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Diversity of ideas

aISQG

Important to learn from each other, 
and to look for shared challenges and principles.

I will present a biased selection of challenges. 

[de Boer et al: Frontiers of quantum gravity, shared challenges, 
 converging directions (Snowmass 2021)]



Our universe is Lorentzian

… most of the times.



Euclidean Quantum Gravity

Why???



Euclidean Quantum Gravity

• Wick rotation: successful strategy in QFT

•  Computational techniques:  Monte Carlo vs. few techniques for complex amplitudes

• Thermodynamic interpretation

Why did/do we do Euclidean quantum gravity? ZE = ∫ 𝒟geomE exp(−S(geomE)) ZL = ∫ 𝒟geomL exp(ıS(geomL))Vs



Drawbacks of Euclidean Quantum Gravity

• Conformal factor problem:   Action is not bounded from below.
• Lattice simulation: tends to drive system into region where conformal factor is maximized (spikes, branched polymers, …)
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Figure 2: Representative configurations in the crumpled (left, 
2
=

1.2
6) and elongated (rig

ht, 2
=

1.3
0)

phase at system size N4
⇡ 64k: in the crumpled phase, the triangulation consists

of one large, highly connected

bunch with
outgrowths which are at least an order of magnitude smaller. In the elongated phase on the other

hand, although a largest component still
exists

and may be called “mother universe”, it is much smaller than in

the crumpled phase and some of its outgrowths (the “babies”) are of comparable size.
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de Forcrand 2015]
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• Lorentzian configuration space very different from Euclidean configuration space:
    No well-defined Wick rotation. [Ambjorn, Loll, Jurkiewicz et al. 98+:  Causal Dynamical Triangulations]

[Goerlich]

[Talks by Ambjorn, Goerlich]
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• Lorentzian configuration space very different from Euclidean configuration space:
    No well-defined Wick rotation. [Ambjorn, Loll, Jurkiewicz et al. 98+:  Causal Dynamical Triangulations]

[Goerlich]

[Talks by Ambjorn, Goerlich]

• No destructive interference which might cancel out unwanted configurations

[Talks by Carlip, Surya][Carlip, Carlip, Surya 22: Causal Sets]



Computational techniques for complex amplitudes

• deformation of integration contour,  possible choice - Lefschetz thimbles
    (Semi-classical and numerical)

•  Holomorphic gradient flow  / Monte Carlo on Lefschetz thimbles      
 (Numerical, “experimental”)  

• Acceleration operators for series convergence   (for sums and integrals)
    (Numerical)

• Tensor network renormalization                                    
    (Numerical, so far up to three dimensional systems)

• Asymptotic Safety 
(Lorentzian configuration space, Lorentzian renormalization flow)

• Machine learning, quantum simulations, ….    
    (To be explored: Scaling?)

 [ Talks by Asante, Feldbrugge]

 [ Witten;  Turok, Feldbrugge, Lehners et al ; Asante, BD, Padua-Arguelles, … ]

 [ QCD: Alexandru et al,  Spin foams:  Han et al,   Regge: Jia]

 [Effective Spin foam cosmology:  BD, Padua-Arguelles 23]

 [Cunningham, Delcamp, BD, Martin-Benito, Mizera, Steinhaus;  Ito, Kadoh, Sato]

 [Biemans, Platania, Saueressig;  Knorr, Platania, Schiffer;
 Fehre, Litim, Pawlowski, Reichert; Rejzner et al ]  [ Talk by Rejzner]
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Challenge:  Methods for large scale systems.

 [ Talk by Rejzner]



Acceleration techniques for series convergence
[Schmidt 41,   Shanks 55,   Wynn  56, … ]       [ BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals. 
Contour deformation not necessary.   But reproduces results for integrals treated via contour deformation.
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FIG. 1: The plot on the left panel shows the partial sums over time-like areas with cut-o↵ NB for the ball model. We sum all nB with
nB  NB . (The parameters for the spin foam sum area ⇤ = 0.2`�2

P and
p

Abdry ⇡ 0.033`2P .) On the right panel we show the series
resulting from applying Wynn’s epsilon algorithm (which will be explained in the main text) to the series defined by the first 100 partial
sums shown on the left. The resulting series has a highly accelerated convergence. The maximal relative error (defined in (3.9)) is of the

order of 10�11.

convergence of slowly converging series, and can also be used to define limit values to divergent series. We will see
that these limit values lead to physically reasonable results: e.g. for the computation of expectation values we rely on
such limit values, and in most cases the expectation values we compute will approximate well the classical solutions.

FIG. 2: The plot on the left panel shows the partial sums over time-like areas for the computation of the expectation values. That is
compared to the sums shown in Fig. 2 we insert a term proportional to n2

B . As before we sum over all positive values nB  NB . The
right panel shows Wynn’s epsilon algorithm applied to the series defined by the first 100 partial sums. This series shows quite a fast

convergence. Note that the (anti-) limit is a very small number, which we found is typical for the computation of the expectation values
in the ball model. The maximal relative error (defined in (3.9)) is of the order of 10�8.

