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Why?
• Diffeomorphism covariance (or background independence) is a key feature of the formulation of

General Relativity.
• Loop Quantum Gravity (LQG) is a non-perturbative proposal to a quantum theory of gravity,

based on the principle of of diffeomorphism covariance.
• Loop Quantum Cosmology (LQC) applies quantization techniques analogous to LQG to

symmetry-reduced models, but does not require diffeomorphism covariance a priori.
• Requiring diffeomorphism covariance to a LQC model can help reducing ambiguities in its

construction1,2.

Kantowski-Sachs Framework
• Homogeneous model with spatial section of topology S2 ×R, with geometry described by pairs
(b, pb) and (c, pc), such that
{b, pb}= Gγ and {c, pc}= 2Gγ,
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• Ashtekar-Barbero variables:
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• Hamiltonian Constraint (with lapse NVn = λV n)
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Diffeomorphism Covariance
• Residual diffeomorphisms: group of transformations preserving the form of (A,E):
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• Subgroup with non-trivial action generated by {x⃗x}.
• Flow equations result in

ḃ = 0 , ṗb = pb , ċ = c , ṗc = 0 (2)

• Flow of the Hamiltonian:
Ḣcℓ = (n+1)Hcℓ.

We seek to require the quantum Hamiltonian to follow a quantization of this condition (quantum
covariance).

Quantization Procedure
• Standard procedure corresponding to canonical transformations: turn quantities into operators,

Poisson brackets into commutators, choose an ordering for quantizing products

Ḟ = {Λ,F} ⇒ ˙̂F =
1
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t
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t
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Flows in (2) are non-canonical, but they can be cast in a related form

Ḟ = ω1{Λ1,F}(b, pb)+ω2{Λ2,F}(c, pc) =
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γG
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2γG
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Choosing the Weyl ordering for quantizing products, Â⋆ B̂ := 1
2

(
ÂB̂+ B̂Â

)
, yields the covariance

equation for Ĥ,
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]
+
[
b̂, Ĥ
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• Only exponentials of b and c are properly defined in the Bohr-Hilbert space arising from loop quan-
tization, so first find the general solution for (3) in the standard Schrödinger representation, with
later imposition of preservation of the Bohr-Hilbert space.

• Find the general solution for the matrix elements
〈

p′′b, p′′c
∣∣Ĥ∣∣ p′b, p′c

〉
, and use completeness of mo-

mentum basis to obtain the action of the Hamiltonian on a general state |p′b, p′c⟩,
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By changing variables, rewrite the action of Ĥ in terms of shifts and an unconstrained parameter
function α : R3 → C,
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Define the ordering prescription, for a general function f (pb, pc) as f (pb, pc)e
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• Preservation of Bohr-Hilbert space: for any p′b, p′c there must be at most countable p′′b, p′′c
such that the matrix elements

〈
p′′b, p′′c

∣∣Ĥ∣∣ p′b, p′c
〉

are non-zero. Require α(A,B, pc,sgn pb) =

∑k αk(pc,sgn pb)δ (A−Ak(pc))δ (B−Bk(pc)), then
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Discrete Symmetries
• Define the classical analogue of operator as the preimage under quantization map,

H = ∑
n

pbαn(pc,sgn pb)e
i
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)
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As a consequence of the ordering prescription for quantization, discrete symmetries that are left
can be easily checked directly in the classical analogue.

• Hermiticity : Ĥ = Ĥ† = ˆ̄H ⇒ H̄ = H,

• b-parity : Πb : (b, pb) 7→ (−b,−pb), equivalent to an internal gauge rotation of π around the 3-
axis. Π̂bĤΠ̂b = Π∗

bH
∧

and H must satisfy the covariance equation Π∗
bH =−H, satisfied by (1).

• c-parity : Πc : (c, pc) 7→ (−c,−pc), equivalent to antipodal map (θ ,φ) 7→ (π −θ ,φ +π) + inter-
nal parity under 3-axis. H must follow Π∗

cH =−H, satisfied by (1).

• Physical assumption: quantization is resultant from the fact that holonomies can only be shrank
to a minimum area ∆, which is dependent only on the absolute values of the momentum variables,
and not on their sign – require that A = A(|pc|) and B = B(|pc|)

• The general form for H is then
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where ak,bk are real and imaginary parts of αk, and the superscripts e,o refers to the even and odd
parts of each coefficient.

Classical Asymptotic Behavior
• Expanding (5) for the limit of low curvatures (b,c → 0), and matching terms of same order with

(1), result in a system of equations to find a family of Hamiltonians, depending on the parameter
N chosen
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Minimality
• Require Hamiltonian to have a minimum number of terms (N = 2), which results in
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• Selecting the µ̄ prescription, by choosing A1 =
√

∆

pc
,B1 =

√
pc∆, A2 = 2A1, (6) matches Chiou3

for n = 1, and Joe and Singh4 for n = 0.

Discussion
• Although avoiding choosing a particular quantization prescription, the results force to a kind of

µ̄-prescription, since c can only appear in the shift coefficients in the form c
|pb|

to guarantee co-
variance under residual diffeomorphisms.

• Requiring minimality – an Occam’s razor assumption – matches the result with others previously
presented in the literature, reached by the standard quantization method in LQC.

• However, it is worth to stress that minimality is not a physical requirement, and has the weakness
that it selects a unique result and does not allow different possible dynamics of the full theory to
be represented.
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