Common challenges in quantum gravity

Bianca Dittrich,
Perimeter Institute

Diversity of ideas

Diversity of ideas

Important to learn from each other, and to look for shared challenges and principles.

I will present a biased selection of challenges.

Our universe is Lorentzian

... most of the times.

Euclidean Quantum Gravity
 Why?!?

Euclidean Quantum Gravity

Why did/do we do Euclidean quantum gravity? $\quad Z_{E}=\int \mathscr{D} \operatorname{geom}_{\mathrm{E}} \exp \left(-\mathrm{S}\left(\mathrm{geom}_{\mathrm{E}}\right)\right) \quad \mathrm{v}_{\mathrm{s}} \quad Z_{L}=\int \mathscr{D} \operatorname{geom}_{\mathrm{L}} \exp \left(\imath \mathrm{S}\left(\operatorname{geom}_{\mathrm{L}}\right)\right)$

- Wick rotation: successful strategy in QFT
- Computational techniques: Monte Carlo vs. few techniques for complex amplitudes
- Thermodynamic interpretation

Drawbacks of Euclidean Quantum Gravity
 - Conformal factor problem: Action is not bounded from below.

- Lattice simulation: tends to drive system into region where conformal factor is maximized (spikes, branched polymers, ...)

Drawbacks of Euclidean Quantum Gravity
 - Conformal factor problem: Action is not bounded from below.

- Lattice simulation: tends to drive system into region where conformal factor is maximized (spikes, branched polymers, ...)
- Lorentzian configuration space very different from Euclidean configuration space:

No well-defined Wick rotation.
[Ambjorn, Loll, Jurkiewicz et al. 98+: Causal Dynamical Triangulations]
[Talks by Ambjorn, Goerlich]

Drawbacks of Euclidean Quantum Gravity
 - Conformal factor problem: Action is not bounded from below.

- Lattice simulation: tends to drive system into region where conformal factor is maximized (spikes, branched polymers, ...)
- Lorentzian configuration space very different from Euclidean configuration space: No well-defined Wick rotation.
[Ambjorn, Loll, Jurkiewicz et al. 98+: Causal Dynamical Triangulations]
[Talks by Ambjorn, Goerlich]
- No destructive interference which might cancel out unwanted configurations

Computational techniques for complex amplitudes

[Talks by Asante, Feldbrugge]

- deformation of integration contour, possible choice - Lefschetz thimbles (Semi-classical and numerical)
- Holomorphic gradient flow / Monte Carlo on Lefschetz thimbles (Numerical,"experimental")
- Acceleration operators for series convergence (for sums and integrals) (Numerical)
- Tensor network renormalization
(Numerical, so far up to three dimensional systems)
- Asymptotic Safety
(Lorentzian configuration space, Lorentzian renormalization flow)
- Machine learning, quantum simulations,
(To be explored: Scaling?)
[Witten; Turok, Feldbrugge, Lehners et al ;Asante, BD, Padua-Arguelles, ...]
[QCD:Alexandru et al, Spin foams: Han et al, Regge:Jia]
[Effective Spin foam cosmology: BD, Padua-Arguelles 23]
[Cunningham, Delcamp, BD, Martin-Benito, Mizera, Steinhaus; Ito, Kadoh, Sato]
[Biemans, Platania, Saueressig; Knorr, Platania, Schiffer;
Fehre, Litim, Pawlowski, Reichert; Rejzner et al]
[Talk by Rejzner]

Computational techniques for complex amplitudes

[Talks by Asante, Feldbrugge]