The non-linear sequence transformations can be applied to compute the limit of sums or integrals with infinite
summation or integration range, respectively. To treat sums we form a series from the partial sums Sk, k = 0, 1, . . .

Sk =

Cmin+kCstepX

n=1

f(n) . (3.1)

Here one can choose an arbitrary minimal cut-o↵ Cmin for the sum, so that S0 represent the sum of Cmin terms. Cstep

is the step size for probing the partial sums. We found that choosing Cstep = 1 leads often to the best results.
For the application to integrals we define

Sk =

Z Cmin+k⇥Cstep

x0

f(x) dx . (3.2)

Cstep should be chosen such that the Sk probes the (largest frequency) oscillations of the integral S(y) =
R y
x0

f(x)dx,
i.e. there should be several Sk for each period.

A quite simple technique that allows to treat oscillating sums and integrals. 
Contour deformation not necessary.   But reproduces results for integrals treated via contour deformation.

From a mini-superspace
path sum:

Rel. Error~10−11
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The non-linear sequence transformations can be applied to compute the limit of sums or integrals with infinite
summation or integration range, respectively. To treat sums we form a series from the partial sums Sk, k = 0, 1, . . .

Sk =

Cmin+kCstepX

n=1

f(n) . (3.1)

Here one can choose an arbitrary minimal cut-o↵ Cmin for the sum, so that S0 represent the sum of Cmin terms. Cstep

is the step size for probing the partial sums. We found that choosing Cstep = 1 leads often to the best results.
For the application to integrals we define

Sk =

Z Cmin+k⇥Cstep

x0

f(x) dx . (3.2)

Cstep should be chosen such that the Sk probes the (largest frequency) oscillations of the integral S(y) =
R y
x0

f(x)dx,
i.e. there should be several Sk for each period.

For computation of 
expectation value:

    (Remember this plot)

Works well for sums with actions that are at most linear in the summation variable.  
                   Consistent with quantum mechanics (Bohr quantization). 

Rel. Error~10−11

Rel. Error~10−8
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Conformal factor problem?
Euclidean quantum gravity: rotate conformal factor by hand (if you can)



Conformal factor problem?

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

• Convergence criterium automatically selects ‘right’ contour      
[Mini-superspace:   Feldbrugge, Lehners, Turok 17, … 
Lorentzian Regge:   Asante, BD, Padua-Arguelles 21, 
Borissova, BD 23]

Euclidean quantum gravity: rotate conformal factor by hand (if you can)
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degenerate (d+1)-simplex. Assume that all the (d+1) d-simplices, which are sub-simplices of the
degenerate (d+1)-simplex, are non-degenerate. For an ni�nf Pachner move one identifies ni of the
(d+ 1) d-simplices as initial configuration and nf of the (d+ 1) d-simplices as final configuration.4

In the following we denote with �
i
the d-simplex obtained by removing the vertex i, and all

adjacent simplices, from the complex. We will assume, without loss of generality, that the ini-
tial complex includes the d-simplices �nf , . . . ,�d+1 and the final complex includes the d-simplices
�0, . . . ,�nf�1.

Below we will give a short description of Pachner moves in three and four dimensions.

A. 3D

0

1

2
3

4
3–2

2–3

0

1

2
3

4

FIG. 1: 3D Pachner move 3 � 2 and its inverse 2 � 3. In the initial configuration three tetrahedra share a
bulk edge. Integrating out the bulk edge leads to a final configuration with two tetrahedra.

In three dimensions we can construct the flatly embedded Pachner moves from a set of vertices
{0, 1, 2, 3, 4} embedded into flat space.

The 3-simplices (or tetrahedra) in the initial complex Ci and final complex Cf are given by

3� 2 : Ci � {�2̄,�3̄,�4̄} , Cf � {�0̄,�1̄} ,
4� 1 : Ci � {�1̄,�2̄,�3̄,�4̄} , Cf � {�0̄} . (3.1)

The 3 � 2 move is depicted in Fig. 1. The bulk edge (01) shared by the three tetrahedra in
the initial triangulation and is removed, and a bulk triangle in the final triangulation is ’inserted’,
leading to two tetrahedra.

The 4 � 1 move is depicted in Fig. 2. Here the bulk vertex 0 and all adjacent simplices are
removed from the initial configuration, including the bulk edges (0k), for k � 1. This leads to the
final tetrahedron �0̄.

4 To lighten notation we will however assume that all d-simplices in the initial and final configuration have positive
orientation. (See [21] for how to allow positive and negative orientation.) Given a configuration of (d+2) vertices
this requirement constrains which d-simplices one can choose as initial and which as final.

