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Loop gravity has its roots in casting 
General Relativity as a gauge theory

2

In particular,  
Loop Quantum Gravity refers to the canonical 
theory where spacetime is split into space and time 

and 

a Spin foam is a discrete geometry path integral 
approach based on similar algebraic structures
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GR is deeply a theory of  a connection, but…
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The symplectic structure of  the theory, in metric 
variables, doesn’t cast the connection as one of  the 
canonical variables.  

In ADM:  
canonical variables are  

, 

,  &  .

(qab, π̃ab)

gμν = (−N2 + ⃗N 2 qabNa

qabNb qab )
Kab = 1

2N ( ·qab − 2D(aNb) ) π̃ab = ∂L/∂ ·qab = q(Kab − qabK)

(∂t)μ
Nnμ

Na∂a

xa

xa



…so, the key to formulating GR as a gauge 
theory is to change variables
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The Ashtekar electric field takes over for the spatial 
metric: it is a densitized triad field 

, 
that provides a ‘square root’ of  the inverse metric 
             . 

A particularly nice organization 
of  this variable is the 2-form 
        .

Ẽa
i = det qEa

i

Ẽa
i Ẽib = det q qab

Ei(x) = Ẽia(x)ϵabcdxb ∧ dxc
y

zZ

x
X

Y
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Next we make a space-time split of  the spin connection: 
  

,
ω0i → boosts

ωij → spatial rotations
and, define  

. 

Just as the (compatible, 
torsionless) spacetime spin 
connection is determined by 
the tetrad, here we have  

, 
is determined by the triad.

Γ i
a :=

1
2

ϵi
jkω

jk
a

Γ i
a = Γ i

a (E)

Spin connection split
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Defining, , the  term of  the ADM Lagrangian 
becomes 

.  

Thus,  and  are conjugate variables, and schematically  
  

  . 
Connections have the freedom that you can add any vector, so 

Ashtekar connection:   ,  with . 
Thus, retaining conjugacy, and making  a connection, 

.

Ki
a := KabEbi p ·q

π̃ab ·qab = q(Kab − qabK)2 ·Ei(aEi
b) = 2Ẽa

i
·Ki

a + ∂t( * )

Ẽ K
{q, π̃} = 1, {q, q} = 0, {π̃, π̃} = 0

{K, Ẽ} = 1, {K, K} = 0, {Ẽ, Ẽ} = 0

Ai
a := Γi

a + 𝗂 Ki
a 𝗂 := −𝟣

A
{Ai

a(x), Ẽb
j (y)} = 𝗂 8πG δi

jδ
b
aδ(3)(x, y)

The Ashtekar connection
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The action is now 

 

with  
Gauss constraint                    
Spatial diffeos                     

 Scalar constraint         

and the field strength 

 . 
Full invariance is semidirect product of  diffeos and SU(2) gauge.

S[Ai
a, Eb

j ] =
1
2κ ∫ dt d3x [Ẽa

i
·Ai
a − Nℋ − Ai

0𝒢i − Na𝒱a]

𝒢i := DaẼa
i ≃ 0

𝒱a := Ẽb
i F i

ab ≃ 0
ℋ := 1

2 ϵij
kẼa

i Ẽb
j F k

ab ≃ 0

Fi
ab = ∂aAi

b − ∂bAi
a + ϵi

jkAi
aAj

b

Gravity as an SU(2) gauge theory
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You will have noticed the  appearing in . This makes 
the original Ashtekar connection a complex variable. There is 
a good reason for this choice… 

…further analysis reveals that , the boost part. And 
the Lorentz group has a very nice decomposition over : 

. 
The original Ashtekar connection is the self-dual factor. 

To make sense of  the quantum theory, one needs to be able to 
extract the ‘real & imaginary parts’ of  operators and this has 
been a sticking point… 

𝗂 = −𝟣 A

Ki
a = ω 0i

a
ℂ

𝔰𝔩(2,ℂ) = 𝔰𝔲(2,ℂ) ⊕ 𝔰𝔲(2,ℂ)

Crux challenges

[However, see Alexander, Herczeg, & Freidel CQG 40, 145010]

https://arxiv.org/abs/2212.07446
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Instead the most common practice is to work with a real 
connection variable 

Ashtekar-Barbero connection:   ,  with . 

