6
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all the edges carry the same spin j and all tags carry the
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the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as
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intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
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ning permutations fields X, X�1 and play the role of
boundary conditions attached to the boundary and tags
spins.6
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all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as
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intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.
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permutation elements, which therefore act as generalized
spins, attached to the spin network vertices. These in-
teractions are described by the Cayley distance �(g, h),
for g, h elements of the permutation group, while the pin-
ning permutations fields X, X�1 and play the role of
boundary conditions attached to the boundary and tags
spins.6

We consider a quasi-homogeneous spin network, where
all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as
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intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.
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lemma, see [? ]) in a sum over unitary representations of
the permutation group gv acting on the k copies of the

single vertex degeneracy space M
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(Dv + k � 1)!
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with dimension Dv = dim(M{je}
Jv ).

By performing the average, individually on each inde-
pendent random vertex state, eventually we obtain
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where the trace factorizes over the Hilbert spaces of a)
internal edges, b) boundary spins and c) bulk intertwin-

ers, while C =
Q
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h
(Dv�1)!

(Dv+k�1)!

i
. Z

(k)
0 has the same form

with X and X
�1 replaced by .

Now, to compute the action of the permutation oper-
ators on the di↵erent degrees of freedom at each vertex,
we factorize Pv(gv) into four di↵erent sets of operators,
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where Pv,0(gv) acts on k copies of the multiplicity inter-
twiner space,
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Pv,i(gv) acts on k copies of the

internal edges,
N
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Pv,i(gv) acts on the boundary

semi-edges, with v̄ representing a virtual vertex which
is connected to v by the boundary edge e

i
vv̄, and finallyN

Jv
i 2TR

Pv,i(gv) acting on k copies of the tags. We indi-

cate with e
i
vw 2 ER the i

th internal edge which connects
the vertex v to the vertex w.

Accordingly, the computation of the trace can be de-
composed into four contributions, respectively for the a)
internal edges, b) boundary spins and c) tags spins d)
bulk intertwiners (for the technical aspects of the com-
putation we refer the reader to []).

As a result, the (normalised) k-th power of the parti-
tion function is mapped to the classical partition function
of a generalized Ising-like model,
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defined by the action5
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with ⇠ a constant term and
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(28)
the bulk state contribution. In (??) and (??).The ac-

tion A
(k)
1

⇥
{gv}

⇤
describes a two-body interaction between

permutation elements, which therefore act as generalized
spins, attached to the spin network vertices. These in-
teractions are described by the Cayley distance �(g, h),
for g, h elements of the permutation group, while the pin-
ning permutations fields X, X�1 and play the role of
boundary conditions attached to the boundary and tags
spins.6

We consider a quasi-homogeneous spin network, where
all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as

log dj ⌘ � , logDJ ⌘ �t (29)

intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.

5
and

A
(k)
0

⇥
{gv}

⇤
=

X

eivw2L

�(gv , gw) log djivw
+

+

X

Ji
vv̄2TR[E@R

�(gv , ) log djiv
+A( tags) + ⇠ , (26)

respctively.
6
One can equivalently think of the pinning permutations fields X,

X
�1

and as being attached to virtual 1-valent vertices on the

extended boundary.
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Accordingly, the computation of the trace can be de-
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bulk intertwiners (for the technical aspects of the com-
putation we refer the reader to []).
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describes a two-body interaction between

permutation elements, which therefore act as generalized
spins, attached to the spin network vertices. These in-
teractions are described by the Cayley distance �(g, h),
for g, h elements of the permutation group, while the pin-
ning permutations fields X, X�1 and play the role of
boundary conditions attached to the boundary and tags
spins.6

We consider a quasi-homogeneous spin network, where
all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as
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intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
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domains to be associated to equilibrium configurations.
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boundary conditions attached to the boundary and tags
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all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
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respectively as
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dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.
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permutation elements, which therefore act as generalized
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teractions are described by the Cayley distance �(g, h),
for g, h elements of the permutation group, while the pin-
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boundary conditions attached to the boundary and tags
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We consider a quasi-homogeneous spin network, where
all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as
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intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.
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lemma, see [? ]) in a sum over unitary representations of
the permutation group gv acting on the k copies of the

single vertex degeneracy space M
{je}
Jv ,

(|fvi hfv|)
⌦k =

(Dv � 1)!

(Dv + k � 1)!

X

gv2Sk

Pv(gv) , (22)

with dimension Dv = dim(M{je}
Jv ).

By performing the average, individually on each inde-
pendent random vertex state, eventually we obtain
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where the trace factorizes over the Hilbert spaces of a)
internal edges, b) boundary spins and c) bulk intertwin-

ers, while C =
Q

v

h
(Dv�1)!