∼ ∫ exp(+ip3−2λ2) dλ [BD, Steinhaus 11,
 Borissova, BD 23]

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

∼ ∫ exp(−p3−2λ2) dλEucl:

Lor:
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• Convergence criterium automatically selects ‘right’ contour      
[Mini-superspace:   Feldbrugge, Lehners, Turok 17, … 
Lorentzian Regge:   Asante, BD, Padua-Arguelles 21, 
Borissova, BD 23]
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degenerate (d+1)-simplex. Assume that all the (d+1) d-simplices, which are sub-simplices of the
degenerate (d+1)-simplex, are non-degenerate. For an ni�nf Pachner move one identifies ni of the
(d+ 1) d-simplices as initial configuration and nf of the (d+ 1) d-simplices as final configuration.4

In the following we denote with �
i
the d-simplex obtained by removing the vertex i, and all

adjacent simplices, from the complex. We will assume, without loss of generality, that the ini-
tial complex includes the d-simplices �nf , . . . ,�d+1 and the final complex includes the d-simplices
�0, . . . ,�nf�1.

Below we will give a short description of Pachner moves in three and four dimensions.

A. 3D
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4
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2–3
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1

2
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4

FIG. 1: 3D Pachner move 3 � 2 and its inverse 2 � 3. In the initial configuration three tetrahedra share a
bulk edge. Integrating out the bulk edge leads to a final configuration with two tetrahedra.

In three dimensions we can construct the flatly embedded Pachner moves from a set of vertices
{0, 1, 2, 3, 4} embedded into flat space.

The 3-simplices (or tetrahedra) in the initial complex Ci and final complex Cf are given by

3� 2 : Ci � {�2̄,�3̄,�4̄} , Cf � {�0̄,�1̄} ,
4� 1 : Ci � {�1̄,�2̄,�3̄,�4̄} , Cf � {�0̄} . (3.1)

The 3 � 2 move is depicted in Fig. 1. The bulk edge (01) shared by the three tetrahedra in
the initial triangulation and is removed, and a bulk triangle in the final triangulation is ’inserted’,
leading to two tetrahedra.

The 4 � 1 move is depicted in Fig. 2. Here the bulk vertex 0 and all adjacent simplices are
removed from the initial configuration, including the bulk edges (0k), for k � 1. This leads to the
final tetrahedron �0̄.

4 To lighten notation we will however assume that all d-simplices in the initial and final configuration have positive
orientation. (See [21] for how to allow positive and negative orientation.) Given a configuration of (d+2) vertices
this requirement constrains which d-simplices one can choose as initial and which as final.
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FIG. 2: 3d Pachner move 4 � 1 and its inverse 1 � 4. In the initial configuration four tetrahedra share a
bulk vertex. Integrating out the four bulk edges leads to a final configuration with one tetrahedron.
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FIG. 3: 4D Pachner move 3 � 3. In the initial configuration three simplices share a triangle (012). The
Pachner move changes the initial configuration into a final configuration with three four-simplices sharing a
triangle (345). No bulk edges are involved.

B. 4D

In four dimensions we consider the 3� 3, the 4� 2 and the 5� 1 Pachner move. The Pachner
moves involve the vertex set {0, 1, . . . , 5} and feature the following set of 4-simplices in their initial
and final complexes

3� 3 : Ci � {�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄,�2̄} ,
4� 2 : Ci � {�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄} ,
5� 1 : Ci � {�1̄,�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄} . (3.2)

The lowest-dimensional bulk simplex in the initial configuration of the 3� 3 move, depicted in
Fig. 3 is the triangle (012), shared by all three initial 4-simplices. The lowest-dimensional bulk
simplex in the final configuration is the triangle (345), which is shared by all three final 4-simplices.

In the 4 � 2 move, depicted in Fig. 4 the bulk edge (01), shared by the initial 4-simplices, is
removed from the configuration and a (bulk) tetrahedron (2345), shared by the two final 4-simplices,
is inserted.

For the 5� 1 move, depicted in Fig. 5, the bulk vertex 0 and all adjacent simplices are removed
from the initial configuration. This leaves the final 4-simplex (12345).

C. Degenerate Caley-Menger matrices

In Sec. III we discussed that flatly embeddable Pachner moves in d dimensions can be con-
structed by embedding (d+ 2) vertices into d-dimensional flat space. These (d+ 2) vertices there-

Conformal and gauge modes

∼ ∫ exp(+ip3−2λ2) dλ

∼ ∫ exp(+p4−1λ2) dλ

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

∼ ∫ exp(−p3−2λ2) dλ

∼ ∫ exp(−ıp4−1λ2) dλ

Eucl:

Lor:
[BD, Steinhaus 11,
 Borissova, BD 23]



Conformal factor problem?

