Rafael G. Dias (rdias2019@fau.edu) Ian W. Bornhoeft Jonathan S. Engle

Why?

- Diffeomorphism covariance (or background independence) is a key feature of the formulation of General Relativity.
- Loop Quantum Gravity (LQG) is a non-perturbative proposal to a quantum theory of gravity based on the principle of of diffeomorphism covariance.
- Loop Quantum Cosmology (LQC) applies quantization techniques analogous to LQG to symmetry-reduced models, but does not require diffeomorphism covariance a priori.
- Requiring diffeomorphism covariance to a LQC model can help reducing ambiguities in its construction ${ }^{1,2}$.

Kantowski-Sachs Framework

- Homogeneous model with spatial section of topology $S^{2} \times \mathbb{R}$, with geometry described by pairs (b, p_{b}) and (c, p_{c}), such that
$\left\{b, p_{b}\right\}=G \gamma$ and $\left\{c, p_{c}\right\}=2 G \gamma$,

$$
d s^{2}=-N^{2} d \tau^{2}+\frac{p_{b}^{2}}{\left|p_{c}\right| L_{0}^{2}} d x^{2}+\left|p_{c}\right| d \Omega^{2},
$$

$$
V=4 \pi\left|p_{b}\right| \sqrt{\left|p_{c}\right|} .
$$

- Ashtekar-Barbero variables:

$$
\begin{array}{ll}
A_{a}^{1}=-b \sin \theta \partial_{a} \phi, & E_{1}^{a}=-\frac{p_{b}}{L_{0}} \phi^{a} \\
A_{a}^{2}=b \partial_{a} \theta, & E_{2}^{a}=\frac{p_{b}}{L_{0}} \sin \theta \theta^{a} \\
A_{a}^{3}=\frac{c}{L_{0}} \partial_{a} x+\cos \theta \partial_{a} \phi, & E_{3}^{a}=p_{c} \sin \theta x^{a}
\end{array}
$$

- Hamiltonian Constraint (with lapse $N_{V_{n}}=\lambda V^{n}$)

$$
\begin{equation*}
H_{c l}\left[N_{V_{h}}\right]=-\frac{\lambda V^{n+1}}{8 \pi G \gamma^{2}} \operatorname{sgn} p_{b}\left[\frac{b^{2}+\gamma^{2}}{p_{c}}+\frac{2 b c}{p_{b}}\right] . \tag{1}
\end{equation*}
$$

Diffeomorphism Covariance

- Residual diffeomorphisms: group of transformations preserving the form of (A, E) :

$$
\begin{aligned}
& \mathscr{L}_{\vec{v}} A_{a}^{i}(t)=\dot{A}_{a}^{i}=\frac{\partial A_{a}^{i}}{\partial b} \dot{b}(t)+\frac{\partial A_{a}^{i}}{\partial c} \dot{c}(t) \\
& \mathscr{L}_{\vec{\rightharpoonup}} E_{i}^{a}(t)=\dot{E}_{i}^{a}=\frac{\partial E_{i}^{a}}{\partial p_{b}} \dot{p}_{b}(t)+\frac{\partial E_{i}^{a}}{\partial p_{c}} \dot{c}_{c}(t)
\end{aligned}
$$

- Subgroup with non-trivial action generated by $\{x \vec{x}\}$.
- Flow equations result in

$$
\begin{equation*}
\dot{b}=0, \quad \dot{p}_{b}=p_{b}, \quad \dot{c}=c, \quad \dot{p}_{c}=0 \tag{2}
\end{equation*}
$$

- Flow of the Hamiltonian:

$$
\dot{H}_{c l}=(n+1) H_{c l} .
$$

We seek to require the quantum Hamiltonian to follow a quantization of this condition (quantum covariance).