(Dv+k�1)!

i
. Z

(k)
0 has the same form

with X and X
�1 replaced by .

Now, to compute the action of the permutation oper-
ators on the di↵erent degrees of freedom at each vertex,
we factorize Pv(gv) into four di↵erent sets of operators,

Pv(gv) = Pv,0(gv) ⌦

O

eivw2ER

Pv,i(gv)⌦
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eivv̄2E@R
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where Pv,0(gv) acts on k copies of the multiplicity inter-
twiner space,

N
eivw2ER

Pv,i(gv) acts on k copies of the

internal edges,
N

eivv̄2E@R
Pv,i(gv) acts on the boundary

semi-edges, with v̄ representing a virtual vertex which
is connected to v by the boundary edge e

i
vv̄, and finallyN

Jv
i 2TR

Pv,i(gv) acting on k copies of the tags. We indi-

cate with e
i
vw 2 ER the i

th internal edge which connects
the vertex v to the vertex w.

Accordingly, the computation of the trace can be de-
composed into four contributions, respectively for the a)
internal edges, b) boundary spins and c) tags spins d)
bulk intertwiners (for the technical aspects of the com-
putation we refer the reader to []).

As a result, the (normalised) k-th power of the parti-
tion function is mapped to the classical partition function
of a generalized Ising-like model,
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defined by the action5
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with ⇠ a constant term and

Atags = � log
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Trbulk
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| tagsih tags|

⌦k (⌦vPv,0(gv))
i)

(28)
the bulk state contribution. In (??) and (??).The ac-

tion A
(k)
1

⇥
{gv}

⇤
describes a two-body interaction between

permutation elements, which therefore act as generalized
spins, attached to the spin network vertices. These in-
teractions are described by the Cayley distance �(g, h),
for g, h elements of the permutation group, while the pin-
ning permutations fields X, X�1 and play the role of
boundary conditions attached to the boundary and tags
spins.6

We consider a quasi-homogeneous spin network, where
all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as

log dj ⌘ � , logDJ ⌘ �t (29)

intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.
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respctively.
6
One can equivalently think of the pinning permutations fields X,

X
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and as being attached to virtual 1-valent vertices on the

extended boundary.
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putation we refer the reader to []).

As a result, the (normalised) k-th power of the parti-
tion function is mapped to the classical partition function
of a generalized Ising-like model,

Z
(k)
1/0 =

X

{gv}

e
�A(k)

1/0

⇥
{gv}

⇤
, (25)

defined by the action5

A
(k)
1

⇥
{gv}

⇤
=

X

eivw2ER

�(gv, gw) log djivw
+

+
X

eivv̄2A

�(gv, X) log djiv +
X

eivv̄2Ā

�(gv, X
�1) log djiv+

+
X

Ji
vv̄2B

�(gv, ) logDJi
v

+ Atags + ⇠ (27)

with ⇠ a constant term and

Atags = � log

(
Trbulk

h
| tagsih tags|

⌦k (⌦vPv,0(gv))
i)

(28)
the bulk state contribution. In (??) and (??).The ac-

tion A
(k)
1

⇥
{gv}

⇤
describes a two-body interaction between

permutation elements, which therefore act as generalized
spins, attached to the spin network vertices. These in-
teractions are described by the Cayley distance �(g, h),
for g, h elements of the permutation group, while the pin-
ning permutations fields X, X�1 and play the role of
boundary conditions attached to the boundary and tags
spins.6

We consider a quasi-homogeneous spin network, where
all the edges carry the same spin j and all tags carry the
same spin J , with j 6= J generally. Given dj = 2j + 1
the dimension of the Hilbert spaces of the edges spin
and DJ = 2J + 1 the dimension of the Hilbert space of
the tags spin, we define the strength of the interactions
respectively as

log dj ⌘ � , logDJ ⌘ �t (29)

intended as inverse temperatures in analogy with stan-
dard Ising models. The action favours neighbouring
“spins” to be parallel. Therefore, in the large spin di-
mension limit, corresponding to some strong coupling or
“low temperature” regime, the dominant configurations
that minimize the action correspond to large uniform spin
domains separated by domain walls, which in turn give
the energy cost of the configuration. We expect maximal
domains to be associated to equilibrium configurations.
In particular, maximal domains correspond to minimal
domain walls.

5
and

A
(k)
0

⇥
{gv}

⇤
=

X

eivw2L

�(gv , gw) log djivw
+

+

X

Ji
vv̄2TR[E@R

�(gv , ) log djiv
+A( tags) + ⇠ , (26)

respctively.
6
One can equivalently think of the pinning permutations fields X,

X
�1

and as being attached to virtual 1-valent vertices on the

extended boundary.

