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We consider a modified lagrangian for collapsing matter which encodes the feature of a running Newton constant accordingly to the Asymptotic Safety program for quantum gravity.
Our aim is to study if it is possible to avoid the formation of the singularity and how this would reflect on the geometry resulting from the collapse.

Markov-Mukhanov Action and Running Newton Coupling

As proprosed by Markov and Mukhanov [1], a consistent
way to implement a running Newton constant is to consider
the action

S =
1

2κ

∫
d4x

√
−g

[
R + 2χ(ε)L(m)

]
(1)

where χ(ε) is a multiplicative gravity-matter coupling de-
pending on the energy density ε and L(m) = ε. Varying this
action we obtain the field equations

Rµν −
1

2
gµνR = ∂ε(χε)T

(m)
µν + ∂εχε

2gµν (2)

where we can identify the running Newton constant as
G(ε) = ∂ε(χε), and an induced running cosmological con-
stant Λ(ε) = −∂εχε2. To close the system we need to specify
a functional form for G(ε). The Asymptotic Safety pro-
gram for quantum gravity suggests that gravity is renor-
malizable around a non-gaussian fixed point and that the
Newton coupling runs with respect to the momentum k as
G(k) = GN/(1 + ωk2GN), where ω is a positive dimension-
less constant related to the scale at which quantum gravity
sets in. Now, we assume that a similar scaling holds also in

a gravity-matter system for G(ε). In particular, requir-
ing G = G(ε/ε0) being ε0 the Planck energy density,
limε/ε0→∞G(ε/ε0) = 0 and limε/ε0→0G(ε/ε0) = GN, and pre-
scribing the relation k2 = ξGNε [2], where ξ is a positive di-
mensionless constant, we arrive, considering that ε0 = G−2

N

and working in geometrized units, to the form

G(ε) =
1

1 + q · ε
(3)

where we have set q = ξω. Finally, we choose as matter
source a perfect fluid.

Semiclassical Dust Collapse

To model a collapsing body [3] we take a spherically symmetric line element in comoving
coordinates {t, r, θ, φ}

ds2− = −e2ν(t,r)dt2 + e2ψ(t,r)dr2 + C(r, t)dΩ2 (4)

It can be shown [4], choosing an homogenous dust matter source (ε = ε(t), p = 0),
and studying the field equations and the conservation equation for the effective energy-
momentum tensor, that the solution is given by a Friedmann metric

ds2− = −dt2 + a(t)2

1−Kr2
dr2 + a(t)2r2dΩ2 (5)

with a(t) solution of the ordinary differential equation

da

dt
= −

√
ln
(
1 + 3m0q

a3

)
3q

a2 −K V (a) = −a
2

3q
ln
(
1 +

3m0q

a3

)
(6)

The problem is equivalent to the motion of a particle of energyK in a field with the potential
V (a). We underline that for a comoving shell r we have an effective Misner-Sharp mass
varying in time, namely Feff(r, t) = r3meff(t) with meff = a(ȧ2 +K).

Marginally Bound Collapse (K = 0)
In this case, that corresponds to a contract-
ing cloud of particles having zero initial ve-
locity at spatial infinity, the behaviour of
the infinitesimal scale factor at large times

a(t) ∼ exp
(
− t2

4q

)
(7)

indicates an eternal collapse.

Bound Collapse (K = 1)

In this case, that corresponds to a cloud
of particles having zero initial velocity at a
finite radius, the solution for the scale fac-
tor oscillates periodically between a finite
minimum and a maximum. The instants
of the bounce and of the crunch depend on
the value of q.

Matching Exterior

We choose a static exterior with generalized mass function M(R) in Schwarzschild coordi-
nates {T,R, θ, φ}

ds2+ = −
(
1− 2M(R)

R

)
dT 2 +

(
1− 2M(R)

R

)−1

dR2 +R2dΩ2 (8)

(we define also f (R) = 1 − 2M(R)/R) and for the matching on the collapsing boundary
R = Rb(T ) we follow the formalism of the first γab and second Kab fundamental form [3].

First Attempt: Schwarzschild

Fixing M(R) = M0, with the requirement
2M0 = r3bm0, we would have an action gen-
erating both the interior and the vacuum
exterior. However, since in the interior we
have a mass varying in time, to pursue this
matching we have to introduce a shell Σ at
the boundary, with its own surface energy-
momentum tensor Sab:

γ−θθ = γ+θθ =⇒ Rb(T (t)) = rba(t) (9)
γ−ττ = γ+ττ (10)

=⇒ dt

dT
=

f (Rb)√
f (Rb) + Ṙ2

b

K+
ab −K−

ab = Sab −
1

2
γabS (11)

The shell would confine the quantum ef-

fects in a finite spacetime region. However,
this attempt turned out to be problematic
since we have found that the relation be-
tween t and T is not well defined.

New Regular Black Hole

We do not need to introduce a shell if we
require the continuity of the second funda-
mental form. This uniquely determines [4]
the mass function M(R):

K−
θθ = K+

θθ

=⇒M(R) =
R3

6q
ln
(
1 +

6M0q

R3

) (12)

where 2M0 = r3bm0. The altered
causal structure, with respect to that of a
Schwarzschild black hole, can be thought of
as a signature of the quantum effects, now
affecting the whole spacetime.
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Figure 1: Potential stemming from the Markov-Mukhanov action compared to the divergent one of the usual
Oppenheimer-Snyder (OS) collapse. If K = 1 the scale factor inverts its motion in two points. The parameters
are fixed for illustrative purpose to m0 = 1 and q = 0.004.
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Figure 2: Behaviour of the scale factor in OS collapse compared to our model. In the OS case a(t) becomes null in a
finite interval of time, while in our model, for K = 0, we have a decreasingly exponential tail. The parameters are fixed
for illustrative purpose to m0 = 1 and q = 0.004.
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Figure 3: Behaviour of the temporal component of the new metric for different critical values of q, in units of M0. For
q = 0 we obtain the Schwarzschild metric, while for other values of q we can have an inner and an outer horizon, an
extremal black hole or no horizons.

Figure 4: Possible Penrose diagram of the collapse for the case K = 0. The line rb represents the trajectory of the
collapsing boundary and the grey region represents the interior. The line rah refers to the mathematical curve rah(t),
and the dashed line refers to rah(t) in the OS collapse. R+ and R− are the outer and inner horizons.

Conclusions
We discussed a toy model for the gravitational collapse of a dust cloud which implements the idea of an asymptotically safe gravitational interaction. As a consequence, in the matter interior
the formation of the singularity is replaced by an eternal collapse or a bounce, while the requirement for regularity in the matching with a static exterior lead us to a novel regular black hole
geometry.