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

• Convergence criterium automatically selects ‘right’ contour      
[Mini-superspace:   Feldbrugge, Lehners, Turok 17, … 
Lorentzian Regge:   Asante, BD, Padua-Arguelles 21, 
Borissova, BD 23]

• Expectation values for (powers of) lengths  in spike configurations:
    -infinite in Euclidean Quantum Gravity
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degenerate (d+1)-simplex. Assume that all the (d+1) d-simplices, which are sub-simplices of the
degenerate (d+1)-simplex, are non-degenerate. For an ni�nf Pachner move one identifies ni of the
(d+ 1) d-simplices as initial configuration and nf of the (d+ 1) d-simplices as final configuration.4

In the following we denote with �
i
the d-simplex obtained by removing the vertex i, and all

adjacent simplices, from the complex. We will assume, without loss of generality, that the ini-
tial complex includes the d-simplices �nf , . . . ,�d+1 and the final complex includes the d-simplices
�0, . . . ,�nf�1.

Below we will give a short description of Pachner moves in three and four dimensions.

A. 3D

0

1

2
3

4
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2–3

0

1

2
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4

FIG. 1: 3D Pachner move 3 � 2 and its inverse 2 � 3. In the initial configuration three tetrahedra share a
bulk edge. Integrating out the bulk edge leads to a final configuration with two tetrahedra.

In three dimensions we can construct the flatly embedded Pachner moves from a set of vertices
{0, 1, 2, 3, 4} embedded into flat space.

The 3-simplices (or tetrahedra) in the initial complex Ci and final complex Cf are given by

3� 2 : Ci � {�2̄,�3̄,�4̄} , Cf � {�0̄,�1̄} ,
4� 1 : Ci � {�1̄,�2̄,�3̄,�4̄} , Cf � {�0̄} . (3.1)

The 3 � 2 move is depicted in Fig. 1. The bulk edge (01) shared by the three tetrahedra in
the initial triangulation and is removed, and a bulk triangle in the final triangulation is ’inserted’,
leading to two tetrahedra.

The 4 � 1 move is depicted in Fig. 2. Here the bulk vertex 0 and all adjacent simplices are
removed from the initial configuration, including the bulk edges (0k), for k � 1. This leads to the
final tetrahedron �0̄.

4 To lighten notation we will however assume that all d-simplices in the initial and final configuration have positive
orientation. (See [21] for how to allow positive and negative orientation.) Given a configuration of (d+2) vertices
this requirement constrains which d-simplices one can choose as initial and which as final.
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FIG. 2: 3d Pachner move 4 � 1 and its inverse 1 � 4. In the initial configuration four tetrahedra share a
bulk vertex. Integrating out the four bulk edges leads to a final configuration with one tetrahedron.
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FIG. 3: 4D Pachner move 3 � 3. In the initial configuration three simplices share a triangle (012). The
Pachner move changes the initial configuration into a final configuration with three four-simplices sharing a
triangle (345). No bulk edges are involved.

B. 4D

In four dimensions we consider the 3� 3, the 4� 2 and the 5� 1 Pachner move. The Pachner
moves involve the vertex set {0, 1, . . . , 5} and feature the following set of 4-simplices in their initial
and final complexes

3� 3 : Ci � {�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄,�2̄} ,
4� 2 : Ci � {�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄} ,
5� 1 : Ci � {�1̄,�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄} . (3.2)

The lowest-dimensional bulk simplex in the initial configuration of the 3� 3 move, depicted in
Fig. 3 is the triangle (012), shared by all three initial 4-simplices. The lowest-dimensional bulk
simplex in the final configuration is the triangle (345), which is shared by all three final 4-simplices.

In the 4 � 2 move, depicted in Fig. 4 the bulk edge (01), shared by the initial 4-simplices, is
removed from the configuration and a (bulk) tetrahedron (2345), shared by the two final 4-simplices,
is inserted.

For the 5� 1 move, depicted in Fig. 5, the bulk vertex 0 and all adjacent simplices are removed
from the initial configuration. This leaves the final 4-simplex (12345).

C. Degenerate Caley-Menger matrices

In Sec. III we discussed that flatly embeddable Pachner moves in d dimensions can be con-
structed by embedding (d+ 2) vertices into d-dimensional flat space. These (d+ 2) vertices there-

Conformal and gauge modes

∼ ∫ exp(+ip3−2λ2) dλ

∼ ∫ exp(+p4−1λ2) dλ

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

∼ ∫ exp(−p3−2λ2) dλ

∼ ∫ exp(−ıp4−1λ2) dλ

Eucl:

Lor:
[BD, Steinhaus 11,
 Borissova, BD 23]



Conformal factor problem?

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

• Convergence criterium automatically selects ‘right’ contour      

[Mini-superspace:   Feldbrugge, Lehners, Turok 17, … 
Lorentzian Regge:   Asante, BD, Padua-Arguelles 21, 
Borissova, BD 23]

• Expectation values for (powers of) lengths  in spike configurations:
    -infinite in Euclidean Quantum Gravity
    -finite in Lorentzian  Quantum Gravity
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degenerate (d+1)-simplex. Assume that all the (d+1) d-simplices, which are sub-simplices of the
degenerate (d+1)-simplex, are non-degenerate. For an ni�nf Pachner move one identifies ni of the
(d+ 1) d-simplices as initial configuration and nf of the (d+ 1) d-simplices as final configuration.4

In the following we denote with �
i
the d-simplex obtained by removing the vertex i, and all

adjacent simplices, from the complex. We will assume, without loss of generality, that the ini-
tial complex includes the d-simplices �nf , . . . ,�d+1 and the final complex includes the d-simplices
�0, . . . ,�nf�1.

