Semi-classical gravity as a characteristic initial value problem

Daan W. Janssen, Rainer Verch

Institut für Theoretische Physik, Universität Leipzig

1. Evaporating black holes

- Black hole evaporation, introduced in (Hawking, 1975), has been studied extensively. Yet we lack a satisfactory understanding of the local dynamics and relation to thermodynamics & information theory.
- Black hole formation, both in the sense of formation of a horizon and a singularity, is poorly understood in semi-classical gravity.
- Can one analyze horizon dynamics beyond adiabatic+Unruh state approximation?
- Does semi-classical gravity admit black hole solutions in the first place?
- Can the full lifetime of semi-classical black holes be studied via an initial value problem?

(a) A time ordered cover of a BHE space-time

(b) A time ordered cover of a topology changing space-time

evaporation (BHE) space-times be Compare to other semi-globally hyperbolic space-times (see Ref. changing space-times.

3. Renormalization in QFT on curved backgrounds

Nonlinear observables for a linear scalar field need to be renormalized. For example, the vacuum polarization $\langle : \Phi^2 : \rangle$ for a state with (Hadamard) 2-pt function Λ is given by

$$\langle : \Phi^2 : \rangle = \lim_{x' \to x} (\Lambda - H) (x, x') + \text{ren.fr.},$$

 $H \sim \frac{U}{\sigma + i0^+ \Delta t} + V \ln(\sigma + i0^+ \Delta t),$

 σ Synge world function, Δt a time difference regulator, U, V smooth (for 3+1 dim).

H a priori only locally defined, difficult to calculate explicitly beyond local expansions, how to control (coincidence limit of) $\Lambda - H$, and hence $\langle : \Phi^2 : \rangle$, $\langle : T_{\mu\nu} : \rangle$ globally?

- **Lower dimensional models** (Unruh 1976, Juárez-Aubry & Louko, 2018) Conformal flatness in 1+1 dim significantly simplifies analysis.
- ► Weak field approximation (Horowitz, 1980, Flanagan & Wald, 1996) Linear response of $\langle : T_{\mu\nu} : \rangle$ to metric perturbations around flat background.
- **Euclidean methods** (Howard & Candelas, 1984, Taylor et al., 2022) Applicable to static settings, such as Hartle-Hawking state on Schwarzschild BH.
- Pragmatic mode sum method (Levi & Ori, 2016) Numerical method, been used to calculate Unruh state stress-tensor on Kerr black holes. Highly computationally expensive beyond stationary setting.
- ► Adiabatic renormalization (Parker & Fulling, 1974, Junker & Schrohe, 2003) Scheme adapted to 3+1 split into Cauchy slices, often applied in cosmological setting. Generally requires pseudo-differential operator theory.

4. A characteristic approach

For *M* globally hyperbolic & spherically symmetric, $C \subset M$ characteristic cone s.t. $I^+(C) \subset M$ globally hyperbolic, one can consider boundary observables $\mathcal{B}(C) \cong \mathcal{A}(I^+(C))$ for a linear scalar QFT $\mathcal{A}(M)$.

A boundary two point function $\lambda \in \mathcal{D}'(C^2)$ satisfying a particular microlocal condition induces a Hadamard two-point function $\Lambda \in \mathcal{D}'(I^+(C)^2)$ (Gerard & Wrochna, 2016).

$\mathcal{A}(I^+(C)) \ni \Phi(f) \leftrightarrow \Psi(F) \in \mathcal{B}(C)$

(a) Bulk to (null) boundary correspondence

We consider a (spherically symmetric) 'foliation' of M by nullcones. A (global) two-point function $\Lambda \in \mathcal{D}'(M^2)$ induces a family of (formal) boundary two-point function λ_t associated with states on $\mathcal{B}(C_t)$ via formal relation

 $\lambda_t(r,\Omega;r',\Omega') \sim \partial_r \partial_{r'} rr' \Lambda |_{C^2_r}(r,\Omega;r',\Omega').$

The evolution of a bulk 2-pt function Λ can be studied through the evolution of λ_t as a function in time t.

5. Characteristic Hadamard states

A (global) two point function λ on M is Hadamard (i.e. locally $\Lambda = H + W$) if and only if the corresponding family of boundary two-point functions λ_t on $C_t \cong \mathbb{R}^+ \times S^2$ satisfies $\lambda_t = h_t + w_t$ with $w_t \in \mathcal{E}(C_t^2)$

$$h_t \sim rac{u_t \delta_{S^2}(\Omega, \Omega')}{(r-r'-\mathrm{i}0^+)^2} + v_t \ln(rr'(1-r'))$$

 $r, r' \in \mathbb{R}^+$ radial (null) coordinate, $\Omega, \Omega' \in S^2$ angular coordinate, u_t, v_t smooth on C_t^2 .

 u_t, v_t can be derived independently of U, V (Janssen & Verch, 2023).

