The problem of time in quantum cosmology with a quantum clock

Saeed Rastgoo
with R. Gambini \& J. Roberts

Quantum Gravity 2023
I4/July/2023

Outline

Problem of Time and Conditional Probability Interpretation

The Model

The Problem of Time

- Ist class constraints, e.g., $\mathcal{C}(q, p)=0$, generate gauge transformations

$$
\{f, \mathcal{C}\}=\delta f
$$

The Problem of Time

- Ist class constraints, e.g., $\mathcal{C}(q, p)=0$, generate gauge transformations

$$
\{f, \mathcal{C}\}=\delta f
$$

- For (Dirac) observales 0

$$
\delta O=0 \Rightarrow\{O, \mathcal{C}\} \approx 0
$$

The Problem of Time

- Ist class constraints, e.g., $\mathcal{C}(q, p)=0$, generate gauge transformations

$$
\{f, \mathcal{C}\}=\delta f
$$

- For (Dirac) observales 0

$$
\delta O=0 \Rightarrow\{O, \mathcal{C}\} \approx 0
$$

- Hamiltonian $\mathcal{C}=H$ of gravity (+matter) is a Ist class contraint

The Problem of Time

- Ist class constraints, e.g., $\mathcal{C}(q, p)=0$, generate gauge transformations

$$
\{f, \mathcal{C}\}=\delta f
$$

- For (Dirac) observales 0

$$
\delta O=0 \Rightarrow\{O, \mathcal{C}\} \approx 0
$$

- Hamiltonian $\mathcal{C}=H$ of gravity (+matter) is a Ist class contraint
- The problem of time: Dirac observables O are frozen in t

$$
\dot{O}=\{0, H\}
$$

The Problem of Time

- Ist class constraints, e.g., $\mathcal{C}(q, p)=0$, generate gauge transformations

$$
\{f, \mathcal{C}\}=\delta f
$$

- For (Dirac) observales 0

$$
\delta O=0 \Rightarrow\{O, \mathcal{C}\} \approx 0
$$

- Hamiltonian $\mathcal{C}=H$ of gravity (+matter) is a Ist class contraint
- The problem of time: Dirac observables O are frozen in t

$$
\dot{O}=\{O, H\}=\delta O
$$

The Problem of Time

- Ist class constraints, e.g., $\mathcal{C}(q, p)=0$, generate gauge transformations

$$
\{f, \mathcal{C}\}=\delta f
$$

- For (Dirac) observales 0

$$
\delta O=0 \Rightarrow\{O, \mathcal{C}\} \approx 0
$$

- Hamiltonian $\mathcal{C}=H$ of gravity (+matter) is a Ist class contraint
- The problem of time: Dirac observables O are frozen in t

$$
\dot{O}=\{O, H\}=\delta O=0
$$

The Problem of Time

- Ist class constraints, e.g., $\mathcal{C}(q, p)=0$, generate gauge transformations

$$
\{f, \mathcal{C}\}=\delta f
$$

- For (Dirac) observales 0

$$
\delta O=0 \Rightarrow\{O, \mathcal{C}\} \approx 0
$$

- Hamiltonian $\mathcal{C}=\mathrm{H}$ of gravity (+matter) is a Ist class contraint
- The problem of time: Dirac observables O are frozen in t

$$
\dot{O}=\{O, H\}=\delta O=0
$$

- In the quantum regime: $\hat{H} \Psi=0 \Rightarrow$ no Schrodinger equation with $\frac{\partial \Psi}{\partial t}$ on the RHS

Conditional Probability Interpretation

- Consider quantities T (clock) and Q (interested to find its evolution): conditional probability of $Q=Q_{0}$ happening given that $T=T_{0}$ has happened is [Myers, 2006]

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{P\left(Q_{0}, T_{0}\right)}{P\left(T_{0}\right)}
$$

Conditional Probability Interpretation

- Consider quantities T (clock) and Q (interested to find its evolution): conditional probability of $Q=Q_{0}$ happening given that $T=T_{0}$ has happened is [Myers, 2006]

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{P\left(Q_{0}, T_{0}\right)}{P\left(T_{0}\right)}
$$

- If \hat{Q}, \hat{T} are operators on a Hilbert space $\mathscr{H}=\mathscr{H}_{T} \otimes \mathscr{H}_{Q}$, then

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{Q_{0}} \hat{\mathcal{P}}_{T_{0}}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}
$$

Conditional Probability Interpretation

- Consider quantities T (clock) and Q (interested to find its evolution): conditional probability of $Q=Q_{0}$ happening given that $T=T_{0}$ has happened is [Myers, 2006]

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{P\left(Q_{0}, T_{0}\right)}{P\left(T_{0}\right)}
$$

