Properties of a quantum field and Schwarzschild spacetime can be reconciled from an assumption that a particle has oscillation in time Hou Y. Yau

San Francisco State University, Department of Physics and Astronomy, USA
hyau@mail.sfsu.edu

A particle carries an internal clock, as conjectured by de Broglie. What if this clock runs at a varying rate and not along a 'smooth' timelike geodesic? Here, we investigate this possibility. If there are merits standard theories. Interestingly, we can reconcile the following results by assuming a particle has varying internal time rate - oscillation in proper time:

- Schwarzschild spacetime field.
- Properties of a spin-zero bosonic field.
- Properties of a spin-zero bosonic fie
- Proper time uncertainty relation.
- Proper time uncertainty relation.

These properties reconciled can reduce the differences between quantum theory and general relativity, allowing a more symmetrical treatment of space and time in a matter field. This assumption can also be checked experimentally by measuring the uncertainty of a neutrino's results from refs. [1, 2, 3, 4, 5, 6]

Proper Time Oscillator

Assumption: A particle has oscillation in proper time, i.e.

$$
\begin{equation*}
\grave{t}_{f}=t+\AA_{d}=t-\frac{\sin \left(\omega_{0} t\right)}{\omega_{0}} . \tag{1}
\end{equation*}
$$

- Coordinate time t measured by an inertial observer at spatial infinity; $\omega_{0}=$ de Broglie mass-energy angular frequency.
- Internal time \dot{t}_{f} is the assumed time of a particle's internal clock that runs at an oscillating rate relative to t with a fixed amplitude $1 / \omega_{0}$.
- A particle will appear to travel along a 'smooth' timelike geodesic if the measuring instrument is not sensitive enough to detect the oscillation

Bosonic Field [1, 3]

Particles inside a plane wave can also have the assumed oscillation in proper time. Under a Lorentz transformation, matter in the plane wave acquires oscillations in both space and time
$t_{f}^{\prime}=t^{\prime}+t_{d}^{\prime}=t^{\prime}+\operatorname{Re}\left(\zeta_{t \mathbf{k}}\right)=t^{\prime}+T_{\mathbf{k}} \sin \left(\mathbf{k} \cdot \mathbf{x}^{\prime}-\omega t^{\prime}\right), \quad$ (2) $\mathrm{x}_{f}^{\prime}=\mathrm{x}^{\prime}+\mathrm{x}_{d}^{\prime}=\mathrm{x}^{\prime}+\operatorname{Re}\left(\zeta_{\mathbf{x k}}\right)=\mathrm{x}^{\prime}+\mathbf{X}_{\mathbf{k}} \sin \left(\mathbf{k} \cdot \mathrm{x}^{\prime}-\omega t^{\prime}\right)$, (3) We can further define a plane wave,

$$
\begin{equation*}
\zeta_{\mathbf{k}}=\frac{T_{0 \mathbf{k}}}{\omega_{0}} e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)} \tag{4}
\end{equation*}
$$

such that the temporal and spatial oscillation displacements are $\zeta_{t \mathbf{k}}=\partial_{0} \zeta_{\mathbf{k}}$ and $\zeta_{\mathbf{x k}}=-\nabla \zeta_{\mathbf{k}}$. Note that $\zeta_{\mathbf{k}}$ satisfies the Klein Gordon equation:

$$
\begin{equation*}
\partial_{u} \partial^{u} \zeta_{\mathbf{k}}+\omega_{0}^{2} \zeta_{\mathbf{k}}=0 . \tag{5}
\end{equation*}
$$

A real scalar field can be formed by superposition of $\zeta_{\mathbf{k}}$ and $\zeta_{\mathbf{k}}^{*}$ that has oscillations of metter in space and time

$$
\begin{equation*}
\zeta(x)=\sum_{\mathbf{k}}\left(2 \omega \omega_{0}\right)^{-1 / 2}\left[T_{0 \mathbf{k}} e^{-i k x}+T_{0 \mathbf{k}}^{*} e^{i k x}\right] . \tag{6}
\end{equation*}
$$

Since the number of particles is discrete, and each has a fixed proper time amplitude, $\zeta(x)$ must be quantized and can be transformed into a quantized field via canonical quantization. $\zeta(x)$ can be related to the bosonic field $\varphi(x)$ in quantum theory

$$
\begin{equation*}
\varphi(x)=\zeta(x) \sqrt{\frac{\omega_{0}^{3}}{V}}=\sum_{\mathbf{k}}(2 \omega V)^{-1 / 2}\left[a_{\mathbf{k}} e^{-i k x}+a_{\mathbf{k}}^{\dagger} e^{i k x}\right] \tag{7}
\end{equation*}
$$

with annihilation and creation operators

$$
\begin{equation*}
a_{\mathbf{k}}=\omega_{0} T_{0 \mathbf{k}}, \quad a_{\mathbf{k}}^{\dagger}=\omega_{0} T_{0 \mathbf{k}}^{\dagger} \tag{8}
\end{equation*}
$$

Matter field with oscillations in time has the same properties as a bosonic field $[1,3,5,6]$.