Note that $h_t \in \mathcal{D}'(C_t^2)$ is defined on the entire cone, hence w_t globally defined (i.e. for each $t \in \mathbb{R}$ and $p, p' \in C_t$, one has a naturally defined $w_t(p, p')$).

6. The characteristic regularized two-point function

Via the formal relation $\lambda_t \leftrightarrow \Lambda \upharpoonright_{C^2_t}$, w_t induces a $ilde{W}_t \in \mathcal{E}(C^2_t)$ such that locally $Q_t = W
vert_{C_r^2} - ilde{W}_t$ smooth and state-independent. Nonlinear observables can be expressed in terms of W_t :

 $\langle : \Phi^2 : \rangle(t, r, \Omega) = \tilde{W}_t(r, \Omega; r, \Omega) + Q_t(r, \Omega; r, \Omega) + \text{ren.fr.}$ W_t is defined globally and satisfies a (sourced) dynamical equation

$$\mathcal{D}^3 \tilde{\mathcal{W}}_t = S_t(u_t, v_t),$$

with $D^3 = \partial_t \partial_r \partial_{r'} + \dots$ a third order differential operator.

Through analysing this dynamical equation (approximate solution, estimates, etc...), one gains control on nonlinear observables.

7. A weak field sanity check

 $\left(\frac{R_h(v)}{R}\right) \mathrm{d}v^2 + 2\mathrm{d}v\mathrm{d}R + R^2\mathrm{d}\Omega^2,$ (7) $R^2 T_{rr} \upharpoonright_{C_t}$ — Dust — Dust+QFT v = 0 $\langle : T_{rr} : \rangle \sim \frac{1}{120\pi^2 R^3} \int_0^{\cdot} \mathrm{d}s \ln(v-s) R_h^{\prime\prime\prime\prime}(s)$ (8)Einstein-QFT system for conformally coupled massless scalar field \mathbf{y}), $R_{rr} = \kappa \left(T_{rr}^{reg}(ilde{W}_t) + \text{geom.contr.} \right)$, $f = S(g_{\mu\nu} \upharpoonright_{C_t}, \partial_t g_{\mu\nu} \upharpoonright_{C_t}).$ (9) $\blacktriangleright g_{\mu\nu} \upharpoonright_{C_{t_0}}, \partial_t g_{\mu\nu} \upharpoonright_{C_{t_0}} \text{ and sufficiently regular } \tilde{W}_{t_0},$ S.c.Einst.eq. impose (non-trivial) constraints *Phys.* **391**, 669–705 (2022). D.W. Janssen & R. Verch, Hadamard states on spherically symmetric characteristic surfaces, the semi-classical Einstein equations and the Hawking effect. Class. Quantum *Grav.* **40**, 045002 (2023).

 $T_{rr}^{reg}(\tilde{W}_t)$ can be expressed in terms of \tilde{W}_{t_0} and $g_{\mu\nu}$, R_{rr} equation resembles semi-classical

$$\mathrm{d}s^2 = -\left(1 - \right)$$

Solving the dynamical equation \tilde{W}_t in weak field approximation $g_{\mu\nu} = \eta_{\mu\nu} + \varepsilon h_{\mu\nu}$, one regains results of *(Horowitz, 1980)* adapted to spherical symmetry. Approximation applicable for 'small v' region of ingoing Vaidya space-time with massless scalar quantum field in vacuum state at \mathscr{I}^- . One can find the dominant contribution to $\langle : T_{rr} : \rangle$ near v = 0Dominates over classical stress-tensor for v sufficiently small, violation of (classical) energy conditions. More detailed bounds on $\langle : T_{rr} : \rangle$ required to estimate backreaction near horizon and implication on singularity. 8. Towards semi-classical black hole solutions Initial data required at C_{t_0} : cosmology of (Meda et al., 2021). Can their analysis be adapted to this setting? 9. Selected publications D.W. Janssen, Quantum fields on semi-globally hyperbolic space-times. *Commun. Math.*

$$\mathfrak{R}=-\kappa$$
 (trace anomaly

$$D^3 \tilde{W}_t$$

PhD thesis:

(Mar. 2023)

10. Link to papers

The papers listed above are available online Take a picture to download the full papers

UNIVERSITÄT LEIPZIG

D.W. Janssen, "Semi-classical aspects of black hole formation and evaporation", Leipzig