- If \hat{Q}, \hat{T} are operators on a Hilbert space $\mathscr{H}^{\prime}=\mathscr{H}_{T} \otimes \mathscr{H}_{Q}$, then

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{Q_{0}} \hat{\mathcal{P}}_{T_{0}}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}
$$

- $\hat{\rho}$: density operator of the system

Conditional Probability Interpretation

- Consider quantities T (clock) and Q (interested to find its evolution): conditional probability of $Q=Q_{0}$ happening given that $T=T_{0}$ has happened is [Myers, 2006]

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{P\left(Q_{0}, T_{0}\right)}{P\left(T_{0}\right)}
$$

- If \hat{Q}, \hat{T} are operators on a Hilbert space $\mathscr{H}=\mathscr{H}_{T} \otimes \mathscr{H}_{Q}$, then

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{Q_{0}} \hat{\mathcal{P}}_{T_{0}}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}
$$

- $\hat{\rho}$: density operator of the system
- $\hat{\mathcal{P}}_{T_{0}}=\left|T_{0}\right\rangle\left\langle T_{0}\right|$: projection operator corresponding to $T=T_{0}$

Conditional Probability Interpretation

- Consider quantities T (clock) and Q (interested to find its evolution): conditional probability of $Q=Q_{0}$ happening given that $T=T_{0}$ has happened is [Myers, 2006]

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{P\left(Q_{0}, T_{0}\right)}{P\left(T_{0}\right)}
$$

- If \hat{Q}, \hat{T} are operators on a Hilbert space $\mathscr{H}=\mathscr{H}_{T} \otimes \mathscr{H}_{Q}$, then

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{Q_{0}} \hat{\mathcal{P}}_{T_{0}}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}
$$

- $\hat{\rho}$: density operator of the system
- $\hat{\mathcal{P}}_{T_{0}}=\left|T_{0}\right\rangle\left\langle T_{0}\right|:$ projection operator corresponding to $T=T_{0}$
- $\hat{\mathcal{P}}_{Q_{0}}=\left|Q_{0}\right\rangle\left\langle Q_{0}\right|$: projection operator corresponding to $Q=Q_{0}$

Conditional Probability Interpretation

- Consider quantities T (clock) and Q (interested to find its evolution): conditional probability of $Q=Q_{0}$ happening given that $T=T_{0}$ has happened is [Myers, 2006]

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{P\left(Q_{0}, T_{0}\right)}{P\left(T_{0}\right)}
$$

- If \hat{Q}, \hat{T} are operators on a Hilbert space $\mathscr{H}=\mathscr{H}_{T} \otimes \mathscr{H}_{Q}$, then $\left(\hat{\mathcal{P}}_{T_{0}}^{2}=\hat{\mathcal{P}}_{T_{0}}\right)$

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{Q_{0}} \hat{\mathcal{P}}_{T_{0}}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}=\frac{\operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}} \hat{\rho} \hat{\mathcal{P}}_{Q_{0}} \hat{\mathcal{P}}_{T_{0}}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}
$$

- $\hat{\rho}$: density operator of the system
- $\hat{\mathcal{P}}_{T_{0}}=\left|T_{0}\right\rangle\left\langle T_{0}\right|:$ projection operator corresponding to $T=T_{0}$
- $\hat{\mathcal{P}}_{Q_{0}}=\left|Q_{0}\right\rangle\left\langle Q_{0}\right|:$ projection operator corresponding to $Q=Q_{0}$

Conditional Probability Interpretation

- Consider quantities T (clock) and Q (interested to find its evolution): conditional probability of $Q=Q_{0}$ happening given that $T=T_{0}$ has happened is [Myers, 2006]

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{P\left(Q_{0}, T_{0}\right)}{P\left(T_{0}\right)}
$$

- If \hat{Q}, \hat{T} are operators on a Hilbert space $\mathscr{H}=\mathscr{H}_{T} \otimes \mathscr{H}_{Q}$, then $\left(\hat{\mathcal{P}}_{T_{0}}^{2}=\hat{\mathcal{P}}_{T_{0}}\right)$

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{Q_{0}} \hat{\mathcal{P}}_{T_{0}}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}=\frac{\operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}} \hat{\rho} \hat{\mathcal{P}}_{Q_{0}} \hat{\mathcal{P}}_{T_{0}}\right]}{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}=\underbrace{\operatorname{Tr}\left[\hat{\rho} \hat{\mathcal{P}}_{T_{0}}\right]}_{\text {If }\left[\hat{\mathcal{P}}_{Q_{0}}, \hat{\mathcal{P}}_{T_{0}}\right]=0}
$$

- $\hat{\rho}$: density operator of the system
- $\hat{\mathcal{P}}_{T_{0}}=\left|T_{0}\right\rangle\left\langle T_{0}\right|:$ projection operator corresponding to $T=T_{0}$
- $\hat{\mathcal{P}}_{Q_{0}}=\left|Q_{0}\right\rangle\left\langle Q_{0}\right|:$ projection operator corresponding to $Q=Q_{0}$