Self-Adjoint Internal Time Operator [5]

Conjugate momenta of $\zeta(x)$ is,

$$
\begin{equation*}
\eta(x)=\frac{\partial \mathcal{L}}{\partial\left[\partial_{0} \zeta(x)\right]}=\frac{-i \omega_{0}^{3}}{\sqrt{2} V} \sum_{\mathbf{k}}\left[\tilde{T}_{\mathbf{k}} e^{-i k x}-\tilde{T}_{\mathbf{k}}^{\dagger} e^{i k x}\right] \tag{9}
\end{equation*}
$$

The displaced time is linearly related to $\eta(x)$
$t_{d}(x)=\zeta_{t}(x)=\partial_{0} \zeta(x)=\sum_{\mathbf{k}} \frac{-i}{\sqrt{2}}\left[\tilde{T}_{\mathbf{k}} e^{-i k x}-\tilde{T}_{\mathbf{k}}^{\dagger} e^{i k x}\right]=\frac{\eta(x) V}{\omega_{0}^{3}}$ (10)
ation
$t_{d}(x)$ and $\zeta(x)$ form a conjugate pair and satisfy commutation relations

$$
\begin{align*}
\left(\omega_{0}^{3} V^{-1}\right)\left[\zeta(t, \mathbf{x}), t_{d}\left(t, \mathbf{x}^{\prime}\right)\right] & =i \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \\
{\left[t_{d}(t, \mathbf{x}), t_{d}\left(t, \mathbf{x}^{\prime}\right)\right] } & =0
\end{align*}
$$

$\zeta(x), \eta(x)$ and $t_{d}(x)$ are self-adjoint operators. Meanwhile, internal time in a matter field is

$$
\begin{equation*}
t_{f}(t, \mathbf{x})=t+t_{d}(t, \mathbf{x}) m \tag{13}
\end{equation*}
$$

where t is a parameter, but $t_{d}(t, \mathbf{x})$ is a self-adjoint operator. Thus, internal time t_{f} is also a self-adjoint operator with no con flict with Pauli's theorem since t_{f}, and the Hamiltonian are not a conjugate pair. [5]

Proper Time Uncertainty Relation [6]

Consider a real scalar field that has particles oscillating in proper time only

$$
\begin{equation*}
\zeta^{\prime}=\frac{1}{\sqrt{2}}\left[\zeta_{0}+\zeta_{0}^{\dagger}\right]=\frac{1}{\sqrt{2} \omega_{0}}\left[T_{0} e^{-i \omega_{0} t}+T_{0}^{\dagger} e^{i \omega_{0} t}\right] \tag{14}
\end{equation*}
$$

Displaced time t_{d}^{\prime} and displaced time rate u_{d}^{\prime} are,
$t_{d}^{\prime}=\frac{-i}{\sqrt{2}}\left[T_{0} e^{-i \omega_{0} t}-T_{0}^{\dagger} e^{i \omega_{0} t}\right]=\frac{-i}{\sqrt{2} \omega_{0}}\left[a e^{-i \omega_{0} t}-a^{\dagger} e^{i \omega_{0} t}\right], ~(15)$
$u_{d}^{\prime}=\partial_{0} t_{d}^{\prime}=\frac{-\omega_{0}}{\sqrt{2}}\left[T_{0} e^{-i \omega_{0} t}+T_{0}^{\dagger} e^{i \omega_{0} t}\right]=\frac{-1}{\sqrt{2}}\left[a e^{-i \omega_{0} t}+a^{\dagger} e^{i \omega_{0} t}\right]$
The Hamiltonian density is

$$
\begin{equation*}
H^{\prime}=\frac{1}{2}\left(m \omega_{0}^{2} t_{d}^{2}+P_{d}^{\prime 2} / m\right)=\omega_{0}\left(a^{\dagger} a+\frac{1}{2}\right), \tag{16}
\end{equation*}
$$

where $P_{d}^{\prime}=m u_{d}^{\prime}$.

	Proper Time Oscilla- tor	Quantum Harmonic Oscillator
Hamiltonian	$H^{\prime}=\omega_{0}\left(a^{\dagger} a+\frac{1}{2}\right)$	$H=\omega\left(a^{\dagger} a+\frac{1}{2}\right)$
Commutation Relation	$\left[t_{d}^{\prime}, P_{d}^{\prime}\right]=i$	$[\mathrm{x}, \mathrm{p}]=\mathrm{i}$
Uncertainty Relation	$\Delta t_{d}^{\prime} \Delta P_{d}^{\prime} \geq \frac{1}{2}$	$\Delta x \Delta p \geq \frac{1}{2}$

Table 1: Comparing the properties of the proper time oscillator and the quan tum harmonic oscillator. Displaced time t_{d}^{\prime} and the 'temporal momentum' P_{d}^{\prime} are analogies of the spatial position and momentum operators. [6]