<latexit sha1_base64="NiZ/UMWOLqmTj0A+Z+Nzi9MY8pE=">AAACCnicbVC7TsNAEDzzDOFloKQxRJGoIhshoIygoQyIPKTYWOvLJTnl7mzdnZEik5qGX6GhACFavoCOv+GSuICEkVYazexqdydKGFXadb+thcWl5ZXVwlpxfWNza9ve2W2oOJWY1HHMYtmKQBFGBalrqhlpJZIAjxhpRoPLsd+8J1LRWNzqYUICDj1BuxSDNlJoH5Qf/ETRMPN7wDmEN6O7zNeQjnwJosdIsRXaJbfiTuDMEy8nJZSjFtpffifGKSdCYwZKtT030UEGUlPMyKjop4okgAfQI21DBXCigmzyysgpG6XjdGNpSmhnov6eyIArNeSR6eSg+2rWG4v/ee1Ud8+DjIok1UTg6aJuyhwdO+NcnA6VBGs2NASwpOZWB/dBAtYmvaIJwZt9eZ40jiveacW7PilVL/I4CmgfHaIj5KEzVEVXqIbqCKNH9Ixe0Zv1ZL1Y79bHtHXBymf20B9Ynz+m6pre</latexit>

X

<latexit sha1_base64="sXr1R3W7vz5ZgzsLbC9hidV1dds=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBDx4r2A9oQ9lsN+3SzSbsToQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo5hLfaTpoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/mtM3JmlSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkj5Oh0JyhnFpCmRb2VsLGVFOGNp6KDcFbfnmVtC/q3lXde7isNe6KOMpwAqdwDh5cQwPuoQktYDCGZ3iFNydyXpx352PRWnKKmWP4A+fzByO/jlA=</latexit>⌧ <latexit sha1_base64="sXr1R3W7vz5ZgzsLbC9hidV1dds=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBDx4r2A9oQ9lsN+3SzSbsToQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo5hLfaTpoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/mtM3JmlSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkj5Oh0JyhnFpCmRb2VsLGVFOGNp6KDcFbfnmVtC/q3lXde7isNe6KOMpwAqdwDh5cQwPuoQktYDCGZ3iFNydyXpx352PRWnKKmWP4A+fzByO/jlA=</latexit>⌧

<latexit sha1_base64="sXr1R3W7vz5ZgzsLbC9hidV1dds=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBDx4r2A9oQ9lsN+3SzSbsToQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo5hLfaTpoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/mtM3JmlSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkj5Oh0JyhnFpCmRb2VsLGVFOGNp6KDcFbfnmVtC/q3lXde7isNe6KOMpwAqdwDh5cQwPuoQktYDCGZ3iFNydyXpx352PRWnKKmWP4A+fzByO/jlA=</latexit>⌧<latexit sha1_base64="sXr1R3W7vz5ZgzsLbC9hidV1dds=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBDx4r2A9oQ9lsN+3SzSbsToQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo5hLfaTpoFpz6+4cZJV4BalBgeag+tUfxiyNuEImqTE9z03Qz6hGwSSfVfqp4QllEzriPUsVjbjxs/mtM3JmlSEJY21LIZmrvycyGhkzjQLbGVEcm2UvF//zeimGN34mVJIiV2yxKEwlwZjkj5Oh0JyhnFpCmRb2VsLGVFOGNp6KDcFbfnmVtC/q3lXde7isNe6KOMpwAqdwDh5cQwPuoQktYDCGZ3iFNydyXpx352PRWnKKmWP4A+fzByO/jlA=</latexit>⌧

<latexit sha1_base64="ScGYA68kzMdsJa5n37hZOEO15qw=">AAACD3icbVC7TsNAEDzzDOFloKSxiIJoiGyEgDKChjIg8pDixFpfLskpd2fr7owUGf8BDb9CQwFCtLR0/A2XRwEJI600mtnV7k4YM6q0635bC4tLyyurubX8+sbm1ra9s1tTUSIxqeKIRbIRgiKMClLVVDPSiCUBHjJSDwdXI79+T6SikbjTw5i0OPQE7VIM2kiBfVh88GNFg9TvAecQ3Gbt1NeQZL4E0WMk32inx14W2AW35I7hzBNvSgpoikpgf/mdCCecCI0ZKNX03Fi3UpCaYkayvJ8oEgMeQI80DRXAiWql438yp2iUjtONpCmhnbH6eyIFrtSQh6aTg+6rWW8k/uc1E929aKVUxIkmAk8WdRPm6MgZheN0qCRYs6EhgCU1tzq4DxKwNhHmTQje7MvzpHZS8s5K3s1poXw5jSOH9tEBOkIeOkdldI0qqIowekTP6BW9WU/Wi/VufUxaF6zpzB76A+vzBzo8nMQ=</latexit>