Problems with Conditional Probability Interpretation

Page and Wooters first applied this to the problem of time [Page-Wooters, 1983]

Problems with Conditional Probability Interpretation

Page and Wooters first applied this to the problem of time [Page-Wooters, 1983]

- Wrong propagator of a single-particle: the Page-Wooters formalism yields no motion! [Kuchar, 201I]

$$
\left\langle\psi_{x, T} \mid \psi_{x^{\prime}, T^{\prime}}\right\rangle=\left|\delta\left(T-T^{\prime}\right) \delta\left(x-x^{\prime}\right)\right|^{2}
$$

instead of

$$
\left\langle\psi_{x, T} \mid \psi_{x^{\prime}, T^{\prime}}\right\rangle=\left[\frac{2 \pi i\left(T-T^{\prime}\right)}{m}\right]^{-1 / 2} \exp \frac{i m\left(x-x^{\prime}\right)^{2}}{2\left(T-T^{\prime}\right)}
$$

Problems with Conditional Probability Interpretation

Page and Wooters first applied this to the problem of time [Page-Wooters, 1983]

- Wrong propagator of a single-particle: the Page-Wooters formalism yields no motion! [Kuchar, 201I]

$$
\left\langle\psi_{x, T} \mid \psi_{x^{\prime}, T^{\prime}}\right\rangle=\left|\delta\left(T-T^{\prime}\right) \delta\left(x-x^{\prime}\right)\right|^{2}
$$

instead of

$$
\left\langle\psi_{x, T} \mid \psi_{x^{\prime}, T^{\prime}}\right\rangle=\left[\frac{2 \pi i\left(T-T^{\prime}\right)}{m}\right]^{-1 / 2} \exp \frac{i m\left(x-x^{\prime}\right)^{2}}{2\left(T-T^{\prime}\right)}
$$

- Violation of the Constraints: $\hat{\mathcal{P}}_{Q_{0}}, \hat{\mathcal{P}}_{T_{0}}$ do not commute with $H \Rightarrow$ leaving constraint surface after acting

Modified Conditional Probability Interpretation

- Choose Q, T to be evolving constants of motion, instead of values of fields which in a totally constrained systems are not physically observable [Gambini, Porto, 200I; Gambini, Porto, Pullin, Torterolo, 2009]

Modified Conditional Probability Interpretation

- Choose Q, T to be evolving constants of motion, instead of values of fields which in a totally constrained systems are not physically observable [Gambini, Porto, 200I; Gambini, Porto, Pullin, Torterolo, 2009]
- Clock T and the other variable Q interact (do not commute): (more) realistic model [Gambini, Rastgoo, Roberts, to appear in 2023]

Modified Conditional Probability Interpretation

- Choose Q, T to be evolving constants of motion, instead of values of fields which in a totally constrained systems are not physically observable [Gambini, Porto, 2001; Gambini, Porto, Pullin, Torterolo, 2009]
- Clock T and the other variable Q interact (do not commute): (more) realistic model [Gambini, Rastgoo, Roberts, to appear in 2023]
- The probability becomes

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho} \hat{\mathcal{P}}_{Q_{0}}(t) \hat{\mathcal{P}}_{T_{0}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho}\right]}
$$

Modified Conditional Probability Interpretation

- Choose Q, T to be evolving constants of motion, instead of values of fields which in a totally constrained systems are not physically observable [Gambini, Porto, 2001; Gambini, Porto, Pullin, Torterolo, 2009]
- Clock T and the other variable Q interact (do not commute): (more) realistic model [Gambini, Rastgoo, Roberts, to appear in 2023]
- The probability becomes

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho} \hat{\mathcal{P}}_{Q_{0}}(t) \hat{\mathcal{P}}_{T_{0}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho}\right]}
$$

- Notice the difference in numerator!

$$
\hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho} \hat{\mathcal{P}}_{\mathrm{e}_{2}}(t) \hat{\mathcal{P}}_{m_{T}}(t) \text { and not } \hat{\mathcal{P}}_{\mathrm{e}_{2}}(t) \hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho} \hat{\mathcal{P}}_{m_{T}}(t)
$$

since $\left[\hat{\mathcal{P}}_{e_{2}}, \hat{\mathcal{P}}_{m_{T}}\right] \neq 0$

Modified Conditional Probability Interpretation

- Choose Q, T to be evolving constants of motion, instead of values of fields which in a totally constrained systems are not physically observable [Gambini, Porto, 2001; Gambini, Porto, Pullin, Torterolo, 2009]
- Clock T and the other variable Q interact (do not commute): (more) realistic model [Gambini, Rastgoo, Roberts, to appear in 2023]
- The probability becomes

$$
P\left(Q=Q_{0} \mid T=T_{0}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho} \hat{\mathcal{P}}_{Q_{0}}(t) \hat{\mathcal{P}}_{T_{0}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho}\right]}
$$

