Emergent Universe Model from Modified Heisenberg Algebra

Gabriele Barca^{1,2,*}, Giovanni Montani^{3,1}, Alessandro Melchiorri^{2,1}

¹ Department of Physics, La Sapienza University of Rome, Rome, Italy
 ² Istituto Nazionale di Fisica Nucleare, Section of Roma1, Rome, Italy
 ³ Fusion and Nuclear Safety Department, ENEA, Frascati (RM), Italy

* gabriele.barca@uniroma1.it

Abstract

The Emergent Universe is a non-singular, asymptotically Einstein-static model with a cosmological constant, a radiation fluid and positive curvature, that is obtained classically by the implementation of fine-tuning and of some constraints on the cosmological and matter parameters. Here we provide an Emergent Universe picture in which the fine-tuning on the initial conditions is replaced by cut-off physics, implemented on a semiclassical level when referred to the Universe dynamics and on a purely quantum level for the quantum fluctuations of the inflaton field. The adopted cut-off physics is inspired by Polymer Quantum Mechanics but expanded in the limit of a small lattice step, resulting for the Hamiltonian Universe dynamics in an algebra similar to a Generalized Uncertainty Principle representation. The calculation of the modified primordial inflaton spectrum is then performed by treating new physics as a small correction on the standard Hamiltonian of each Fourier mode of the gauge-invariant variable associated to the inflaton field. We provide a new paradigm for a non-singular Emergent Universe, associated to a precise fingerprint on the temperature distribution of the cosmic microwave background.

Classical Emergent Universe (EU)

The EU has gained attention recently due to the new Planck data favouring a positive curvature [1]. • The EU is a FLRW model with $\rho_{\Lambda} = \text{const.}$, $\rho_{\gamma} = \overline{\rho_{\gamma}} v^{-4/3}$ and positive curvature K > 0. • It is obtained by imposing a constraint on the initial conditions for energy densities: $4\overline{\rho_{\gamma}}\rho_{\Lambda} = 9K^2$.

Standard Power Spectrum

Here we compute the Power Spectrum of primordial scalar perturbations.

- Introduce conformal time $d\eta = dt/a$ and the Mukhanov-Sasaki (MS) variable ξ [4]:
- Perform a Fourier decomposition and quantize each mode separately:

$$\begin{bmatrix} \hat{\epsilon} & \hat{\epsilon} \end{bmatrix} \quad \hat{\epsilon} & - d\epsilon / d\epsilon \quad \hat{\epsilon} = d\epsilon / d\epsilon$$

• Result: asymptotically Einstein-static model with minimum volume $v_i > 0$ and inflation [2].

To stop inflation at a finite time, a scalar field φ with a specific potential is introduced.
When φ is on the plateau it acts as the cosmological constant and reproduces inflation.
Later, φ falls in potential well and inflation ends at a finite time with finite e-folds.
If the minimum of the potential is not zero, it could represent late-time Dark Energy.

Figure 1: Volume $v = a^3$ as function of synchronous time t (left); potential $U(\phi)$ for the scalar field (right).

This model needs fine-tuning: it requires a particular choice of v_i , ρ_{Λ} and the initial kinetic energy to reproduce observational constraints and to ensure that the slow-roll approximation holds.

$$\begin{bmatrix} \zeta_k, \pi_k \end{bmatrix} = i, \qquad \pi_k = a\zeta_k/a\eta, \qquad \zeta_k \psi(\zeta_k) = \zeta_k \psi(\zeta_k), \qquad \pi_k \psi(\zeta_k) = i \frac{1}{\mathrm{d}\xi_k} \psi(\zeta_k).$$

Result: each mode is a quantum harmonic oscillator with time-dependent frequency ω_k(η).
Solve the time-dependent harmonic oscillator (TDHO) with the method of Invariants [5]:

$$\psi_n(\eta,\xi_k) = \frac{h_n(\frac{\xi_k}{f})}{\sqrt{2^n n!}} \frac{e^{-\frac{\xi_k^2}{2f^2}}}{(\pi f^2)^{\frac{1}{4}}} e^{i\frac{f'}{2f}\xi_k^2} e^{i\alpha_n}, \qquad \alpha_n(\eta) = -(n+\frac{1}{2})\int f^{-2}d\eta, \qquad f'' + \omega_k^2 f - \frac{1}{f^3} = 0.$$

• Compute the expectation value $\langle \hat{\xi}_k^2 \rangle$ on the vacuum state i.e. the TDHO ground state.

$$\mathcal{P}^{\text{std}}(k) = \frac{k^3}{4\pi^2} \frac{\langle 0|\hat{\xi}_k^2|0\rangle}{a^2\epsilon} \bigg|_{-k\eta \ll 1} = \frac{k^3}{4\pi^2} \frac{f^2(\eta)}{2a^2\epsilon} \bigg|_{-k\eta \ll 1} = \frac{H_s^2}{8\pi^2\epsilon} (1+k^2\eta^2) \bigg|_{-k\eta \ll 1} = \frac{H_s^2}{8\pi^2\epsilon}.$$

The result is the usual Harrison-Zel'dovich scale-invariant spectrum.