Below we will give a short description of Pachner moves in three and four dimensions.

A. 3D
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4
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2–3
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2
3

4

FIG. 1: 3D Pachner move 3 � 2 and its inverse 2 � 3. In the initial configuration three tetrahedra share a
bulk edge. Integrating out the bulk edge leads to a final configuration with two tetrahedra.

In three dimensions we can construct the flatly embedded Pachner moves from a set of vertices
{0, 1, 2, 3, 4} embedded into flat space.

The 3-simplices (or tetrahedra) in the initial complex Ci and final complex Cf are given by

3� 2 : Ci � {�2̄,�3̄,�4̄} , Cf � {�0̄,�1̄} ,
4� 1 : Ci � {�1̄,�2̄,�3̄,�4̄} , Cf � {�0̄} . (3.1)

The 3 � 2 move is depicted in Fig. 1. The bulk edge (01) shared by the three tetrahedra in
the initial triangulation and is removed, and a bulk triangle in the final triangulation is ’inserted’,
leading to two tetrahedra.

The 4 � 1 move is depicted in Fig. 2. Here the bulk vertex 0 and all adjacent simplices are
removed from the initial configuration, including the bulk edges (0k), for k � 1. This leads to the
final tetrahedron �0̄.

4 To lighten notation we will however assume that all d-simplices in the initial and final configuration have positive
orientation. (See [21] for how to allow positive and negative orientation.) Given a configuration of (d+2) vertices
this requirement constrains which d-simplices one can choose as initial and which as final.
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FIG. 2: 3d Pachner move 4 � 1 and its inverse 1 � 4. In the initial configuration four tetrahedra share a
bulk vertex. Integrating out the four bulk edges leads to a final configuration with one tetrahedron.
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FIG. 3: 4D Pachner move 3 � 3. In the initial configuration three simplices share a triangle (012). The
Pachner move changes the initial configuration into a final configuration with three four-simplices sharing a
triangle (345). No bulk edges are involved.

B. 4D

In four dimensions we consider the 3� 3, the 4� 2 and the 5� 1 Pachner move. The Pachner
moves involve the vertex set {0, 1, . . . , 5} and feature the following set of 4-simplices in their initial
and final complexes

3� 3 : Ci � {�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄,�2̄} ,
4� 2 : Ci � {�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄} ,
5� 1 : Ci � {�1̄,�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄} . (3.2)

The lowest-dimensional bulk simplex in the initial configuration of the 3� 3 move, depicted in
Fig. 3 is the triangle (012), shared by all three initial 4-simplices. The lowest-dimensional bulk
simplex in the final configuration is the triangle (345), which is shared by all three final 4-simplices.

In the 4 � 2 move, depicted in Fig. 4 the bulk edge (01), shared by the initial 4-simplices, is
removed from the configuration and a (bulk) tetrahedron (2345), shared by the two final 4-simplices,
is inserted.

For the 5� 1 move, depicted in Fig. 5, the bulk vertex 0 and all adjacent simplices are removed
from the initial configuration. This leaves the final 4-simplex (12345).

C. Degenerate Caley-Menger matrices

In Sec. III we discussed that flatly embeddable Pachner moves in d dimensions can be con-
structed by embedding (d+ 2) vertices into d-dimensional flat space. These (d+ 2) vertices there-

Conformal and gauge modes

∼ ∫ exp(+ip3−2λ2) dλ

∼ ∫ exp(+p4−1λ2) dλ

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

(Recall plot of expectation value )

∼ ∫ exp(−p3−2λ2) dλ

∼ ∫ exp(−ıp4−1λ2) dλ

Eucl:

Lor:
[BD, Steinhaus 11,
 Borissova, BD 23]



Conformal factor problem?

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

• Convergence criterium automatically selects ‘right’ contour      

[Mini-superspace:   Feldbrugge, Lehners, Turok 17, … 
Lorentzian Regge:   Asante, BD, Padua-Arguelles 21, 
Borissova, BD 23]

• Expectation values for (powers of) lengths  in spike configurations:
    -infinite in Euclidean Quantum Gravity
    -finite in Lorentzian  Quantum Gravity
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degenerate (d+1)-simplex. Assume that all the (d+1) d-simplices, which are sub-simplices of the
degenerate (d+1)-simplex, are non-degenerate. For an ni�nf Pachner move one identifies ni of the
(d+ 1) d-simplices as initial configuration and nf of the (d+ 1) d-simplices as final configuration.4

In the following we denote with �
i
the d-simplex obtained by removing the vertex i, and all

adjacent simplices, from the complex. We will assume, without loss of generality, that the ini-
tial complex includes the d-simplices �nf , . . . ,�d+1 and the final complex includes the d-simplices
�0, . . . ,�nf�1.