The ‘Barbero-Immirzi’ parameter  is a new free parameter 
of  the theory. We will see its physical meaning briefly.  
Again: , , & .  

But, there is a tension between:  

Ai
a := Γi

a + γ Ki
a γ ∈ ℝ

γ

{Ai
a(x), Ẽb

j (y)} = γδi
jδ

b
aδ(3)(x, y) {A, A} = 0 {Ẽ, Ẽ} = 0

The Ashtekar-Barbero connection 

Ashtekar Asht-Barb Alexandrov
(i) Real variable 
(ii) Poisson commuting
(iii) Spacetime covariance

A

[Alexandrov CQG 17, 4255]

https://arxiv.org/abs/gr-qc/0005085
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             Abelian                                    Non-Abelian 
1.   local                   is not gauge invariant 

2.          Still possible 

3.                  

Both lead to Wilson loops 

 . 

Why aren’t the  observables used more often? 

The trouble is that they distinguish                    &                .

F = (E, B) F

AT
μ = (ημν −

pμpν

p2 ) Aν

∮ A → ∮ A + ∮ dλ
h(x, y) = 𝒫e ∫y

x A

→ g(x)h(x, y)g−1(y)

W(γ) = tr [g(x)hγ(x, x)g−1(x)] = tr [hγ(x, x)]
W(γ)

What are the observables in a gauge theory?

0
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GR is a gauge theory, but an unusual one, with a gigantic 
gauge group: in addition to local changes of  frame we have 
the entirety of  the diffeos to consider. 

LQG leverages the diffeos in a wonderful fashion, taking 
diffeomorphic loops in  to be equivalent 

Thus, we need only consider inequivalent classes of  loops—
spin networks provide a basis for these inequivalent loops 

The holonomies  will provide half  of  the quantum variables.

Σ

hℓ

Gravity as a SU(2) gauge theoryDiff(ℳ) ⋉

≁≁

∼

ℓ
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LQG is similar to lattice gauge theory (LGT)
Working with holonomies  there is a natural Hilbert space 
and inner product: 

, 
the space of  square-integrable functions of  the group 
elements with respect to the Haar measure .  

We can extend this to a Hilbert space over a graph  with  
links  and  nodes  using the tensor product: 

. 
But, this space is not yet gauge invariant, so we finally divide 
by the gauge invariance at the nodes: 

.

hℓ

ℋ = L2[G, μH]

μH

Γ L
ℓ N n

ℋL
Γ = L2[GL, μH]

ℋΓ = L2[GL /GN, μH]
[Bianchi GRG 46, 1668]

https://arxiv.org/abs/0907.4388
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Similarities to lattice gauge theory
“Cylindrical consistency” allows us to extend this 
inner product to get a notion of  inner product on two 
different graphs  and . Idea: 

Then,                  . 
This allows a rich connection to continuum field 
theory in limit of  finer and finer graph.

Γ Γ′ 

⟨ΨΓ, ΨΓ′ 
⟩ = ⟨ΨΓ, ΨΓ′ 

⟩Γ′ ′ 

[Ashtekar & Lewandowski JMP 36, 2170]

https://arxiv.org/abs/gr-qc/9411046
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An important difference: in loop gravity 
there is no fixed lattice spacing
The lattice spacing  of  LGT represents the metrical 
spacing of  the points of  the lattice.  
There can be no such fixed background structure in 
a fully dynamical treatment of  quantum gravity.  

Ideally you refine the theory by increasing the 
number of  nodes  of  the graph, not changing the 
spacing :

l

N
l

[Dittrich Adv. Sci. Lett., 
Bahr, Dittrich, Steinhaus PRD 83]

https://arxiv.org/abs/0810.3594
https://arxiv.org/abs/1101.4775
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Result: a well-defined construction of  a 
kinematical Hilbert space

We have the Hilbert space: 
, 

which consists of  cylindrical functions:  
. 