- deformation of integration contour, possible choice - Lefschetz thimbles (Semi-classical and numerical)
- Holomorphic gradient flow / Monte Carlo on Lefschetz thimbles (Numerical,"experimental")
- Acceleration operators for series convergence (for sums and integrals) (Numerical)
- Tensor network renormalization
(Numerical, so far up to three dimensional systems)
- Asymptotic Safety
(Lorentzian configuration space, Lorentzian renormalization flow)
- Machine learning, quantum simulations,
(To be explored: Scaling?)
[Witten; Turok, Feldbrugge, Lehners et al ;Asante, BD, Padua-Arguelles, ...]
[QCD:Alexandru et al, Spin foams: Han et al, Regge:Jia]
[Effective Spin foam cosmology: BD, Padua-Arguelles 23]
[Cunningham, Delcamp, BD, Martin-Benito, Mizera, Steinhaus; Ito, Kadoh, Sato]
[Biemans, Platania, Saueressig; Knorr, Platania, Schiffer;
Fehre, Litim, Pawlowski, Reichert; Rejzner et al]
[Talk by Rejzner]

Challenge: Methods for large scale systems.

Acceleration techniques for series convergence
 [Schmidt 4I, Shanks 55, Wynn 56, ...] [BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals.
Contour deformation not necessary. But reproduces results for integrals treated via contour deformation.

Acceleration techniques for series convergence
 [Schmidt 41, Shanks 55, Wynn 56, ...] [BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals.
Contour deformation not necessary. But reproduces results for integrals treated via contour deformation.

From a mini-superspace path sum:

Acceleration techniques for series convergence
 [Schmidt 4I, Shanks 55, Wynn 56, ...] [BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals.
Contour deformation not necessary. But reproduces results for integrals treated via contour deformation.

From a mini-superspace path sum:

Rel. Error $\sim 10^{-8}$

For computation of expectation value: (Remember this plot)

Action quadratic in discrete variable

$$
\operatorname{Re} @ \sum_{k}^{N} \exp \left(l\left(\frac{x}{10}-1\right)^{2}\right)
$$

Partial sums for an action quadratic in the summation variable

Action quadratic in discrete variable

$\operatorname{Re} @ \sum_{k}^{N} \exp \left(l\left(\frac{x}{10}-1\right)^{2}\right)$

50
40

Partial sums for an action quadratic in the summation variableTrue saddle pointPseudo saddle point

Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

- Convergence criterium automatically selects 'right' contour
[Mini-superspace: Feldbrugge, Lehners,Turok I7, Lorentzian Regge: Asante, BD, Padua-Arguelles 21, Borissova, BD 23]

Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz
[Mini-superspace: Feldbrugge, Lehners,Turok 17,

- Convergence criterium automatically selects 'right' contour

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:
Eucl:

$$
\begin{aligned}
& \sim \int \exp \left(-p_{3-2} \lambda^{2}\right) \mathrm{d} \lambda \\
& \sim \int \exp \left(+i p_{3-2} \lambda^{2}\right) \mathrm{d} \lambda
\end{aligned}
$$

Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

- Convergence criterium automatically selects 'right' contour
[Mini-superspace: Feldbrugge, Lehners,Turok I7, . Lorentzian Regge: Asante, BD, Padua-Arguelles 21,
Borissova, BD 23]

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

$\sim \int \exp \left(+p_{4-1} \lambda^{2}\right) \mathrm{d} \lambda$
$+\int \exp \left(-l p_{4-1} \lambda^{2}\right) \mathrm{d} \lambda$
Conformal and gauge modes

Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

- Convergence criterium automatically selects 'right' contour
[Mini-superspace: Feldbrugge, Lehners,Turok I7, . Lorentzian Regge: Asante, BD, Padua-Arguelles 21, Borissova, BD 23]

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

[^0]
Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

- Convergence criterium automatically selects 'right' contour
[Mini-superspace: Feldbrugge, Lehners,Turok I7, .. Lorentzian Regge: Asante, BD, Padua-Arguelles 2I, Borissova, BD 23]

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

[^1]
Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz

- Convergence criterium automatically selects 'right' contour
[Mini-superspace: Feldbrugge, Lehners,Turok I7, Lorentzian Regge: Asante, BD, Padua-Arguelles 21, Borissova, BD 23]

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

[^2]

Challenge: Which kind of Euclidean simulations/ calculations to trust?

Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?

Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?

Lorentzian space time with regular light cone structure.