Below we will give a short description of Pachner moves in three and four dimensions.

A. 3D
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FIG. 1: 3D Pachner move 3 � 2 and its inverse 2 � 3. In the initial configuration three tetrahedra share a
bulk edge. Integrating out the bulk edge leads to a final configuration with two tetrahedra.

In three dimensions we can construct the flatly embedded Pachner moves from a set of vertices
{0, 1, 2, 3, 4} embedded into flat space.

The 3-simplices (or tetrahedra) in the initial complex Ci and final complex Cf are given by

3� 2 : Ci � {�2̄,�3̄,�4̄} , Cf � {�0̄,�1̄} ,
4� 1 : Ci � {�1̄,�2̄,�3̄,�4̄} , Cf � {�0̄} . (3.1)

The 3 � 2 move is depicted in Fig. 1. The bulk edge (01) shared by the three tetrahedra in
the initial triangulation and is removed, and a bulk triangle in the final triangulation is ’inserted’,
leading to two tetrahedra.

The 4 � 1 move is depicted in Fig. 2. Here the bulk vertex 0 and all adjacent simplices are
removed from the initial configuration, including the bulk edges (0k), for k � 1. This leads to the
final tetrahedron �0̄.

4 To lighten notation we will however assume that all d-simplices in the initial and final configuration have positive
orientation. (See [21] for how to allow positive and negative orientation.) Given a configuration of (d+2) vertices
this requirement constrains which d-simplices one can choose as initial and which as final.
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FIG. 2: 3d Pachner move 4 � 1 and its inverse 1 � 4. In the initial configuration four tetrahedra share a
bulk vertex. Integrating out the four bulk edges leads to a final configuration with one tetrahedron.
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FIG. 3: 4D Pachner move 3 � 3. In the initial configuration three simplices share a triangle (012). The
Pachner move changes the initial configuration into a final configuration with three four-simplices sharing a
triangle (345). No bulk edges are involved.

B. 4D

In four dimensions we consider the 3� 3, the 4� 2 and the 5� 1 Pachner move. The Pachner
moves involve the vertex set {0, 1, . . . , 5} and feature the following set of 4-simplices in their initial
and final complexes

3� 3 : Ci � {�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄,�2̄} ,
4� 2 : Ci � {�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄,�1̄} ,
5� 1 : Ci � {�1̄,�2̄,�3̄,�4̄,�5̄} , Cf � {�0̄} . (3.2)

The lowest-dimensional bulk simplex in the initial configuration of the 3� 3 move, depicted in
Fig. 3 is the triangle (012), shared by all three initial 4-simplices. The lowest-dimensional bulk
simplex in the final configuration is the triangle (345), which is shared by all three final 4-simplices.

In the 4 � 2 move, depicted in Fig. 4 the bulk edge (01), shared by the initial 4-simplices, is
removed from the configuration and a (bulk) tetrahedron (2345), shared by the two final 4-simplices,
is inserted.

For the 5� 1 move, depicted in Fig. 5, the bulk vertex 0 and all adjacent simplices are removed
from the initial configuration. This leaves the final 4-simplex (12345).

C. Degenerate Caley-Menger matrices

In Sec. III we discussed that flatly embeddable Pachner moves in d dimensions can be con-
structed by embedding (d+ 2) vertices into d-dimensional flat space. These (d+ 2) vertices there-

Conformal and gauge modes

∼ ∫ exp(+ip3−2λ2) dλ

∼ ∫ exp(+p4−1λ2) dλ

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

(Recall plot of expectation value )

∼ ∫ exp(−p3−2λ2) dλ

∼ ∫ exp(−ıp4−1λ2) dλ

Eucl:

Lor:

Challenge:  Which kind of  Euclidean simulations/ calculations to trust?

[BD, Steinhaus 11,
 Borissova, BD 23]
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Lorentzian vs Euclidean configuration space
What kind of Lorentzian configurations to sum over?
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Causal Dynamical Triangulations
does forbid such configurations.
Leads to a new universality class of random triangulations

    and an interesting continuum limit in 4 dimensions.



Lorentzian vs Euclidean configuration space
What kind of Lorentzian configurations to sum over?

Lorentzian space time with 
irregular light cone structure.

[Ambjorn, Loll 1998+]  [without preferred slicing: Jordan, Loll 2013]

Causal Dynamical Triangulations
does forbid such irregular configurations.
Leads to a new universality class of random triangulations

    and an interesting continuum limit in 4 dimensions.

[from Surya 2019]

Causal sets:  
Configurations with irregular light cone
structure are allowed.

Lorentzian geometry 
fully encoded in 
causal relations and 
volume=number of points.

[Talks by Carlip, Surya]
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Lorentzian vs Euclidean configuration space
What kind of Lorentzian configurations to sum over?

Lorentzian space time with 
irregular light cone structure.