The holonomies probe the space time curvature 
around closed loops of  the graph   

But, … 
…what’s become of  the triad degrees of  freedom?

ℋΓ = L2[GL /GN, μH]

f(A) = ΨΓ({hℓ})

Γ
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The Gauss constraint
So far, I’ve put little emphasis on  the Gauss constraint 

. 
This is because you know how to solve it: over a closed 
2D surface , the 2-form electric flux must satisfy 

. 

However, even here there are fascinating aspects of  
this gauge theory.  

Metrically, this integral is picking out an oriented area 
of  the 2-surface…but, oriented how?

𝒢i := DaẼa
i ≃ 0

𝒮
⃗E 𝒮 = ∮𝒮

Ẽia(x)ϵabcτidxb ∧ dxc = 0
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Local orientations
The internal index (the vector orientation) is 
indicating how area elements would be measured in 
a local inertial frame; much like the energy of  a 
particle is  .E = − p ⋅ uobs = − p ⋅ e0̂

τ

e1̂
e2̂

e3̂

p

X
Y

Z
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A particularly nice case
Remarkably, even the simplest possible case of  a constant 
field over a polyhedral region is rich: 

 

This identity was used by Hermann Minkowski to give a 
complete characterization of  convex polyhedra at the close 
of  the 19th century.  

⃗E 𝒮 = ∮𝒮
d ⃗E = 0 ⟹ ⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4 = 0.

⃗E 1
⃗E 2

⃗E 3

⃗E 4

[Minkowski, Nach. vd Ges. 1897]

As , we can write 

, 

or equally well, 

.

⃗E 2 = 1
2

⃗l14 × ⃗l13

V =
1
6

⃗l12 ⋅ ( ⃗l13 × ⃗l14)

V2 =
2
9

⃗E 1 ⋅ ( ⃗E 2 × ⃗E 3)

http://eudml.org/doc/58391


The internal index is also -valued, hence the 
’s & closure have a 2nd role: the vector 

 generates gauge rotations 
  

….and  means that these rotations change 
the tetrahedron’s orientation, but don’t change its 
shape (metric geometry)!

𝔰𝔲(2)
⃗E
⃗E 𝒮 = ⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4

⃗E 𝒮 = 0

22

Gauge invariance and shape

R(θ, ̂n) = eθ( ⃗E 𝒮)⋅ ̂n
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Stunningly, this is the same gauge theory that 
explains how a falling cat lands on its feet

Fixing the facet areas 
 and the volume 

,  

The tet still has room to 
change shape.

{E1, …, E4}

V2 =
2
9

⃗E 1 ⋅ ( ⃗E 2 × ⃗E 3)

[Littlejohn & Reinsch,  
Rev. Mod. Phys. 69, 1997]

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.69.213
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As we have seen, each of  the fluxes  can be 
thought of  as an angular momentum vector:

⃗E ℓ

Quantization of  Geometry: Area

⃗E 1
⃗E 2

⃗E 3

⃗E 4

Let  be the carrier space of  
an SU(2) irrep with basis , 
then  

 

ℋjℓ
| jℓ mℓ⟩

| Êℓ | | jℓ mℓ⟩ = γaP jℓ( jℓ + 1) | jℓ mℓ⟩

where  & the Barbero-Immirzi  sets 
the spectral spacing, or ‘area gap’.

aP := 8πℏG/c3 γ

[Rovelli and Smolin, Nuc.Phys. B442, 593; Ashtekar & Lewandowski, CQG 14, A55, Friedel, Geiller, 
Wieland, Handbook QG 2023]

https://arxiv.org/abs/gr-qc/9411005
https://iopscience.iop.org/article/10.1088/0264-9381/14/1A/006
https://arxiv.org/abs/2302.12799
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The magnetic quantum number  belies orientation 
dependence. This makes sense for each of  the facets, 
but it must go away for the tet as a whole.

mℓ

Quantization of  Geometry: Tetrahedra

To achieve this at the quantum 
mechanical level, we must search 
for rotationally invariant states of  
the product of  the irreps: 

. 