Lorentzian space time with irregular light cone structure.

Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?

Lorentzian space time with regular light cone structure.

Lorentzian space time with irregular light cone structure.

Valid Euclidean space time.

Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?

Lorentzian space time with regular light cone structure.

Lorentzian space time with irregular light cone structure.

Causal Dynamical Triangulations

does forbid such configurations.
Leads to a new universality class of random triangulations and an interesting continuum limit in 4 dimensions.
[Ambjorn, Loll I998+] [without preferred slicing: Jordan, Loll 20I3]

Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?

Lorentzian space time with regular light cone structure.

Lorentzian space time with irregular light cone structure.

Lorentzian geometry fully encoded in causal relations and volume=number of points.
[from Surya 2019]

Causal Dynamical Triangulations
does forbid such irregular configurations.
Leads to a new universality class of random triangulations and an interesting continuum limit in 4 dimensions.
[Ambjorn, Loll I998+] [without preferred slicing: Jordan, Loll 20I3]

Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?

Lorentzian space time with regular light cone structure.

Lorentzian space time with irregular light cone structure.

Lorentzian geometry fully encoded in causal relations and volume=number of points.
[from Surya 2019]

Causal Dynamical Triangulations

does forbid such irregular configurations.
Leads to a new universality class of random triangulations and an interesting continuum limit in 4 dimensions.
[Ambjorn, Loll I998+] [without preferred slicing: Jordan, Loll 20I3]

Regge gravity (and spin foams)

Configuration space: lengths (or other geometric quantities) associated to edges of triangulation.

Regge gravity (and spin foams)

Configuration space: lengths (or other geometric quantities) associated to edges of triangulation.

Allowed Lorentzian triangulations, all edge lengths are space-like.

$$
a>2 b_{1}=2 b_{2}
$$

Regge gravity (and spin foams)

Configuration space: lengths (or other geometric quantities) associated to edges of triangulation.

Allowed Lorentzian triangulations, all edge lengths are space-like.

$$
a>2 b_{1}=2 b_{2}
$$

$b_{1}>b_{2}+a$

Configurations with irregular light cone structure appear to be generic.
Appear even in configurations describing mini-superspace cosmology.
Results indicated that such configurations should be included in the path integral. [Asante, BD, Padua-Arguelles 2022]

Complex Regge action

Consider Regge action as function of complexified (time-like) length variables.

Complex Regge action

Consider Regge action as function of complexified (time-like) length variables.

Irregular light cone configurations (of co-dimension 2) lead to branch cuts for the complex Regge action and imaginary contributions with opposite signs.

Complex Regge action

Consider Regge action as function of complexified (time-like) length variables.

Irregular light cone configurations (of co-dimension 2) lead to branch cuts for the complex Regge action and imaginary contributions with opposite signs.
[Talk by Asante]

Complex Regge action

Consider Regge action as function of complexified (time-like) length variables.

Irregular light cone configurations (of co-dimension 2) lead to branch cuts for the complex Regge action and imaginary contributions with opposite signs. [Asante, BD, Padua-Arguelles 202I]
[Talk by Asante]

Which choice of sign for the path integral?

Suppressing sign:
Mechanism for suppressing
light cone irregular configurations.

Possibility to reconcile CDT and Causal Sets positions?

Continuum and thermodynamic interpretation

Do such imaginary terms appear in the continuum?

Continuum and thermodynamic interpretation

Do such imaginary terms appear in the continuum?

Complexification needed for discussion of topology change.
Which complexified metrics should be included in the path integral?

Continuum and thermodynamic interpretation

Do such imaginary terms appear in the continuum?

Complexification needed for discussion of topology change.
Which complexified metrics should be included in the path integral?

Complex (boundary) terms in continuum action.
[Neiman I3]

Gravitational thermodynamics from Lorentzian path integrals: Need to include co-dimension 2 singularities. Also for replica copies. These are already there in simplicial approaches/ Regge gravity!