[Ambjorn, Loll 1998+]  [without preferred slicing: Jordan, Loll 2013]

Causal Dynamical Triangulations
does forbid such irregular configurations.
Leads to a new universality class of random triangulations

    and an interesting continuum limit in 4 dimensions.

[from Surya 2019]

Causal sets:  
Configurations with irregular light cone
structure are allowed.

Lorentzian geometry 
fully encoded in 
causal relations and 
volume=number of points.

Imaginary terms in action?

[Talks by Carlip, Surya]
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Regge gravity (and spin foams)
Configuration space:   lengths (or other geometric quantities) associated to edges of triangulation.



Regge gravity (and spin foams)
Configuration space:   lengths (or other geometric quantities) associated to edges of triangulation.

0 light
comes

4 tightin
a Es

8 M
! Si

2 lightsomes

⑭

a
a

b b2
b
1 b2

1

a a a ba
b,
a

b2 b,
a

as 5 =bz
b, >b2 +a

Allowed Lorentzian triangulations, 
all edge lengths are space-like.

0 light
comes

4 tightin
a Es

8 M
! Si

2 lightsomes

⑭

a
a

b b2
b
1 b2

1

a a a ba
b,
a

b2 b,
a

a

b, >b2 +a
a<2b, =2bz

I b

b b
a a

a b e

ye
b
a a

b

c > at b a a b

c
E b > Za

O taught C

I : am:*:*:

•

-
no light
\

Cone

-
-
--

- -
-

e -

-

I b

b b
a a

a b e

ye
b
a a

b

c > at b a a b

c
E b > Za

O taught C

I : am:*:*:

•

-
no light
\

Cone

-
-
--

- -
-

e -

-



Regge gravity (and spin foams)

Configurations with irregular light cone structure appear to be generic.
Appear even in configurations describing mini-superspace cosmology. 
Results indicated that such configurations should be included in the path integral.    [Asante, BD, Padua-Arguelles 2022]

Configuration space:   lengths (or other geometric quantities) associated to edges of triangulation.
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Complex Regge action
[Sorkin 1974, Sorkin 2019]
[Jia 2022]
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Consider Regge action as function of complexified (time-like) length variables.
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Irregular light cone configurations (of co-dimension 2) lead to 
branch cuts for the complex Regge action and

    imaginary contributions with opposite signs. 
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Complex Regge action
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[Jia 2022]
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Irregular light cone configurations (of co-dimension 2) lead to 
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Consider Regge action as function of complexified (time-like) length variables.

[Talk by Asante]



Complex Regge action
[Sorkin 1974, Sorkin 2019]
[Jia 2022]
[Asante, BD, Padua-Arguelles 2021]

Irregular light cone configurations (of co-dimension 2) lead to 
branch cuts for the complex Regge action and

    imaginary contributions with opposite signs. 
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Consider Regge action as function of complexified (time-like) length variables.

Which choice of sign 
for the path integral?  
  

    Suppressing sign:  
    Mechanism for suppressing 
    light cone irregular configurations.

Possibility to reconcile 
CDT and Causal Sets positions?

[Talk by Asante]
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[Louko-Sorkin 95] 

[Witten 21, Lehners 21,  …] Which complexified metrics should be included in the path integral? 
    

[Neiman 13]

     [Marolf 22]

Complex (boundary) terms in continuum action. 

Gravitational thermodynamics from Lorentzian path integrals:
Need to include co-dimension 2 singularities.  Also for replica copies.

    These are already there in simplicial approaches/ Regge gravity! 
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Do such imaginary terms appear in the continuum? 

Complexification needed for discussion of topology change. 
    

[Louko-Sorkin 95] 

[Witten 21, Lehners 21,  …] Which complexified metrics should be included in the path integral? 
    

[Neiman 13]
    

     [Marolf 22]

 [BD, Jacobson, Padua-Arguelles, TA ]

Complex (boundary) terms in continuum action. 

Gravitational thermodynamics from Lorentzian path integrals:
Need to include co-dimension 2 singularities.  Also for replica copies.

    These are already there in simplicial approaches/ Regge gravity! 

Thermodynamics partition functions 
require contour along enhancing side of branch cut. 
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Do such imaginary terms appear in the continuum? 

Complexification needed for discussion of topology change. 
    

[Louko-Sorkin 95] 

[Witten 21, Lehners 21,  …] Which complexified metrics should be included in the path integral? 
    

[Neiman 13]
    

     [Marolf 22]

 [BD, Jacobson, Padua-Arguelles, TA ]

Complex (boundary) terms in continuum action. 

Gravitational thermodynamics from Lorentzian path integrals:
Need to include co-dimension 2 singularities.  Also for replica copies.

    These are already there in simplicial approaches/ Regge gravity! 

Thermodynamics partition functions 
require contour along enhancing side of branch cut. 

Challenges: Understand better role of complex structures for Lorentzian gravitational path integral.
                 Canonical Formalism?
                 Should we include configurations describing topology change? 
                 Complex actions for sum over topologies?