Modified Power Spectrum

Here we quantize the Fourier mode of the MS variable according to the modified algebra prescription.We must work in the momentum polarization because of modified actions:

$$\left[\hat{\xi}_k, \hat{\pi}_k\right] = i(1 - \mu^2 \hat{\pi}_k^2), \qquad \quad \hat{\xi}_k \psi(\pi_k) = -i \frac{\mathrm{d}\psi}{\mathrm{d}\pi_k}, \qquad \quad \hat{\pi}_k \psi(\pi_k) = \frac{\tanh(\mu \pi_k)}{\mu} \psi(\pi_k).$$

Result: TDHO with a modified kinetic term, its Schrödinger equation cannot be solved.
We perform a perturbative analysis through a series expansion in powers of μ²:

• Result: two PDEs, first is the same as the standard case and solved with method of Invariants:

$$h_n\left(\frac{\pi_k f}{|\mathbf{D}|}\right) \int (\mathbf{D}^*) n \mathbf{f} = \pi_1^2 f^2$$

The Modified Algebra and the new Emergent Universe

Here we introduce a modified Heisenberg algebra inspired by PQM (LQC) and the GUP (Strings) [3].

 $[v, p_v] = i (1 - \mu^2 p_v^2), \qquad \{v, p_v\} = 1 - \mu^2 p_v^2$

• In the Hamiltonian formulation we obtain a modified Friedmann equation for a generic density.

$$H^{2} = \frac{\rho}{3} \left(1 - \frac{\rho}{\rho_{\mu}} \right)^{2}, \qquad \rho_{\mu} = \frac{3}{4\mu^{2}}, \qquad \left(\frac{v(t)}{v_{i}} \right)^{\frac{1+w}{2}} - \operatorname{arctanh}\left(\left(\frac{v(t)}{v_{i}} \right)^{\frac{1+w}{2}} \right) = \pm 3 t \sqrt{\rho_{\mu}}$$

• The constant regularizing density ρ_{μ} naturally implements a non-zero minimum volume. • Result: asymptotic behaviour without any constraint on the initial values of densities. We choose to introduce positive curvature and integrate numerically three phases.

• Radiation dominated phase near the classical singularity.

• Scalar field-Cosmological Constant dominated phase to implement inflation.

$$\psi_n^0(\eta, \pi_k) = (-i)^n \frac{n \langle |R| }{\sqrt{2^n n!}} \sqrt{\frac{(R^+)^n f}{R^{n+1} \sqrt{\pi}}} e^{-\frac{\pi_k f}{2R}} e^{i\alpha_n}, \qquad R = 1 - iff'$$

• Second is solved by using $\psi_n(\eta, \pi_k)$ as a complete basis and finding the coefficients:

$$\psi^{0} = \sum_{n} c_{n}(\eta) \psi_{n}(\eta, \pi_{k}), \qquad \psi^{1} = \sum_{n} d_{n}(\eta) \psi_{n}(\eta, \pi_{k}), \qquad i \sum_{n} \frac{\mathrm{d} d_{n}}{\mathrm{d} \eta} \psi_{n}^{0}(\eta, \pi_{k}) = -\frac{\pi_{k}^{4}}{3} \sum_{n} c_{n}(\eta) \psi_{n}^{0}(\eta, \pi_{k})$$

• The ground state results to be $\psi_0^{\text{tot}}(\eta, \pi_k) = \psi_0 + \mu^2 (d_0 \psi_0 + d_2 \psi_2 + d_4 \psi_4)$. • Now we calculate the expectation value $\langle \hat{\xi}_k^2 \rangle$ and the modified Power Spectrum:

$$\frac{\left\langle \hat{\xi}_{k}^{2} \right\rangle}{|N|^{2}} = \frac{f^{2}}{2} \left(1 + \frac{2\sqrt{2} \ \mu^{2} \operatorname{Re}(d_{2}e^{-2i\varphi})}{1 + 2\mu^{2} \operatorname{Re}(d_{0})} \right), \qquad \mathcal{P}^{\operatorname{mod}}(k) = \frac{H_{s}^{2}}{8\pi^{2}\epsilon} \left(1 - \frac{4\mu^{2}}{7k^{5}\eta^{6}} \right) \Big|_{-k\eta \ll 1}.$$

• When $-k\eta \rightarrow 0$ our correction diverges; thus we compute the spectrum at the end of inflation η_f .

$$\mathcal{P}^{\text{mod}}(k) \approx \mathcal{P}^{\text{std}}\left(1 - 10^{-65} \left(\frac{m_P c^2}{E_{\mu}}\right) \beta^5\right), \qquad \beta = \frac{\overline{k}}{k}, \qquad \overline{k} = 0.002 M p c^{-1}.$$

Figure 2: Volume v(t) for a generic energy density in the modified algebra picture (left); full numerically-integrated evolution of v(t) with the three phases separated by vertical lines, normalized at the start of inflation (right).

Figure 3: The modified Power Spectrum rescaled to the standard one for $r = m_P c^2 / E_\mu = 10^{62}$ (black continuous line), $r = 10^{30}$ (red dashed line) and r = 1 (blue dotted line). The pivotal scale $k = \overline{k}$ is indicated by a faded grey line.

[1] Planck Collaboration, A&A 641, 92 (2020). Planck Collaboration, A&A 641, 67 (2020). Di Valentino, Melchiorri, Silk, Nat. Astr. 4, 196 (2020).
 [2] Ellis, Maartens, CQG 21, 223 (2003). Ellis, Murugan, Tsagas, CQG 21, 233 (2003).
 [3] Battisti, PRD 79, 083506 (2009). Barca, Giovannetti, Montani, IJGMMP 19, 2250097 (2022). Segreto, Montani, preprint (2022).
 [4] Mukhanov, Feldman, Brandenberger, PR 215, 203 (1992). Brizuela, Kiefer, Krämer, PRD 93, 104035 (2016).
 [5] Lewis Jr, JMP 9, 1976 (1968). Lewis Jr, Riesenfeld, JMP 10, 1458 (1969).

CGM Research Group