Quantization Procedure

- Standard procedure corresponding to canonical transformations: turn quantities into operators, Poisson brackets into commutators, choose an ordering for quantizing products

$$
\dot{F}=\{\Lambda, F\} \Rightarrow \dot{\hat{F}}=\frac{1}{i \hbar}[\hat{F}, \hat{\Lambda}] \Rightarrow \hat{F}(t)=e^{\frac{t}{\hbar} \hat{N}} \hat{F}(0) e^{-\frac{t}{\hbar} \hat{\Lambda}} .
$$

Flows in (2) are non-canonical, but they can be cast in a related form

$$
\dot{F}=\omega_{1}\left\{\Lambda_{1}, F\right\}\left(b, p_{b}\right)+\omega_{2}\left\{\Lambda_{2}, F\right\}\left(c, p_{c}\right)=\frac{p_{b}}{\gamma G}\{b, F\}-\frac{c}{2 \gamma G}\left\{p_{c}, F\right\} .
$$

Choosing the Weyl ordering for quantizing products, $\hat{A} \star \hat{B}:=\frac{1}{2}(\hat{A} \hat{B}+\hat{B} \hat{A})$, yields the covariance equation for \hat{H},

$$
\begin{equation*}
(n+1) \hat{H}=\frac{1}{2 i \gamma \ell_{p}^{2}}\left\{\hat{p}_{b}[\hat{b}, \hat{H}]+[\hat{b}, \hat{H}] \hat{p}_{b}\right\}-\frac{1}{4 i \gamma \ell_{p}^{2}}\left\{\hat{c}\left[\hat{p}_{c}, \hat{H}\right]+\left[\hat{p}_{c}, \hat{H}\right] \hat{c}\right\} . \tag{3}
\end{equation*}
$$

- Only exponentials of b and c are properly defined in the Bohr-Hilbert space arising from loop quantization, so first find the general solution for (3) in the standard Schrödinger representation, with later imposition of preservation of the Bohr-Hilbert space.
- Find the general solution for the matrix elements $\left\langle p_{b}^{\prime \prime}, p_{c}^{\prime \prime}\right| \hat{H}\left|p_{b}^{\prime}, p_{c}^{\prime}\right\rangle$, and use completeness of momentum basis to obtain the action of the Hamiltonian on a general state $\left|p_{b}^{\prime}, p_{c}^{\prime}\right\rangle$,

$$
\hat{H}\left|p_{b}^{\prime}, p_{c}^{\prime}\right\rangle=\int\left|p_{b}^{\prime \prime}, p_{c}^{\prime \prime}\right\rangle\left\langle p_{b}^{\prime \prime}, p_{c}^{\prime \prime}\right| \hat{H}\left|p_{b}^{\prime}, p_{c}^{\prime}\right\rangle d p_{b}^{\prime \prime} d p_{c}^{\prime \prime} .
$$

By changing variables, rewrite the action of \hat{H} in terms of shifts and an unconstrained parameter function $\alpha: \mathbb{R}^{3} \rightarrow \mathbb{C}$,

$$
\hat{H}\left|p_{b}^{\prime}, p_{c}^{\prime}\right\rangle=\left[\int e^{\frac{i A}{2} \hat{b}} e^{\frac{i B}{2} \hat{\hat{p}}}\left|\hat{p}_{b}\right|^{n+1} \alpha\left(A, B, \hat{p}_{c}, \operatorname{sgn} p_{b}\right) e^{\frac{i B}{2} \frac{\hat{\rightharpoonup}}{\mid \hat{p}_{b}}} e^{\frac{i A}{2} \hat{b}} d A d B\right]\left|p_{b}^{\prime}, p_{c}^{\prime}\right\rangle .
$$

Define the ordering prescription, for a general function $f\left(p_{b}, p_{c}\right)$ as $\overline{f\left(p_{b}, p_{c}\right) e^{i\left(A b+B E p_{p} \frac{c}{p_{b}}\right)}}:=$

$$
\hat{H}=\int \overline{\left|p_{b}\right|^{n+1} \alpha\left(A, B, p_{c}, \operatorname{sgn} p_{b}\right) e^{i\left(A b+B_{\left|p_{b}\right|}^{c}\right)}} d A d B
$$