Neutrino's Arrival Time Uncertainty

Figure 2: A particle's uncertainty in arrival time

Consider a normalized plane wave

$$
\begin{equation*}
\tilde{\zeta}=\frac{e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)}}{\sqrt{\omega \omega_{0}^{3}}} \tag{18}
\end{equation*}
$$

Observed particles in this plane wave travel at an average veloc ity of $\mathbf{v}=\mathbf{k} / \omega$. As the particle propagates, it oscillates in time and space. The spatial oscillation of the particle will result in uncertainty of arrival time when we measure a large collection of particles with the same average velocity, i.e

$$
\begin{equation*}
\Delta t^{\prime}=\sqrt{\frac{\omega}{2 \omega_{0}^{3}}}=\hbar \sqrt{\frac{E}{2 m^{3}}} \tag{19}
\end{equation*}
$$

At a higher energy level, the effects of the particle's oscillations will be easier to detect. With the arrival time uncertainty obtained from experiments, the mass of a neutrino can be derived,

$$
\begin{equation*}
m=\left[\frac{\hbar^{2} E}{2\left(\Delta t^{2}\right)^{2}}\right]^{1 / 3} . \tag{20}
\end{equation*}
$$

The experiments on neutrinos' speed could provide evidence for a particle's temporal oscillation.

Figure 3: Neutrino's arrival time uncertainty as related to the particle's en ergy given by Eq. (19). Since the mass of a neutrino is not yet known, thre

Schwarzschild Field [2, 4]

Figure 4: Schwarzschild field of the proper time oscillator
Neglect all the quantum effects, the proper time oscillator can be treated as a 'stationary' classical object at the spatial origin of a coordinate system. The proper time oscillation is a pulse that can be Fourier decomposed using the 0 -component of the Lorentz covariant plane waves, i.e.,

$$
\left[\begin{array}{c}
\bar{\xi}_{t \mathbf{k}} \tag{21}\\
\bar{\xi}_{\mathbf{x k}}
\end{array}\right]=-i\left[\begin{array}{c}
\bar{T}_{\mathbf{k}} \\
\overline{\mathbf{X}}_{\mathbf{k}}
\end{array}\right] e^{i(\mathbf{k} \cdot \mathbf{x}-\omega t)} .
$$

However, the spatial components of the plane waves cannot be neglected. Superpose $\xi_{t \mathbf{k}}$ to obtain the proper time oscillation will have spatial oscillations associated with the superposition of $\bar{\xi}_{\text {xk }}$. After carrying out the decomposition, we find that radial oscillations are oscillating about a thin shell Σ_{0} with infinitesimal radius $(r=\epsilon / 2 \rightarrow 0)$ centered at the proper time oscillator,

$$
\begin{equation*}
\bar{r}_{f}(t, \epsilon / 2)=\epsilon / 2+\Re_{\infty} \cos \left(\omega_{0} t\right) . \tag{2}
\end{equation*}
$$

The amplitude of the radial oscillation $\left(\Re_{\infty} \rightarrow \infty\right)$ is not the motions of matter. They shall be considered spacetime geometrical effects acting on an observer stationary on Σ_{0}.
In refs. [2, 4], we demonstrate that the vacuum space-time v^{+} outside a time-like hypersurface with radius \breve{r} and radial amplitude $\breve{\Re}$ is the Schwarzschild spacetime,

$$
\begin{equation*}
d s^{2}=\left[1-\frac{\breve{r} \breve{\Re}^{2} \omega_{0}^{2}}{r}\right] d t^{2}-\left[1-\frac{\breve{r} \breve{\Re}^{2} \omega_{0}^{2}}{r}\right]^{-1} d r^{2}-r^{2} d \Omega^{2} \tag{23}
\end{equation*}
$$

By Birkoff's theorem, the thin shell can be contracted to an infinitesimal radius, the same infinitesimal thin shell Σ_{0} around the proper time oscillator. The spacetime outside the proper time oscillator is Schwarzschild [4]

Conclusions

Our analyses support the assumption that a particle has oscillation in proper time (varying internal time rate).

References

1] Hou Y. Yau. Temporal vibrations in a quantized field. In: Khrennikov, A., Toni, B. (eds.) Quantum Foundations, Prob ability and Information. Springer-Verlag, Heidelberg, 2018
[2] Hou Y. Yau. Thin shell with fictitious oscillations", in Spacetime Physics1907-2017, Chapter 6. Minkowski Institute Press, 2019.
[3] Hou Y. Yau. Time and space symmetry in a quantum field. J. Phys.: Conf. Ser., 1194:012116, 2019.
[4] Hou Y. Yau. Schwarzschild field of a proper time oscillator. Symmetry, 12(2):312, 2020
[5] Hou Y. Yau. Self-adjoint time operator in a quantum field. J. Quant. Info., page 1941016, 2020
[6] Hou Y. Yau. Proper time operator and its uncertainty relation. J. Phys, Commun., page 105001, 2021