We call such an invariant state an 
“intertwiner” and

| i⟩ ∈ Inv(ℋj1 ⊗ ℋj2 ⊗ ℋj3 ⊗ ℋj4)

.| i⟩ = | i j1 j2 j3 j4⟩ := ∑
m′ s

im1⋯m4 | j1 m1⟩ | j2 m2⟩ | j3 m3⟩ | j4 m4⟩

⃗E 1
⃗E 2

⃗E 3

⃗E 4
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The classical geometry of   suggests one way to construct 
an intertwiner,  

. 

V

̂V =
2

3
| Ê1 ⋅ (Ê2 × Ê3) |

Quantization of  Geometry: Volume

This is a rotational invariant and 
its eigenvalues,  say, provides a 
very physical set of  basis states: 

. 
We see again that a quantum tet is 
specified by only 5 parameters and 
hence is quantum mechanically 
fuzzy—don’t over read the

v

| i⟩ = |v j1 j2 j3 j4⟩

polyhedral description.
[Levy-Leblond & Levy-Nahas, J.Math.Phys 6]

https://pubs.aip.org/aip/jmp/article-abstract/6/9/1372/381786/Symmetrical-Coupling-of-Three-Angular-Momenta?redirectedFrom=fulltext


Warning: A change in notation
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⃗E 1
⃗E 2

⃗E 3

⃗E 4

We have been discussing the 
tetrahedron in terms of  electric fluxes: 

. 
Moving forward we will have less need 
to refer to the Ashtekar connection …

⃗E 1 + ⃗E 2 + ⃗E 3 + ⃗E 4 = 0

Ai
a

…and so I will switch to a 
geometrical notation with:  

. 
This will make it more intuitive to 
refer to areas and ‘area vectors’.

⃗A 1 + ⃗A 2 + ⃗A 3 + ⃗A 4 = 0

⃗A 1
⃗A 2

⃗A 3

⃗A 4

more notation: edge , triangle , tet e t τ



The area vectors provide a unified framework for 
Euclidean and Lorentzian discrete geometries. 
Taking  (Euclidean) or  (Lorentzian), 
the closure ,  expresses invariance in either case. 
Consider again  

. 
Squaring yields 

 

               , 

with  (Euclidean tet) and  (Lorentzian tet).

⃗A t ∈ 𝔰𝔬(3) ⃗A t ∈ 𝔰𝔬(2,1)
∑t

⃗A t = 0

9V2 = 2 ⃗A 1 ⋅ ( ⃗A 2 × ⃗A 3) = 2 det( ⃗A 1
⃗A 2

⃗A 3)

81V4 = 4 det( ⃗A 1
⃗A 2

⃗A 3) det( ⃗A 1
⃗A 2

⃗A 3)t

= 4
A2

1
⃗A 1 ⋅ ⃗A 2

⃗A 1 ⋅ ⃗A 3

⃗A 2 ⋅ ⃗A 1 A2
2

⃗A 2 ⋅ ⃗A 3

⃗A 3 ⋅ ⃗A 1
⃗A 3 ⋅ ⃗A 2 A2

3

:= 4G

V4 > 0 V4 < 0

Area metric

[Asante, Dittrich, Padua-Arguelles, arXiv:2112.15387,  arXiv:2302.11586]28

https://arxiv.org/abs/2112.15387
https://arxiv.org/abs/2302.11586


With this insight you can show that to every 
tetrahedron there corresponds an elliptic curve 

Let , , and , then 
     and 

 
An elliptic curve is a plane cubic algebraic curve with a pt .

x = ( ⃗A 1 + ⃗A 2)2 y = ( ⃗A 2 + ⃗A 3)2 z = ( ⃗A 1 + ⃗A 3)2

x + y + z = A2
1 + A2

2 + A3
1 + A2

4

81V4 = xyz − (A2
1 A2

2 + A2
3 A2

4) x − (A2
2 A2

3 + A2
1 A2

4) y − (A2
1 A2

3 + A2
2 A2

4) z + 2σ3

P

Elliptic curve

X

Y
P

2P

+ =

z

x
y

x
y

t

[Antu, Doran & HMH, in progress]29
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Regge Calculus

In Regge Calculus we describe 
spacetime by a triangulation of  
flat pieces glued together to give 
curvature. 