- Preservation of Bohr-Hilbert space: for any $p_{b}^{\prime}, p_{c}^{\prime}$ there must be at most countable $p_{b}^{\prime \prime}, p_{c}^{\prime \prime}$ such that the matrix elements $\left\langle p_{b}^{\prime \prime}, p_{c}^{\prime \prime}\right| \hat{H}\left|p_{b}^{\prime}, p_{c}^{\prime}\right\rangle$ are non-zero. Require $\alpha\left(A, B, p_{c}, \operatorname{sgn} p_{b}\right)=$ $\sum_{k} \alpha_{k}\left(p_{c}, \operatorname{sgn} p_{b}\right) \delta\left(A-A_{k}\left(p_{c}\right)\right) \delta\left(B-B_{k}\left(p_{c}\right)\right)$, then

$$
\hat{H}=\sum_{k}\left|p_{b}\right|^{n+1} \alpha_{k}\left(p_{c}, \operatorname{sgn} p_{b}\right) e^{i\left(A_{k}\left(p_{c}\right) b+B_{k}\left(p_{c}\right) \frac{c}{p_{b}}\right)} .
$$

Discrete Symmetries

- Define the classical analogue of operator as the preimage under quantization map,

$$
\begin{equation*}
H=\sum_{n} p_{b} \alpha_{n}\left(p_{c}, \operatorname{sgn} p_{b}\right) e^{i\left(A_{n}\left(p_{c}\right) b+B_{n}\left(p_{c}\right) \ell_{p} \frac{c}{p_{b}}\right)} . \tag{4}
\end{equation*}
$$

As a consequence of the ordering prescription for quantization, discrete symmetries that are left can be easily checked directly in the classical analogue.

- Hermiticity: $\hat{H}=\hat{H}^{\dagger}=\hat{H} \Rightarrow \bar{H}=H$,
- b-parity: $\Pi_{b}:\left(b, p_{b}\right) \mapsto\left(-b,-p_{b}\right)$, equivalent to an internal gauge rotation of π around the 3axis. $\hat{\Pi}_{b} \hat{H} \hat{\Pi}_{b}=\widehat{\Pi}_{b}^{*} H$ and H must satisfy the covariance equation $\Pi_{b}^{*} H=-H$, satisfied by (1).
- c-parity: $\Pi_{c}:\left(c, p_{c}\right) \mapsto\left(-c,-p_{c}\right)$, equivalent to antipodal map $(\theta, \phi) \mapsto(\pi-\theta, \phi+\pi)+$ internal parity under 3 -axis. H must follow $\Pi_{c}^{*} H=-H$, satisfied by (1).
- Physical assumption: quantization is resultant from the fact that holonomies can only be shrank to a minimum area Δ, which is dependent only on the absolute values of the momentum variables, and not on their sign - require that $A=A\left(\left|p_{c}\right|\right)$ and $B=B\left(\left|p_{c}\right|\right)$
- The general form for H is then

$$
\begin{align*}
& H=\left|p_{b}\right|^{n+1}\left\{a_{0}^{e} \operatorname{sgn}\left(p_{b} p_{c}\right)-2 \sum_{k \neq 0}\left[a_{k}^{o} \operatorname{sgn} p_{b} \cos \left(A_{k} b\right) \cos \left(\frac{B_{k} c}{\left|p_{b}\right|}\right)\right.\right. \\
& \left.\left.+a_{k}^{e} \sin \left(A_{k} b\right) \sin \left(\frac{B_{k} c}{\left|p_{b}\right|}\right)+b_{k}^{e} \operatorname{sgn} p_{b} \cos \left(A_{k} b\right) \sin \left(\frac{B_{k} c}{\left|p_{b}\right|}\right)-b_{k}^{o} \sin \left(A_{k} b\right) \cos \left(\frac{B_{k} c}{\left|p_{b}\right|}\right)\right]\right\}, \tag{5}
\end{align*}
$$

where a_{k}, b_{k} are real and imaginary parts of α_{k}, and the superscripts ${ }^{e},{ }^{e}$ refers to the even and odd parts of each coefficient.

