Common challenges in quantum gravity
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Important to learn from each other,
and to look for shared challenges and principles.

| will present a biased selection of challenges.

[de Boer et al: Frontiers of quantum gravity, shared challenges,
converging directions (Snowmass 2021)]




Our universe is Lorentzian

... most of the times.



Euclidean Quantum Gravity
Why???



Euclidean Quantum Gravity

Why did/do we do Euclidean quantum gravity! Zp = JQZ geomg exp(—S(geomg)) Vs 7 = JQZ geom; exp(rS(geomy ))

* Wick rotation: successful strategy in QFT
* Computational techniques: Monte Carlo vs. few techniques for complex amplitudes

* Thermodynamic interpretation



Drawbacks of Euclidean Quantum Gravity
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* Conformal factor problem: Action is not bounded from below.
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* Lattice simulation: tends to drive system into region where conformal factor is maX|m|zed (spikes, branched polymers, )
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Drawbacks of Euclidean Quantum Gravity

* Conformal factor problem: Action is not bounded from below.
* Lattice simulation: tends to drive system into region where conformal factor is maximized (spikes, branched polymers, ...)

* Lorentzian configuration space very different from Euclidean configuration space:
No well-defined Wick rotation. [Ambjorn, Loll, Jurkiewicz et al. 98+: Causal Dynamical Triangulations]

[Talks by Ambjorn, Goerlich]
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Drawbacks of Euclidean Quantum Gravity

* Conformal factor problem: Action is not bounded from below.
* Lattice simulation: tends to drive system into region where conformal factor is maximized (spikes, branched polymers, ...)

* Lorentzian configuration space very different from Euclidean configuration space:
No well-defined Wick rotation. [Ambjorn, Loll, Jurkiewicz et al. 98+: Causal Dynamical Triangulations]

[Talks by Ambjorn, Goerlich]
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[Goerlich]

* No destructive interference which might cancel out unwanted configurations

[Carlip, Carlip, Surya 22: Causal Sets] [Talks by Carlip, Surya]




Computational techniques for complex amplitudes

[ Talks by Asante, Feldbrugge]

* deformation of integration contour, possible choice - Lefschetz thimbles [ Witten; Turok, Feldbrugge, Lehners et al ; Asante, BD, Padua-Arguelles, ... ]
(Semi-classical and numerical)

* Holomorphic gradient flow / Monte Carlo on Lefschetz thimbles [ QCD:Alexandru et al, Spin foams: Han et al, Regge: Jia]
(Numerical,“experimental”)

* Acceleration operators for series convergence (for sums and integrals) [Effective Spin foam cosmology: BD, Padua-Arguelles 23]
(Numerical)

* Tensor network renormalization [Cunningham, Delcamp, BD, Martin-Benito, Mizera, Steinhaus; Ito, Kadoh, Sato]
(Numerical, so far up to three dimensional systems)

[Biemans, Platania, Saueressig; Knorr, Platania, Schiffer;
Fehre, Litim, Pawlowski, Reichert; Rejzner et al | [ Talk by Rejzner]

* Asymptotic Safety
(Lorentzian configuration space, Lorentzian renormalization flow)

* Machine learning, quantum simulations, ....
(To be explored: Scaling?)



Computational techniques for complex amplitudes

[ Talks by Asante, Feldbrugge]

* deformation of integration contour, possible choice - Lefschetz thimbles [ Witten; Turok, Feldbrugge, Lehners et al ; Asante, BD, Padua-Arguelles, ... ]
(Semi-classical and numerical)

* Holomorphic gradient flow / Monte Carlo on Lefschetz thimbles [ QCD:Alexandru et al, Spin foams: Han et al, Regge: Jia]
(Numerical,“experimental”)

* Acceleration operators for series convergence (for sums and integrals) [Effective Spin foam cosmology: BD, Padua-Arguelles 23]
(Numerical)

* Tensor network renormalization [Cunningham, Delcamp, BD, Martin-Benito, Mizera, Steinhaus; Ito, Kadoh, Sato]
(Numerical, so far up to three dimensional systems)

[Biemans, Platania, Saueressig; Knorr, Platania, Schiffer;
Fehre, Litim, Pawlowski, Reichert; Rejzner et al | [ Talk by Rejzner]

* Asymptotic Safety
(Lorentzian configuration space, Lorentzian renormalization flow)

* Machine learning, quantum simulations, ....
(To be explored: Scaling?)

Challenge: Methods for large scale systems.