This cuts the degrees of  
freedom of  the gravitational 
field down to a finite number 
and greatly eases their study.  

It is also immensely useful for 
doing numerics.

Scott Bailey, 47°19'38" N, 120°27'36"W 

Mt. Rainier

31



A dimensional ladder helps to illustrate some salient aspects of  
Regge Calculus

In 2D it is clear how curvature 
becomes concentrated on the 

-dimensional ‘bones’. 

In 3D we see an intriguing 
alignment between the metrical 
and symplectic aspects: the bones 
are 1D edges, whose lengths 
give the metric;  
meanwhile the conjugate 
curvature angle is compact and 
leads to quantization of  lengths

(d − 2)
2D

3D
32



In 4D the bones are 2D triangles .  

One is forced to choose between: 
the apparent metrical length 
variables , with a complicated 
conjugate variable 

or 
The area of  the triangle , which is 
conjugate to the curvature angle 
around the bone. This curvature 
angle is compact, indicating the 
areas will be quantized. 

t

l

t t

The 2nd choice is harmonious with loop quantum gravity (LQG), 
& the focus of  the discrete geometry path integrals of  spin foams.

5 tetrahedra  
glue into a  
4D simplex

33



Area Regge Calculus

In standard Regge Calculus we 
treat the lengths of  edges as 
variables… 

…in Area Regge Calculus it’s 
the areas of  triangles. This 
provides a closer connection to 
area geometry, its quantization, 
and loop quantum gravity.

34



In standard Regge Calculus we treat the lengths of  edges as 
vars, while in Area Regge Calculus it’s the areas of  triangles

A 4-simplex has ten edges and ten faces. 
Locally the functions  can be inverted 
to give edge lengths . 

Considering areas  as variables we can 
define Area Regge Calculus (ARC) via the 
action  

 ,  with 

At(l)
Lσ

e (a)

a

SARC = ∑
t

at ϵt(a) ϵt = 2π − ∑
σ⊃t

θσ
t

The dihedral and deficit angles are obtained using . 
Strikingly, variation of  this action gives eqs. of  motion 

,   which impose flatness on .

θσ
t (a) = θσ

t (Lσ(a))

δSARC = ϵt(a) + ∑
t

atδϵt = ϵt(a) = 0 Δ
0  (due to the Schläfli identity)

t
Lσ

e

35



Adding Constraints to the Theory

We can understand this difference in eqs. 
of  motion between ARC and LRC as due 
to a differing # of  degrees of  freedom. 

Gluing along the tetrahedron with orange 
vertices, 6 edge lengths are matched, but 
only 4 areas. 

Pτ,σ
e

This mismatch can be resolved by introducing the  
dot products  ,  &  : 

 is the dihedral angle around edge  in tet . 
Two neighboring simplices , glued along , will have the same 
lengths in  if  the constraints 

 are imposed on non-opposite edges .

pτ
tt′ 

:= pτ
e = sgn(V2

τ) ̂nt ⋅ ̂nt′ pτ
tt = A2

t

Pτ,σ
e (a) = Pτ

e(Lσ(a)) e τ

{σ, σ′ } τ
τ

Pτ,σ
ei

(a) − Pτ,σ′ 
ei

(a) = 0, i = 1,2 ei
36



We can localize constraints to a single 4-
simplex by introducing the two additional 
variables  per  to our theory and 
imposing 

. 