X�1

<latexit sha1_base64="Vsa9UXvkBqmi0ZD+mN55uQFqwx4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68dii/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LBjBP0IzqQPOSMGivV73ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWrX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDsB2M3Q==</latexit>

S
<latexit sha1_base64="vdfOlrxnBqz+MQPMYzW1oiKCMTc=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSJ4Krsi6rGiB48V7Ae065JNs21okl2SrFK2/R9ePCji1f/izX9j2u5BWx8MPN6bYWZemHCmjet+O0vLK6tr64WN4ubW9s5uaW+/oeNUEVonMY9VK8SaciZp3TDDaStRFIuQ02Y4uJ74zUeqNIvlvRkm1Be4J1nECDZWehh1elgIHGRXgTceBaWyW3GnQIvEy0kZctSC0lenG5NUUGkIx1q3PTcxfoaVYYTTcbGTappgMsA92rZUYkG1n02vHqNjq3RRFCtb0qCp+nsiw0LroQhtp8Cmr+e9ifif105NdOlnTCapoZLMFkUpRyZGkwhQlylKDB9agoli9lZE+lhhYmxQRRuCN//yImmcVrzzind3Vq7e5HEU4BCO4AQ8uIAq3EIN6kBAwTO8wpvz5Lw4787HrHXJyWcO4A+czx+MhZKN</latexit>

|�A1 |

<latexit sha1_base64="kP1S7yS2xz65B2Z87hYQOoSzUS4=">AAAB9XicbVBNSwMxEM3Wr1q/qh69BIvgqewWUY8VPXisYD+gXZfZNG1Dk+ySZJWy7f/w4kERr/4Xb/4b03YP2vpg4PHeDDPzwpgzbVz328mtrK6tb+Q3C1vbO7t7xf2Dho4SRWidRDxSrRA05UzSumGG01asKIiQ02Y4vJ76zUeqNIvkvRnF1BfQl6zHCBgrPYw7fRACgvQqqEzGQbHklt0Z8DLxMlJCGWpB8avTjUgiqDSEg9Ztz42Nn4IyjHA6KXQSTWMgQ+jTtqUSBNV+Ort6gk+s0sW9SNmSBs/U3xMpCK1HIrSdAsxAL3pT8T+vnZjepZ8yGSeGSjJf1Es4NhGeRoC7TFFi+MgSIIrZWzEZgAJibFAFG4K3+PIyaVTK3nnZuzsrVW+yOPLoCB2jU+ShC1RFt6iG6ogghZ7RK3pznpwX5935mLfmnGzmEP2B8/kDjguSjg==</latexit>

|�A2 |

<latexit sha1_base64="c9nWhd2rlRe3YW+slTAphDqvFA8=">AAAB8XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKqMegHjxGMA9MltA7mU2GzMwuM7NCSPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dYcKZNp737eRWVtfWN/Kbha3tnd294v5BXcepIrRGYh6rZoiaciZpzTDDaTNRFEXIaSMc3Ez9xhNVmsXywQwTGgjsSRYxgsZKj+N2D4XAzvW4Uyx5ZW8Gd5n4GSlBhmqn+NXuxiQVVBrCUeuW7yUmGKEyjHA6KbRTTRMkA+zRlqUSBdXBaHbxxD2xSteNYmVLGnem/p4YodB6KELbKdD09aI3Ff/zWqmJroIRk0lqqCTzRVHKXRO70/fdLlOUGD60BIli9laX9FEhMTakgg3BX3x5mdTPyv5F2b8/L1VuszjycATHcAo+XEIF7qAKNSAg4Rle4c3Rzovz7nzMW3NONnMIf+B8/gCVy5De</latexit>

|�B |

E
(hole)
N (ρA1A2) ' 0 E

(bipartite)
N (ρA1A2) ' βS E

(island)
N (ρA1A2) ∝ 1

2
βE∂R(1−q)

Conclusions and outlook

The large spin regime is necessarily associated with a semiclassical limit for our

quantum geometry states: we can tentatively interpret the formulas found for the

entanglement negativity in terms of areas of a bounded 3D region of a Riemannian

manifold and look for a direct relation with its Ricci curvature.

The area of the boundary of a flat three ball region (no tags) is

Area(∂Bε(0)) ' βE∂R(ε)
If we assume

Area(∂Bε(p)) ' βE∂R(ε) + βtT (ε)

in the Island regime we obtain

Area(∂Bε(p))
Area(∂Bε(0))

= 1 − q

Such relation hints toward a possible characterisation of the curvature in purely

information theoretic terms.

q(ε) ' −R
18

ε2
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