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Abstract
We introduce a decoherence process due to quantum gravity effects. We assume a foamy quantum spacetime with a fluctuat-
ing minimal length coinciding on average with the Planck scale. Considering deformed canonical commutation relations with a
fluctuating deformation parameter, we derive a Lindblad-type master equation that yields localization in energy space and deco-
herence times consistent with the currently available observational evidence. Finally, we discuss possible experimental tests of
our model based on cavity optomechanics setups with ultracold massive molecular oscillators.

Introduction
Following early pioneering studies [1], the investigation of the quantum-to-classical transition via the mechanism
of decoherence has become a very active area of research, playing an increasingly central role in the research
area on the foundations of quantum mechanics. In broad terms, decoherence appears to be due to the inevitable
interaction and the ensuing creation of entanglement between a given quantum system and the environment in
which it is embedded. Among the various ideas that revolve around the concept of decoherence induced by
gravity, a significant portion deals with the high-energy regime in which quantum and gravitational effects are
deemed to be comparably important. Although a complete and consistent theory of quantum gravity is still lack-
ing, different current candidates predict the existence of a minimal length at the Planck scale. An immediate
consequence of this common aspect is the breakdown of the Heisenberg uncertainty principle (HUP). Therefore,
as firstly derived in the framework of string theory [2], at the Planck scale the HUP must be superseded by a
generalized uncertainty principle (GUP), whose minimal one-dimensional expression reads

∆X∆P ≥ ℏ
2

(
1 + β ℓ2p

∆P 2

ℏ2

)
, (1)

where β denotes the so-called deformation parameter and ℓp is the Planck length.
Here, we introduce a model accounting for a universal quantum-gravitational decoherence process [3]. The
model assumes deformed canonical commutation relations (DCCRs) leading to the deformed uncertainty rela-
tion (1) that accounts for the presence of a minimal length scale. Furthermore, the model assumes the minimal
length scale to be a fluctuating quantity, induced by a conjectured foamy character of quantum spacetime, whose
average magnitude is fixed at the Planck length scale.

Generalized uncertainty principle and Lindblad-type master equation
In order to define a consistent quantum mechanical theory in Hilbert space from Eq. (1), one can start from the
β-deformed canonical commutation relation. For mirror-symmetric states, the uncertainty relation (1) can be
straightforwardly derived from the following commutator:[
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where the capital letters label the high-energy position and momentum operators, which are basically different
from the usual (low-energy) ones of ordinary quantum mechanics (QM). In the three-dimensional case, the most
general counterpart of the previous expression that preserves rotational isotropy is given by[
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where P̂ 2 =
∑

k P̂
2
k . As frequently done in the literature, in the following we will consider the case β′ = 2β. In

light of Eq. (3), it is not possible to simply recover the position and momentum operators of ordinary QM. How-
ever, a suitable choice for the above operators that complies with the deformed canonical commutation relations
(DCCRs) yields X̂j = x̂j , P̂k =

(
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2/ℏ2
)
p̂k , where x̂j and p̂k satisfy the original HUP. Collecting the

above results, we can now seek the proper generalization of the Schrödinger time evolution equation. Starting
from X̂j, P̂j and introducing H = H0 + V with H0 = p2/2m, it is immediate to achieve the modified quantum
mechanical evolution equation for pure quantum states |ψ⟩ in the form

iℏ ∂t|ψ⟩ =
(
H +Hβ

)
|ψ⟩ , Hβ = 4

β mℓ2p

ℏ2
H2
0

(
1 +

β mℓ2p

ℏ2
H0

)
. (4)

Now, the magnitude of the deformation parameter β is commonly estimated to be of order unity [2]. From a
more general perspective, β may be regarded as a dynamical variable whose sign in several significant works
is taken as either positive or negative. The above wide spectrum of estimates is compatible with the possibility
that spacetime fluctuates as the Planck scale is approached, as predicted by major theoretical frameworks. In
turn, this suggests that spacetime fluctuations fix the minimal length scale only on average, thereby making the
associated deformation parameter itself a fluctuating quantity. Equipped with a random β, Eq. (4) is promoted to
a (linear) stochastic Schrödinger equation. Since the fluctuations in β should be related to the fluctuations of the
metric tensor near the Planck threshold, within the framework of non-relativistic quantum mechanics it is natural
to assume β to be a white noise with a fixed mean and a sharp auto-correlation, so that