Classical Asymptotic Behavior

- Expanding (5) for the limit of low curvatures $(b, c \rightarrow 0)$, and matching terms of same order with (1), result in a system of equations to find a family of Hamiltonians, depending on the parameter N chosen

$$
\begin{aligned}
& \mathscr{O}(1): \quad-\frac{\lambda(4 \pi)^{n}}{2 G \gamma^{2}} \gamma^{2}\left|p_{c}\right|^{\frac{n-1}{2}} \operatorname{sgn} p_{c}=a_{0}^{e} \operatorname{sgn} p_{c}+\sum_{k=1}^{N} 2 a_{k}{ }^{o} \\
& \mathscr{O}(b): 0=\sum_{k=1}^{N} b_{k}^{o} A_{k} \\
& \mathscr{O}(c): 0=\sum_{k=1}^{N} b_{k}{ }^{e} B_{k} \\
& \mathscr{O}(b c): \frac{\lambda(4 \pi)^{n}}{2 G \gamma^{2}}\left|p_{c}\right|^{\frac{n+1}{2}} \operatorname{sgn} p_{b}=\sum_{k=1}^{N} a_{k}^{e} A_{k} B_{k} \\
& \mathscr{O}\left(b^{2}\right): \quad-\frac{\lambda(4 \pi)^{n}}{2 G \gamma^{2}}\left|p_{c}\right|^{\frac{n-1}{2}} \operatorname{sgn} p_{c}=\sum_{k=1}^{N} a_{k}{ }^{o} A_{k}^{2} \\
& \mathscr{O}\left(c^{2}\right): \quad 0=\sum_{k=1}^{N} a_{k}{ }^{o} B_{k}^{2}
\end{aligned}
$$

Minimality

- Require Hamiltonian to have a minimum number of terms $(N=2)$, which results in

$$
\begin{equation*}
H=-\frac{\lambda}{2 G \gamma^{2}} \frac{V^{n}\left|p_{b}\right|}{\left|p_{c}\right|^{\frac{1}{2}}} \operatorname{sgn}\left(p_{b} p_{c}\right)\left[\gamma^{2}+2 p_{c} \operatorname{sgn} p_{b} \frac{\sin \left(A_{1} b\right)}{A_{1}} \frac{\sin \left(B_{1} \mid p_{b}\right)}{B_{1}}+\frac{4 \sin ^{2}\left(\frac{A_{2}}{2} b\right)}{A_{2}^{2}}\right] . \tag{6}
\end{equation*}
$$

- Selecting the $\bar{\mu}$ prescription, by choosing $A_{1}=\sqrt{\frac{\Delta}{p_{c}}}, B_{1}=\sqrt{p_{c} \Delta}, A_{2}=2 A_{1}$, (6) matches Chiou ${ }^{3}$ for $n=1$, and Joe and Singh ${ }^{4}$ for $n=0$.

Discussion

- Although avoiding choosing a particular quantization prescription, the results force to a kind of $\bar{\mu}$-prescription, since c can only appear in the shift coefficients in the form $\frac{c}{\left|p_{b}\right|}$ to guarantee covariance under residual diffeomorphisms.
- Requiring minimality - an Occam's razor assumption - matches the result with others previously presented in the literature, reached by the standard quantization method in LQC.
- However, it is worth to stress that minimality is not a physical requirement, and has the weakness that it selects a unique result and does not allow different possible dynamics of the full theory to be represented.

References

(1) Jonathan Engle and llya Vilensky. "Deriving loop quantum cosmology dynamics from diffeomorphism invariance". In: Phys. Rev. D 98.2 (2018),p. 023505.
(2) Jonathan Engle and llya Vilensky. "Uniqueness of minimal loop quantum cosmology dynamics". In: Phys. Rev. D 100.12 (2019), p. 121901.

3 Dah-Wei Chiou. "Phenomenological dynamics of loop quantum cosmology in Kantowski-Sachs spacetime". In: Phys. Rev. D 78 (2008), p. 044019.
(4) Anton Joe and Parampreet Singh. "Kantowski-Sachs spacetime in loop quantum cosmology: bounds on expansion and shear scalars and the viability of quantization prescriptions". In: Class. Quant. Grav. 32.1 (2015), p. 015009.