The advantage of  these localized 
constraints is that they preserve additive 
factorization of  the Regge action and allow 
us to write the path integral in a product 
factorized form.  

pτ
ei

τ

𝒞i ≡ pτ
ei

− Pτ,σ
ei

(a) = 0, i = 1,2

Importantly, dot products at a pair of  non-opposite edges  do 
not commute. Instead 

,   with  non-opposite.

(e1, e2)

{pτ
e1

, pτ
e2

} = ± γ
9
2

Vol2τ (e1, e2)

Pτ,σ
e

37



We can localize constraints to a single 4-
simplex by introducing the two additional 
variables  per  to our theory and 
imposing 

. 

The advantage of  these localized 
constraints is that they preserve additive 
factorization of  the Regge action and allow 
us to write the path integral in a product 
factorized form.  

pτ
ei

τ

𝒞i ≡ pτ
ei

− Pτ,σ
ei

(a) = 0, i = 1,2

Importantly, dot products at a pair of  non-opposite edges  do 
not commute. Instead 

,   with  non-opposite.

(e1, e2)

{pτ
e1

, pτ
e2

} = ± γ
9
2

Vol2τ (e1, e2)

Pτ,σ
e

2nd class 
constraints

38



The Area Regge action, , factorizes additively. 
Boundaries of  the triangulation  are readily included.

SRegge = ∑t at ϵt
Δ

From the definition of  the deficit angle 
, 

we see that the area Regge action factorizes   
. 

The last equality defines the triangle and simplex actions 
   and   . 

Here the index  allows for triangulations with boundary: 
it is 1 for triangles on the boundary and 2 for triangles in the bulk.

ϵt = 2π − ∑
σ⊃t

θσ
t

SARC = ∑
t

at ϵt = ∑
t

ntπat − ∑
σ

∑
t⊃σ

atθσ
t (a) ≡ ∑

t

Sa
t (a) + ∑

σ

Sa
σ(a)

Sa
t = ntπat Sa

σ(a) = − ∑
t⊃σ

atθa
t (Lσ(a))

nt ∈ {1,2}

39



To this action we add a set of  functions  that impose the 
constraints; these act to glue simplices through tetrahedra 

g
τ

. 

This constraint discussion was classical, finally we come to our 
quantum input: the discrete area spectrum found above 

,   with  . 

(Again  is an half-integer spin label and  is the area gap.) But, this 
leads to an important tension…

STot = ∑
t

Sa
t (a) + ∑

σ

Sa
σ(a) + ∑

τ⊂blk
gσ,σ′ 

τ (a)

a( j) = γaP j( j + 1) ∼ γaP( j + 1/2) aP = 8πℏG/c3

j γ

40



We are forced to navigate between Scylla—reducing too much 
the density of  states—and Charybdis—imposing dynamics that 
does not match GR  weak imposition of  constraints.⇝

If  we impose the constraints too strongly, there will be no 
tetrahedra with (half-integer) areas that satisfy them.

41



Defining an Effective Spin Foam model
In this context we can define the spin foam  

, 

with 

       and       . 
In practice, we take  for spins satisfying the constraints. 
The factors  implement the constraints: imposing these sharply, 
with  if  satisfied and 0 else, leads to diophantine eqs. for the 
constraints that will only be satisfied for rare and special labels ; 

this is the key fact that  weak imposition of  the constraints

𝒵 = ∑
{jt}

μ( j)∏
t

𝒜t( j)∏
σ

𝒜σ( j) ∏
τ∈blk

Gσ,σ′ 
τ ( j)

𝒜t = eiγntπ( jt+ 1
2 ) 𝒜σ = e−iγ∑t⊃σ ( jt+ 1

2 )θσ
t ( j)

μ( j) = 1

Gσ,σ′ 
τ

Gσ,σ′ 
τ = 1

{jt}

⇝

We implement the constraints with  
.Gσ,σ′ 

τ ( j) = ⟨𝒦τ( ⋅ ; Pτ,σ
ei

( j)) |𝒦τ( ⋅ ; Pτ,σ′ 

ei
( j))⟩

Coherent state 
peaked on ’sP

42



Inputs and Approximations for the Numerics

The spin foam  
, 

with , 

       and       . 

