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The Problem of Time

• 1st class constraints, e.g., C(q, p) = 0, generate gauge transformations

{f, C} = δf

• For (Dirac) observales O

δO = 0 ⇒ {O, C} ≈ 0

• Hamiltonian C = H of gravity (+matter) is a 1st class contraint

• The problem of time: Dirac observables O are frozen in t

Ȯ = {O,H}
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The Problem of Time

• 1st class constraints, e.g., C(q, p) = 0, generate gauge transformations

{f, C} = δf

• For (Dirac) observales O

δO = 0 ⇒ {O, C} ≈ 0

• Hamiltonian C = H of gravity (+matter) is a 1st class contraint

• The problem of time: Dirac observables O are frozen in t

Ȯ = {O,H} = δO = 0

• In the quantum regime: ĤΨ = 0 ⇒ no Schrodinger equation with ∂Ψ
∂t on the

RHS



Conditional Probability Interpretation

• Consider quantities T (clock) and Q (interested to find its evolution):
conditional probability of Q = Q0 happening given that T = T0 has happened is
[Myers, 2006]

P (Q = Q0|T = T0) =
P(Q0, T0)

P(T0)

• If Q̂, T̂ are operators on a Hilbert space H = HT ⊗ HQ, then

P (Q = Q0|T = T0) =
Tr

[
ρ̂P̂Q0P̂T0

]
Tr

[
ρ̂P̂T0

]

• ρ̂: density operator of the system

• P̂T0 = |T0⟩ ⟨T0|: projection operator corresponding to T = T0

• P̂Q0 = |Q0⟩ ⟨Q0|: projection operator corresponding to Q = Q0
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• Consider quantities T (clock) and Q (interested to find its evolution):
conditional probability of Q = Q0 happening given that T = T0 has happened is
[Myers, 2006]
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Problems with Conditional Probability Interpretation
Page and Wooters first applied this to the problem of time [Page-Wooters, 1983]

• Wrong propagator of a single-particle: the Page-Wooters formalism yields
no motion! [Kuchar, 2011]

⟨ψx,T | ψx′,T′⟩ = |δ (T− T′) δ (x− x′)|2

instead of

⟨ψx,T | ψx′,T′⟩ =
[
2πi (T− T′)

m

]−1/2

exp
im (x− x′)2

2 (T− T′)

• Violation of the Constraints: P̂Q0 , P̂T0 do not commute with H ⇒ leaving
constraint surface after acting
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Modified Conditional Probability Interpretation

• Choose Q, T to be evolving constants of motion, instead of values of fields
which in a totally constrained systems are not physically observable [Gambini, Porto,

2001; Gambini, Porto, Pullin, Torterolo, 2009]

• Clock T and the other variable Q interact (do not commute): (more)
realistic model [Gambini, Rastgoo, Roberts, to appear in 2023]

• The probability becomes

P (Q = Q0|T = T0) =

∫∞
−∞ dtTr

[
P̂T0(t)ρ̂P̂Q0(t)P̂T0(t)

]
∫∞
−∞ dtTr

[
P̂T0(t)ρ̂

]
• Notice the difference in numerator!

P̂mT(t)ρ̂P̂e2(t)P̂mT(t) and not P̂e2(t)P̂mT(t)ρ̂P̂mT(t)

since
[
P̂e2 , P̂mT

]
̸= 0

• Remedies the issues of Page-Wooters formalism
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The Model [Gambini, Rastgoo, Roberts, to appear in 2023]

FLRW cosmology
ds2 = −dt2 + a2(t)

(
dx21 + dx22 + dx23

)
with two scalar fields ϕi, i = 1, 2 with Hamiltonian constraint

H = − 6
γ2 c

2
√

|p|+ 8πG

|p|
3
2

2∑
i=1

p2ϕi

where

c =γȧ, |p| =a2



Dirac Observables
From two of EoM

ṗϕi = {pϕi ,NH} = 0, i = 1, 2.

immediately see two Dirac Observables O1, O2

Oi = pϕi i = 1, 2



Dirac Observables
From two of EoM

ṗϕi = {pϕi ,NH} = 0, i = 1, 2.

immediately see two Dirac Observables O1, O2

Oi = pϕi i = 1, 2

Defining

Π1 =− ϕ1, Π2 =− ϕ2

leads to a 4D phase space

{Oi,Πj} = δij, i, j = 1, 2

on which we can define two more Dirac obervables...
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ϕ1
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pϕ1

Out of the phase space variables O1, O2, Π1, Π2, construct a clock ECM

T = E1 := pϕ1ϕ2 = O2Π1 − O1Π2 + O1O2t

and another ECM (the one measured against the clock)

E2(t) := pϕ1pϕ2 ln (|p|) = β
√

O2
1 + O2

2 (O2Π1 + O1O2t)

where

β = 4sgn(c)sgn(p)

√
πG
3

Schrödinger representation

T →T̂, E2 →Ê



Self-adjointness

• It is crucial that Ê1, Ê2 are self-adjoint, otherwise

• Well, they are not observables!
• Also issues with defining the conditional probability
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Self-adjointness

• Unbounded symmetric operator Â is self-adjoint iff its deficiency
indices

n±
(
Â
)
:= dim

[
ker

(
Â∗ ± i Î

)]
obey

n+ = 0 = n−

where

ker
(
Â∗ ± i Î

)
=

{
K±

∣∣∣∣ (Â∗ ± i Î
)
K± = 0

}

• Turns out both Ê1, Ê2 are self-adjoint
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Â∗ ± i Î
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The Probability

Conditional probability of E2 ∈
[
e(1)2 = e(0)2 −∆e2, e

(2)
2 = e(0)2 +∆e2

]
given that

T = T0, for a density operator ρ̂:

P
(
E2 ∈

[
e(1)2 , e(2)2

] ∣∣T = T0

)
=

∫∞
−∞ dtTr

[
P̂T0(t)ρ̂P̂e(0)2

(t)P̂T0(t)
]

∫∞
−∞ dtTr

[
P̂T0(t)ρ̂

]



The Probability

Conditional probability of E2 ∈
[
e(1)2 = e(0)2 −∆e2, e

(2)
2 = e(0)2 +∆e2

]
given that

T = T0, for a density operator ρ̂:

P
(
E2 ∈

[
e(1)2 , e(2)2

] ∣∣T = T0

)
=

∫∞
−∞ dtTr

[
P̂T0(t)ρ̂P̂e(0)2

(t)P̂T0(t)
]

∫∞
−∞ dtTr

[
P̂T0(t)ρ̂

]
The density operator ρ̂ = |ψρ⟩ ⟨ψρ| localized in configuration space

|ψρ⟩ =
∫ ∞

−∞
dO1

∫ ∞

−∞
dO2 Nρ Θ

(
O1 − o(1)1

)
Θ
(
o(2)1 − O1

)
×

Θ
(
O2 − o(1)2

)
Θ
(
o(2)2 − O2

)
|O1,O2⟩



The Probability
At the moment

• Denominator computed exactly

• Numerator obtained it under certain approximations (under construction)
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The Probability
The very preliminary! and aproximate result:



Summary

• We propose a solution to the problem of time based on conditional
probability method

• Free of issues of Page-Wooters formalism

• Realistic: clock and “other quantity” are both quantum, observable, and
interact with each other

• Model incorporates a solution to the collapse problem via decoherence (didn’t
mention in this talk)

• Stay tuned for the paper coming out soon!
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