Acceleration techniques for series convergence

[Schmidt 41, Shanks 55, Wynn 56, ... ] [ BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals.
Contour deformation not necessary. But reproduces results for integrals treated via contour deformation.



Acceleration techniques for series convergence

[ BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals.

[Schmidt 41, Shanks 55, Wynn 56, ... ]

Contour deformation not necessary. But reproduces results for integrals treated via contour deformation.

From a mini-superspace
path sum:
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Acceleration techniques for series convergence

[ BD, Padua-Arguelles 23]

A quite simple technique that allows to treat oscillating sums and integrals.

[Schmidt 41, Shanks 55, Wynn 56, ... ]

Contour deformation not necessary. But reproduces results for integrals treated via contour deformation.

From a mini-superspace
path sum:

For computation of
expectation value:
(Remember this plot)

Re(Sum)
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Works well for sums with actions that are at most linear in the summation variable.
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Consistent with quantum mechanics (Bohr quantization).
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Action quadratic in discrete variable
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Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)
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Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz
[Mini-superspace: Feldbrugge, Lehners, Turok 17, ...

* Convergence criterium automatically selects ‘right’ contour Lorentzian Regge: Asante, BD, Padua-Arguelles 21,
Borissova, BD 23]
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Euclidean quantum gravity: rotate conformal factor by hand (if you can)
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Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz [Mini-superspace: Feldbrugge, Lehners, Turok 17, ...

. . . ¢ . , Lorentzian Regge: Asante, BD, Padua-Arguelles 21,
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Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz N
[Mini-superspace: Feldbrugge, Lehners, Turok 17, ...

Lorentzian Regge: Asante, BD, Padua-Arguelles 21,
Borissova, BD 23]

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

* Convergence criterium automatically selects ‘right’ contour

0

Euck:  ~ Jexp(—p3_2lz) dA ~ eXP(‘|‘P4—1}L2) d4

4

Lor: ~ JeXp( ip3_2/12) dA 9 P~ eXp(—lp4_1/12) d/l [BD, Steinhaus | I,

Borissova, BD 23]

Conformal and gauge modes
7000 - Spike
_SE : configuration in
. . . . 6000 - 4D
* Expectation values for (powers of) lengths in spike configurations: | gymmetry
-infinite in Euclidean Quantum Gravity [Ambjorn, Nielsen, Rolf, Savvidy 97] 5000 reduced

triangulation
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Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz [Mini-superspace: Feldbrugge, Lehners, Turok 17, ...
L : .. , Lorentzian Regge: Asante, BD, Padua-Arguelles 21,
* Convergence criterium automatically selects ‘right’ contour Borissova, BD 23]

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

0

Euck:  ~ Jexp(—p3_2lz) dA ~ eXP(‘|‘P4—1}L2) d4

4
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Conformal and gauge modes
Z000) Spike
_SE : configuration in
. . . . 6000 - 4D
* Expectation values for (powers of) lengths in spike configurations: | g‘ymmetry
-infinite in Euclidean Quantum Gravity [Ambjorn, Nielsen, Rolf, Savvidy 97] 5000 reduced
-finite in Lorentzian Quantum Gravity PRI
(Recall plot of expectation value ) [Borissova, BD, Qu, Schiffer, TA] |

length



Conformal factor problem?

Euclidean quantum gravity: rotate conformal factor by hand (if you can)

Lorentzian path integral: deformation of contour/ Picard-Lefschetz [Mini-superspace: Feldbrugge, Lehners, Turok 17, ...
o . . Lorentzian Regge: Asante, BD, Padua-Arguelles 21,
* Convergence criterium automatically selects ‘right’ contour Borissova, BD 23]

Example: One-loop evaluation of 3D Regge quantum gravity can be reduced to Pachner moves:

~ [exp(+ pa_iA%) dA

0

‘ Fuck -~ JGXP(—P3—212) d4
‘ Lor: ~/ J@Xp( lp3_2/12) dj« 2 4

Borissova, BD 23]

4~ [exp(_lp4_l,12) dA [BD, Steinhaus 11,

L Conformal and gauge modes
Z000) Spike
_SE : configuration in
. . . . 6000 - 4D
* Expectation values for (powers of) lengths in spike configurations: | ;‘ymmetry
-infinite in Euclidean Quantum Gravity [Ambjorn, Nielsen, Rolf, Savvidy 97] 5000 reduced
-finite in Lorentzian Quantum Gravity PRI
(Recall plot of expectation value ) [Borissova, BD, Qu, Schiffer, TA] |

Challenge: Which kind of Euclidean simulations/ calculations to trust?



Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?
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Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?
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Lorentzian space time with Lorentzian space time with Valid Euclidean space time.
regular light cone structure. irregular light cone structure.

Causal Dynamical Triangulations

does forbid such configurations.

Leads to a new universality class of random triangulations
and an interesting continuum limit in 4 dimensions.

[Ambjorn, Loll 1998+] [without preferred slicing: Jordan, Loll 201 3]



Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?

, Cones
> C I gt /

Lorentzian geometry
fully encoded in
causal relations and
volume=number of points.

[from Surya 201 9]

Causal sets: [Talks by Carlip, Surya]
Configurations with irregular light cone
structure are allowed.

Lorentzian space time with

Lorentzian space time with . .
irregular light cone structure.

regular light cone structure.

Causal Dynamical Triangulations

does forbid such irregular configurations.

Leads to a new universality class of random triangulations
and an interesting continuum limit in 4 dimensions.

[Ambjorn, Loll 1998+] [without preferred slicing: Jordan, Loll 201 3]



Lorentzian vs Euclidean configuration space

What kind of Lorentzian configurations to sum over?

Lorentzian space time with

Lorentzian space time with , ,
irregular light cone structure.

regular light cone structure.

Causal Dynamical Triangulations

does forbid such irregular configurations.

Leads to a new universality class of random triangulations
and an interesting continuum limit in 4 dimensions.

[Ambjorn, Loll 1998+] [without preferred slicing: Jordan, Loll 201 3]

, Cones
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Causal sets:

Lorentzian geometry
fully encoded in
causal relations and
volume=number of points.

[from Surya 201 9]

[Talks by Carlip, Surya]

Configurations with irregular light cone

structure are allowed.

Imaginary terms in action!?



Regge gravity (and spin foams)

Configuration space: lengths (or other geometric quantities) associated to edges of triangulation.
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Configuration space: lengths (or other geometric quantities) associated to edges of triangulation.

Allowed Lorentzian triangulations,
all edge lengths are space-like.




Regge gravity (and spin foams)

Configuration space: lengths (or other geometric quantities) associated to edges of triangulation.

Allowed Lorentzian triangulations,
all edge lengths are space-like.

Configurations with irregular light cone structure appear to be generic.
Appear even in configurations describing mini-superspace cosmology.
Results indicated that such configurations should be included in the path integral. [Asante, BD, Padua-Arguelles 2022]



Complex Regge action

Consider Regge action as function of complexified (time-like) length variables. Sorkin 1974, Sorkin 2019]
Jia 2022]
Asante, BD, Padua-Arguelles 2021]
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branch cuts for the complex Regge action and
imaginary contributions with opposite signs. [Asante, BD, Padua-Arguelles 2021]




Complex Regge action

Consider Regge action as function of complexified (time-like) length variables. Sorkin 1974, Sorkin 2019]
Jia 2022]
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Irregular light cone configurations (of co-dimension 2) lead to
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Complex Regge action

Consider Regge action as function of complexified (time-like) length variables. Sorkin 1974, Sorkin 2019]

Jia 2022]
[Asante, BD, Padua-Arguelles 2021]

Irregular light cone configurations (of co-dimension 2) lead to
branch cuts for the complex Regge action and

imaginary contributions with opposite signs. [Asante, BD, Padua-Arguelles 2021]
} + t; gLor
i (i ley
[Talk by Asante] AN 0\/% (o
enhoucin Cubo eSS Which choice of sign
\J “Pp ‘/5 for the path integral?
+ gEuoL D / - Sgo\o(,
Suppressing sign:
branch Mechanism for suppressing
cuk

light cone irregular configurations.

— g Possibility to reconcile
Lof CDT and Causal Sets positions!?



Continuum and thermodynamic interpretation

Do such imaginary terms appear in the continuum?
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. . . . - . . [Marolf 22]
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require contour along enhancing side of branch cut.



Continuum and thermodynamic interpretation

Do such imaginary terms appear in the continuum?

Complexification needed for discussion of topology change. [Louko-Sorkin 9]

Which complexified metrics should be included in the path integral? [Witten 21, Lehners 21, ...]