Lorentzian quantum gravity

• More techniques for Lorentzian path integrals

• Lorentzian configurations have additional light cone structure:  can be (often) irregular

• Irregular light cone structure leads to branch cuts for the gravitational action and imaginary terms

• Which Lorentzian configurations to include in the path integral?   Which side of the branch cut?
 
• Thermodynamical interpretation?



What is the structure of quantum space time?



Observables, (non-) locality and quantum space-time
How much can we resolve space-time?

Quantum Field Theory:           Fields    are observables.   n-point functions allow to reconstruct full theory.     ϕ(x, t)
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Observables, (non-) locality and quantum space-time
How much can we resolve space-time?

Quantum Gravity:           Fields    are not observables.  No n-point functions.       ϕ(x, t)

Relational observables           

But there seem to be no perfect clocks in our (relativistic) universe.        

ϕ(ψ1, ψ2, ψ3, ψ4)

[Giddings, Marolf, Hartle 05; BD, Tambornino 06, Giddings, Donnely 15; Hoehn et al 20+]

 Chaos and other aspects: [ Bojowald, Hoehn, et al.  12+,  BD, Hoehn, Kosolowski, Nelson 17 ]

 End of time:  [Talks by Gielen, Menendez-Pidal] 

[Talks by Kiefer, Ferrero, Giacomini, Hoehn, Menendez-Pidal, Rastgoo, Ruf, …] [Einstein, …] 
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Bound on resolution
with relativistic clocks:      [ϕ(ψ), ϕ(ψ + ϵ)] = G(ψ, ψ + ϵ)(1 +

Energy(ϕ)
Energy(ψ)) ) Increasing energy (and size) of clock field leads to black holes. 

   Locality Bounds     ⇒
[Giddings, Marolf, Hartle 05, BD, Tambornino 06]
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Observables, (non-) locality and quantum space-time
How much can we resolve space-time?

Bound on resolution
with relativistic clocks:      [ϕ(ψ), ϕ(ψ + ϵ)] = G(ψ, ψ + ϵ)(1 +

Energy(ϕ)
Energy(ψ)) ) Increasing energy (and size) of clock field leads to black holes. 

   Locality Bounds     ⇒
[Giddings, Marolf, Hartle 05, BD, Tambornino 06]

A new uncertainty principle?  

New uncertainty for Time of arrival operator .Δt > 1/E [Aharanov et al 97]

The same holds for relativistic clocks. [BD, Tambornino 06]

High energy scattering leading to black holes:  “The end of short distance physics”.
UV-IR mixing.   [Banks,Fischler 99; 

Giddings-Thomas 01, Dvali et al…] 

Challenge:  Better understanding of type and algebra of observables.  



Structure of quantum space-time

Quantum field theory:  space-time is an index set.

Quantum gravity:  this index set is dynamical and quantum. [Talks by  Freidel, Giacomini,  Hoehn, … ] 



• fractal dimensions/ space-times 
• non-commutative space-time
• geometric operators (with discrete spectra)

• holography
• local holography
• matrix and tensor models
• group field theories 
• strings
• area metrics
• twistor space
• relative locality and Born duality 
• …    

Structure of quantum space-time

Quantum field theory:  space-time is an index set.

Quantum gravity:  this index set is dynamical and quantum. [Talks by  Freidel, Giacomini,  Hoehn, … ] 

What is the resulting structure of quantum space time?

Space time emergent



• fractal dimensions/ space-times 
• non-commutative space-time
• geometric operators (with discrete spectra)

• holography
• local holography
• matrix and tensor models
• group field theories 
• strings
• area metrics
• twistor space
• relative locality and Born duality 
• …    

Structure of quantum space-time

Quantum field theory:  space-time is an index set.

Quantum gravity:  this index set is dynamical and quantum. [Talks by  Freidel, Giacomini,  Hoehn, … ] 

What is the resulting structure of quantum space time?

Space time emergent

Challenge:  Observable algebra and symmetries  Structure of quantum space-time↔



Reconstructing our universe

Challenge:  Bridge enormous number of scales.
                 Understand renormalization and develop (common) language for ‘emergence’ of space-time.



Understanding our universe
“So far we have not seen any signatures of quantum gravity.”

 

“Are we now really at the dawn of quantum gravity phenomenology?”  [Talk by Amelino-Camelia]



Understanding our universe
“So far we have not seen any signatures of quantum gravity.”

But there are many features of our universe asking for explanation:  

“Are we now really at the dawn of quantum gravity phenomenology?”  [Talk by Amelino-Camelia]

• Quantum theory?

• (Macroscopic) four-dimensional smooth space-time 

• Lorentzian signature

• Gravitational dynamics

• Small and positive cosmological constant

• Inflation?

• (Simple) initial conditions

• Matter

• Dark Matter

• Types of matter and values of matter couplings                                                          

[Talk: Wetterich]
[Talk: Yasaman]



Happy 
re- and de-constructing!