Continuum and thermodynamic interpretation

Do such imaginary terms appear in the continuum?

Complexification needed for discussion of topology change.
Which complexified metrics should be included in the path integral?

Complex (boundary) terms in continuum action.
Gravitational thermodynamics from Lorentzian path integrals:
Need to include co-dimension 2 singularities. Also for replica copies.
These are already there in simplicial approaches/ Regge gravity!

Thermodynamics partition functions
require contour along enhancing side of branch cut.

Continuum and thermodynamic interpretation

Do such imaginary terms appear in the continuum?

Complexification needed for discussion of topology change.
Which complexified metrics should be included in the path integral?

Complex (boundary) terms in continuum action.
Gravitational thermodynamics from Lorentzian path integrals: Need to include co-dimension 2 singularities. Also for replica copies. These are already there in simplicial approaches/ Regge gravity!

Thermodynamics partition functions require contour along enhancing side of branch cut.
[Louko-Sorkin 95]
[Witten 21, Lehners 21, ...]

Challenges: Understand better role of complex structures for Lorentzian gravitational path integral. Canonical Formalism?
Should we include configurations describing topology change?
Complex actions for sum over topologies?

Lorentzian quantum gravity

- More techniques for Lorentzian path integrals
- Lorentzian configurations have additional light cone structure: can be (often) irregular
- Irregular light cone structure leads to branch cuts for the gravitational action and imaginary terms
-Which Lorentzian configurations to include in the path integral? Which side of the branch cut?
-Thermodynamical interpretation?

What is the structure of quantum space time?

Observables, (non-) locality and quantum space-time

How much can we resolve space-time?

Observables, (non-) locality and quantum space-time

How much can we resolve space-time?

Observables, (non-) locality and quantum space-time

How much can we resolve space-time?

Quantum Gravity:
Relational observables [Einstein, ...]

Fields $\phi(x, t)$ are not observables. No n-point functions.
$\phi\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)$
[Talks by Kiefer, Ferrero, Giacomini, Hoehn, Menendez-Pidal, Rastgoo, Ruf, ...]

Observables, (non-) locality and quantum space-time

How much can we resolve space-time?

Quantum Gravity:
Relational observables
[Einstein, ...]

Fields $\phi(x, t)$ are not observables. No n-point functions.
$\phi\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)$
[Talks by Kiefer, Ferrero, Giacomini, Hoehn, Menendez-Pidal, Rastgoo, Ruf, ...]

But there seem to be no perfect clocks in our (relativistic) universe.

[Giddings, Marolf, Hartle 05; BD, Tambornino 06, Giddings, Donnely I5; Hoehn et al 20+]
Chaos and other aspects: [Bojowald, Hoehn, et al. I2+, BD, Hoehn, Kosolowski, Nelson I7] End of time: [Talks by Gielen, Menendez-Pidal]

Observables, (non-) locality and quantum space-time

How much can we resolve space-time?

$$
\begin{aligned}
& \begin{array}{l}
\text { Bound on resolution } \\
\text { with relativistic clocks: }
\end{array} \quad[\phi(\psi), \phi(\psi+\epsilon)]=G(\psi, \psi+\epsilon)\left(1+\frac{\operatorname{Energy}(\phi)}{\operatorname{Energy}(\psi))}\right)
\end{aligned}
$$

Increasing energy (and size) of clock field leads to black holes. \Rightarrow Locality Bounds

Observables, (non-) locality and quantum space-time

How much can we resolve space-time?

Observables, (non-) locality and quantum space-time

How much can we resolve space-time?
$\begin{aligned} & \text { Bound on resolution } \\ & \text { with relativistic clocks: }\end{aligned}[\phi(\psi), \phi(\psi+\epsilon)]=G(\psi, \psi+\epsilon)\left(1+\frac{\operatorname{Energy}(\phi)}{\operatorname{Energy}(\psi))}\right)$
Increasing energy (and size) of clock field leads to black holes.
[Giddings, Marolf, Hartle 05, BD, Tambornino 06] A new uncertainty principle?