β =
√
tp χ(t) , ⟨χ(t)⟩ = β̄ , ⟨χ(t)χ(t′)⟩ = δ(t− t′) , (5)

where ⟨ . . . ⟩ denotes an average over fluctuations whose intensity is provided by the Planck time tp and β̄ is the
fixed mean, which is set to 1/

√
tp to obtain ⟨β⟩ = 1. Finally, from the β-deformed stochastic Schrödinger equa-

tion (4) for the state vector |ψ⟩, it is straightforward to derive the ensuing β-deformed stochastic Liouville-von
Neumann equation for the dynamics of the quantum density matrix ϱ = |ψ⟩⟨ψ|, that is
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]
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By switching back and forth from the interaction picture to enforce the Born-Markov approximation before av-
eraging over fluctuations to study the evolution of the averaged density matrix ρ, one eventually ends up with the
Lindblad-type [4] master equation
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In the previous expression, the so-called dissipator is handily identified as the second term in the r.h.s.. As
required, in the limit σ ≈ 0 we recover the standard Liouville-von Neumann equation and the corresponding
unitary dynamics.

Quantum gravitational decoherence
In order to estimate the decoherence time, it is convenient to work in the momentum representation, where the
density matrix elements are given by ρp,p′(t) = ⟨p| ρ(t) |p′⟩ . By using the notation E(p) = p2/2m and solving
the differential equation (7), one arrives at
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with ∆E2 =
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)
. From Eq. (8), we observe that the time evolution preserves the diagonal elements

whereas, as long as ∆E2 ̸= 0, the off-diagonal terms of the density matrix decay exponentially, thereby realizing
an effective localization in energy. We can then identify the ensuing decoherence time τD:
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The decoherence time is strongly influenced by the actual energy regime: the larger the deviation from the Planck
scale is, the longer τD becomes, as the picture below conveys.

Concerning the experimental verification, a promising route consists in relying on cavity optomechanics, which
has the advantage of allowing for the implementation of universal schemes for decoherence detection. Specif-
ically, in Ref. [5] the authors have introduced a very general method to verify any gravitational decoherence
model starting from a readout of the loss of entanglement between two prepared subsystems. This phenomenon
can be revealed by means of Clauser-Horne-Shimony-Holt (CHSH) correlation measurements. Building on the
above framework for the quantification of decoherence, we now discuss an optomechanical scheme for putting
our model of quantum gravitational decoherence to the test. Let us consider two optomechanical systems where
entangled photonic qubits are created in different conditions. In particular, one of the cavities possesses two fixed
mirrors, while the other one is prepared so as to be subject to gravitational decoherence by allowing one of the
mirrors to be movable [5]. In both cavities, the mechanical oscillator is an atom or a molecular structure trapped
in a harmonic potential and the two systems are prepared initially in an entangled state. By applying an external
laser field, these oscillators jump from the ground state to an excited level; they then decay back to the ground
state by emitting the cavity radiation that allows for an accurate study of their vibrational modes.

In a realistic environment, besides gravitational decoherence, we must necessarily take into account the phe-
nomenon of mechanical heating, which further contributes to the loss of quantum coherence between the per-
fectly correlated photon sources. The two effects, however, can be made comparable with a suitable choice of
the experimental parameters [3], although the required values are still demanding: temperatures of the order of
10 nK, cavity quality factor of 1010, photon sources with a mass of 10−16 Kg, etc. Nevertheless, under these
circumstances, the discrepancy between the presence (red curve in the plot below) or absence (blue curve in the
plot below) of a gravitational decoherence mechanism would be sharp and easily accessible, in that it would
predict a faster drop for the correlation function on time scales of the order of 10−2 s.

On a final note, it is worth stressing that the very same setting described above can in principle be used to test
different shapes of gravitationally-induced deformations of quantum mechanics,which in turn are associated with
different models of quantum gravity. Along this line, a surprising result is related to the fact that, in some of these
scenarios, the required experimental parameters are within the reach of the available technology [6].
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