To keep the numerics tractable researchers: 

▲ consider symmetry reduced triangulations 

▲ approximate the coherent inner products by real gaussians with 
widths determined by the  non-commutation 

▲ and consider scaling with both  and .

𝒵 = ∑
{jt}

μ( j)∏
t

𝒜t( j)∏
σ

𝒜σ( j) ∏
τ∈blk

Gσ,σ′ 
τ ( j)

μ( j) = 1

𝒜t = eiγntπ( jt+ 1
2 ) 𝒜σ = e−iγ∑t⊃σ ( jt+ 1

2 )θσ
t ( j)

{𝒞i, 𝒞j} = ± γ(9/2)Vol2τ

j γ
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Numerical Results

I will present results for the following triangulation 
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Symmetry reduced numerical triangulation: 
 consists of  6 simplices around one edgeΔ

We apply a certain symmetry reduction, so that there are only       
3 bndry and 3 bulk areas (4 bndry lengths and 1 bulk length).   

There are 3 simplices of  type 1 and three simplices of  type 2. In 
each type, all simplices have the same geometry. 

The path integral involves 1 bulk variable in LRC and 3 area 
variables in (constrained) ARC. However, making use of  the fall 
off  of  the  functions, we can significantly reduce the summation 
range and gain time savings in the numerics.

G
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Symmetry reduced numerical triangulation: 
 consists of  6 simplices around one edgeΔ

For completeness, here is the definition of  this : Δ

vertices: m,n=0,1;   i,j=2,3,4 k=5,5’
simplices: (0,1,2,3,5) (01,2,3,5’)

(0,1,2,4,5) (0,1,2,4,5’)
(0,1,3,4,5) (0,1,3,4,5’)

lengths:            blk            blk 

areas:
             blk              blk

             blk                blk

l01 = t l01 = t

lmi = lik ≡ x lmi = lik ≡ x

lij ≡ y lij ≡ y

lm5 ≡ z lm5′ ≡ z′ 

A(x, x, y) A(x, x, y)

A(x, x, t) A(x, x, t)

A(x, x, z) A(x, x, z′ )

A(z, z, t) A(z′ , z′ , t)
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This model illustrates that spin foams can avoid the flatness 
problem in a range of  spin  and Barbero-Immirzi parameter j γ

γ

blue  
orange  
green

= Δ1

= Δ2

= Δ3

LRC value 
ϵ (A(x, x, t)) = 3.22

ℜ[ϵ (A(x, x, t))]

E.g. at , for  we have  
     ,    , and 

γ = 0.1 Δ3

ϵ(A(x, x, t)) = 3.19 − 0.20i ϵ(A(z, z, t)) = − 1.32 + 0.18i

ϵ(A(z′ , z′ , t)) = − 0.59 + 0.07i

Compare the LRC 
values:

 
 

and 

ϵ(A(x, x, t)) = 3.22

ϵ(A(z, z, t)) = − 1.36

ϵ(A(z′ , z′ , t)) = − 0.607
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Effective Spin Foam models

 is the measure term, possibly fixed by course grain or diffeosμ(a)

 is the area Regge actionSARC(a)

 implements the constraints on areas weakly via a GaussianGσ,σ′ 
τ (a)

Spin foam models are beginning to access the dynamical regime of 
Quantum Gravity. In particular, ESFs are being used to study many 
features of quantum gravity, such as sum over orientations, causal 
structures, topology change, etc. 

The structure of  an effective spin foam, on a fixed 
triangulation , can be decomposed into three parts: Δ

𝒵ESF = ∑
{at}

μ(a) exp ( i
ℏ

SARC(a)) ∏
τ

Gσ,σ′ 

τ (a)
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The End
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With the introduction of  a Lorentz bundle, we have a new 
kind of  vector over every point of   (internal vectors) 

How should we parallel transport these?