New uncertainty for Time of arrival operator $\Delta t>1 / \bar{E}$.
[Aharanov et al 97] \Rightarrow Locality Bounds

High energy scattering leading to black holes: "The end of short distance physics". UV-IR mixing.

Observables, (non-) locality and quantum space-time

How much can we resolve space-time?
$\begin{aligned} & \text { Bound on resolution } \\ & \text { with relativistic clocks: }\end{aligned} \quad[\phi(\psi), \phi(\psi+\epsilon)]=G(\psi, \psi+\epsilon)\left(1+\frac{\operatorname{Energy}(\phi)}{\operatorname{Energy}(\psi))}\right)$
[Giddings, Marolf, Hartle 05, BD, Tambornino 06]
A new uncertainty principle?
New uncertainty for Time of arrival operator $\Delta t>1 / \bar{E}$.
[Aharanov et al 97]
Increasing energy (and size) of clock field leads to black holes. \Rightarrow Locality Bounds

[BD,Tambornino 06]

High energy scattering leading to black holes: "The end of short distance physics". UV-IR mixing.
[Banks,Fischler 99;
Giddings-Thomas 0I, Dvali et al...]

Structure of quantum space-time

Quantum field theory: space-time is an index set.
Quantum gravity: this index set is dynamical and quantum.

Structure of quantum space-time

Quantum field theory: space-time is an index set.
Quantum gravity: this index set is dynamical and quantum.
[Talks by Freidel, Giacomini, Hoehn, ...]

What is the resulting structure of quantum space time?

- fractal dimensions/ space-times
- non-commutative space-time
- geometric operators (with discrete spectra)
- holography
- local holography
- matrix and tensor models
- group field theories

Space time emergent

- strings
- area metrics
- twistor space
- relative locality and Born duality

-...

Structure of quantum space-time

Quantum field theory: space-time is an index set.
Quantum gravity: this index set is dynamical and quantum.
[Talks by Freidel, Giacomini, Hoehn, ...]

What is the resulting structure of quantum space time?

- fractal dimensions/ space-times
- non-commutative space-time
- geometric operators (with discrete spectra)
- holography
- local holography
- matrix and tensor models
- group field theories

Space time emergent

- strings
- area metrics
- twistor space
- relative locality and Born duality

-...
Challenge: Observable algebra and symmetries \leftrightarrow Structure of quantum space-time

Reconstructing our universe

Challenge: Bridge enormous number of scales. Understand renormalization and develop (common) language for 'emergence' of space-time.

Understanding our universe

"So far we have not seen any signatures of quantum gravity."
"Are we now really at the dawn of quantum gravity phenomenology?"

Understanding our universe

"So far we have not seen any signatures of quantum gravity."
"Are we now really at the dawn of quantum gravity phenomenology?" [Talk by Amelino-Camelia]

But there are many features of our universe asking for explanation:

- Quantum theory?
- (Macroscopic) four-dimensional smooth space-time
- Lorentzian signature
- Gravitational dynamics
- Small and positive cosmological constant
[Talk:Yasaman]
- Inflation?
- (Simple) initial conditions
- Matter
- Dark Matter
- Types of matter and values of matter couplings

[^0]: - Expectation values for (powers of) lengths in spike configurations: -infinite in Euclidean Quantum Gravity

[^1]: - Expectation values for (powers of) lengths in spike configurations: -infinite in Euclidean Quantum Gravity -finite in Lorentzian Quantum Gravity (Recall plot of expectation value)
 [Ambjorn, Nielsen, Rolf, Savvidy 97 .
 [Borissova, BD, Qu, Schiffer,TA]

[^2]: - Expectation values for (powers of) lengths in spike configurations: -infinite in Euclidean Quantum Gravity -finite in Lorentzian Quantum Gravity (Recall plot of expectation value)
 [Ambjorn, Nielsen, Rolf, Savvidy 97]
 [Borissova, BD, Qu, Schiffer,TA]