Complex (boundary) terms in continuum action. [Neiman 13]

Gravitational thermodynamics from Lorentzian path integrals:

. . . . - . . [Marolf 22]
Need to include co-dimension 2 singularities. Also for replica copies.
These are already there in simplicial approaches/ Regge gravity!
Thermodynamics partition functions [BD, Jacobson, Padua-Arguelles, TA ]

require contour along enhancing side of branch cut.

Challenges: Understand better role of complex structures for Lorentzian gravitational path integral.
Canonical Formalism?
Should we include configurations describing topology change!?
Complex actions for sum over topologies!?



Lorentzian quantum gravity

* More techniques for Lorentzian path integrals

* Lorentzian configurations have additional light cone structure: can be (often) irregular

* Irregular light cone structure leads to branch cuts for the gravitational action and imaginary terms
* Which Lorentzian configurations to include in the path integral? WVhich side of the branch cut?

* Thermodynamical interpretation?



What is the structure of quantum space time?



Observables, (non-) locality and quantum space-time

How much can we resolve space-time!

Quantum Field Theory: Fields ¢(x,t) are observables. n-point functions allow to reconstruct full theory.
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Observables, (non-) locality and quantum space-time

How much can we resolve space-time!

Quantum Gravity: Fields ¢(x, 1) are not observables. No n-point functions.

Relational observables [Einstein, ...] ¢(Wp Yh, Ys, W4) [Talks by Kiefer, Ferrero, Giacomini, Hoehn, Menendez-Pidal, Rastgoo, Ruf, ...]

But there seem to be no PerfeCt clocks in our (relativistic) universe. [Giddings, Marolf, Hartle 05; BD, Tambornino 06, Giddings, Donnely |5; Hoehn et al 20+]

Chaos and other aspects: [ Bojowald, Hoehn, et al. 12+, BD, Hoehn, Kosolowski, Nelson |7 ]

End of time: [Talks by Gielen, Menendez-Pidal]
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Observables, (non-) locality and quantum space-time

How much can we resolve space-time!

Bc?und on rggolution [Cb(l/f),qﬁ(l//'l' e)] = Gy + €)<1 n Energy(¢) ) Increasing energy (and size) of clock field leads to black holes.
with relativistic clocks: Energy(y)) =Locality Bounds _. |

[Giddings, Marolf, Hartle 05, BD, Tambornino 06]

A new uncertainty principle?

New uncertainty for Time of arrival operator At > 1/FE. [Aharanov et al 97]

The same holds for relativistic clocks. [BD, Tambornino 06]

High energy scattering leading to black holes: “The end of short distance physics”.

IX]| Banks,Fischler 99;
UV-IR mixing. [Banks,Fischler

Giddings-Thomas 01, Dvali et al...]

Challenge: Better understanding of type and algebra of observables.
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Quantum gravity: this index set is dynamical and quantum. [Talks by Freidel, Giacomini, Hoehn, ... ]
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* hon-commutative space-time
* geometric operators (with discrete spectra)

* holography

* local holography

* matrix and tensor models

* group field theories Space time emergent
* Strings

* area metrics

* twistor space

* relative locality and Born duality




Structure of quantum space-time

Quantum field theory: space-time is an index set.

Quantum gravity: this index set is dynamical and quantum. [Talks by Freidel, Giacomini, Hoehn, ... ]

What is the resulting structure of quantum space time?

* fractal dimensions/ space-times
* hon-commutative space-time
* geometric operators (with discrete spectra)

* holography

* local holography

* matrix and tensor models

* group field theories Space time emergent
* Strings

* area metrics

* twistor space

* relative locality and Born duality

Challenge: Observable algebra and symmetries <> Structure of quantum space-time



Reconstructing our universe

Challenge: Bridge enormous number of scales.
Understand renormalization and develop (common) language for ‘emergence’ of space-time.



Understanding our universe

“So far we have not seen any signatures of quantum gravity.”

“Are we now really at the dawn of quantum gravity phenomenology?” [Talk by Amelino-Camelia]



Understanding our universe

“So far we have not seen any signatures of quantum gravity.”

“Are we now really at the dawn of quantum gravity phenomenology?” [Talk by Amelino-Camelia]

But there are many features of our universe asking for explanation:

e Quantum theory!? .
Q 4 * Inflation?

* (Macroscopic) four-dimensional smooth space-time . _ ”
* (Simple) initial conditions

* Lorentzian signature
* Matter

* Gravitational dynamics
Y e Dark Matter

* Small and positive cosmological constant .
* Types of matter and values of matter couplings

[ Talk: Yasaman]

[ Talk: Wetterich]