ℳ

Ans: the spin connection. The 
idea is 

  

with  the spin connection. 
We have   when 

  

𝒟μvI = eI
ν ∇μvν

= ∂μvI + ω I
μ JvJ,

ωIJ
μ

ω IJ
μ = eI

ν ∇LC
μ eνJ

𝒟μηIJ = 0 ⟺ ω (IJ)
μ = 0

dωeI := deI + ωIJ ∧ eJ = 0

Connections, connections, connections

Txℳ
Vx

x

ℳ

e



Intriguingly, the quantum area geometry of  tetrahedra is non-
commutative. We can see this by looking into the variables .pe

The areas  and 2 inner products  completely describe a 
tetrahedron :   ,  &  . 

The area vectors satisfy   with  

. 

For a triple of  triangles  with angle parameters  and : 
 

             

For fixed areas these degrees of  freedom do not commute. Quantum 
mechanically they encode the shape of  a fuzzy quantum tetrahedron.

At pe1
, pe2

τ pτ
tt′ 

:= pτ
e = sgn(V2

τ) ̂nt ⋅ ̂nt′ pτ
tt = A2

t

{Ai
t , Aj

t} = γcij
k Ak

t = γϵijmκmkAk
t

κij = {
δij if Euclidean
ηij if Lorentzian

(t, t′ , t′ ′ ) pτ
tt′ 

pτ
t′ t′ ′ 

{pτ
tt′ 

, pτ
t′ t′ ′ 

} = κii′ κjj′ Ai
t′ 

Aj
t′ ′ 
{Ai′ 

t , Aj′ 

t } = γϵi′ j′ k′ κii′ κjj′ κkk′ Ai
t′ 

Aj
t′ ′ 

Ak
t

= γ ⃗A t ⋅ ( ⃗A t′ × ⃗A t′ ′ ) = ± γ
9
2

Vol2τ

⃗A 2

⃗A 4

⃗A 3
⃗A 1
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Weak Constraints
It will be useful to zoom out and consider a simple toy model with 
weak constraints. This will give a sense of  their general behavior: 

Consider the oscillatory integral  

. 

We impose a constraint  in both a strong & a weak manner and 
compute expectation values for  using 

 

with  and . 

∫ ∫ eiλS(x,y)e−μ𝒞(x,y)2dxdy

𝒞
𝒪 = e−x2

⟨𝒪⟩μ =
∫ ∞

−∞
∫ ∞

−∞
exp (iλ(x2 + y2)) exp (−μ(y − x + 2)2) exp (−x2) dydx

∫ ∞
−∞

∫ ∞
−∞

exp (iλ(x2 + y2)) exp (−μ(y − x + 2)2) dydx

S = x2 + y2 𝒞 = y − (x − 2)
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Weak Constraints
Take the oscillatory integral  

      , 

with  and .  
The constrained action  has a critical point at 

, and hence the classical expectation value is 
 Compare

∫ ∫ eiλS(x,y)e−μ𝒞(x,y)2dxdy

S = x2 + y2 𝒞 = y − (x − 2)

S = x2 + (x − 2)2

(x, y) = (1, − 1)
⟨𝒪⟩Cl = e−1 ≈ 0.368.

x
y

S
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Why does the expectation value escape at large ? 

There is an interplay between the integrand’s oscillations and the 
gaussian constraints:

λ

λ = 5
λ = 15

G
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Semiclassical Regime

The # of  oscillations of  the phase factor occurring over the width 
of  the Gaussian (near const. crit. pt.) should be less than a 
number of  order 1. 

We turn this into a 1D problem by considering the direction of  
the steepest change of  the constraint and require 

. 

Plugging in these factors for the Effective Spin Foam models gives 

. 

This formula is the key to understanding the ‘flatness problem’: 
the semiclassical regime is not just !

⃗c = ⃗∇ C/ | ⃗∇ C |

λ × ( ⃗∇ S ⋅ ⃗c ) const. crit. pt.
× σ( ⃗c ) ≲ 𝒪(1)

γat

ℓP
ϵt = γ jϵt ≲ 𝒪(1)

j ≫ 1

gaussian width in  direction⃗c
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