- Notice the difference in numerator!

$$
\hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho} \hat{\mathcal{P}}_{\mathrm{e}_{2}}(t) \hat{\mathcal{P}}_{m_{T}}(t) \text { and not } \hat{\mathcal{P}}_{\mathrm{e}_{2}}(t) \hat{\mathcal{P}}_{m_{T}}(t) \hat{\rho} \hat{\mathcal{P}}_{m_{T}}(t)
$$

since $\left[\hat{\mathcal{P}}_{e_{2}}, \hat{\mathcal{P}}_{m_{T}}\right] \neq 0$

- Remedies the issues of Page-Wooters formalism

Outline

Problem of Time and Conditional Probability Interpretation

The Model

The Probability

The Model [Gambini, Rastgoo, Roberts, to appear in 2023]

FLRW cosmology

$$
d s^{2}=-d t^{2}+a^{2}(t)\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right)
$$

with two scalar fields $\phi_{i}, i=1,2$ with Hamiltonian constraint

$$
\mathcal{H}=-\frac{6}{\gamma^{2}} c^{2} \sqrt{|p|}+\frac{8 \pi G}{|p|^{\frac{3}{2}}} \sum_{i=1}^{2} p_{\phi_{i}}^{2}
$$

where

$$
c=\gamma \dot{a}, \quad|p|=a^{2}
$$

Dirac Observables

From two of EoM

$$
\dot{p}_{\phi_{i}}=\left\{p_{\phi_{i}}, N \mathcal{H}\right\}=0, \quad i=1,2
$$

immediately see two Dirac Observables $\mathrm{O}_{1}, \mathrm{O}_{2}$

$$
O_{i}=p_{\phi_{i}} \quad i=1,2
$$

Dirac Observables

From two of EoM

$$
\dot{p}_{\phi_{i}}=\left\{p_{\phi_{i}}, N \mathcal{H}\right\}=0, \quad i=1,2
$$

immediately see two Dirac Observables $\mathrm{O}_{1}, \mathrm{O}_{2}$

$$
O_{i}=p_{\phi_{i}} \quad i=1,2
$$

Defining

$$
\Pi_{1}=-\phi_{1}, \quad \Pi_{2}=-\phi_{2}
$$

leads to a 4D phase space

$$
\left\{O_{i}, \Pi_{j}\right\}=\delta_{i j}, \quad i, j=1,2
$$

on which we can define two more Dirac obervables...

Evolving Constants of Motion (ECM)

Identify

$$
t=\frac{\phi_{1}}{p_{\phi_{1}}}
$$

Evolving Constants of Motion (ECM)

Identify

$$
t=\frac{\phi_{1}}{p_{\phi_{1}}}
$$

Out of the phase space variables $O_{1}, O_{2}, \Pi_{1}, \Pi_{2}$, construct a clock ECM

$$
T=E_{1}:=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t
$$

Evolving Constants of Motion (ECM)

Identify

$$
t=\frac{\phi_{1}}{p_{\phi_{1}}}
$$

Out of the phase space variables $O_{1}, O_{2}, \Pi_{1}, \Pi_{2}$, construct a clock ECM

$$
T=E_{1}:=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t
$$

and another ECM (the one measured against the clock)

$$
E_{2}(t):=p_{\phi_{1}} p_{\phi_{2}} \ln (|p|)=\beta \sqrt{O_{1}^{2}+O_{2}^{2}}\left(O_{2} \Pi_{1}+O_{1} O_{2} t\right)
$$

where

$$
\beta=4 \operatorname{sgn}(c) \operatorname{sgn}(p) \sqrt{\frac{\pi G}{3}}
$$

Evolving Constants of Motion (ECM)

Identify

$$
t=\frac{\phi_{1}}{p_{\phi_{1}}}
$$

Out of the phase space variables $O_{1}, O_{2}, \Pi_{1}, \Pi_{2}$, construct a clock ECM

$$
T=E_{1}:=p_{\phi_{1}} \phi_{2}=O_{2} \Pi_{1}-O_{1} \Pi_{2}+O_{1} O_{2} t
$$

and another ECM (the one measured against the clock)

$$
E_{2}(t):=p_{\phi_{1}} p_{\phi_{2}} \ln (|p|)=\beta \sqrt{O_{1}^{2}+O_{2}^{2}}\left(O_{2} \Pi_{1}+O_{1} O_{2} t\right)
$$

where

$$
\beta=4 \operatorname{sgn}(c) \operatorname{sgn}(p) \sqrt{\frac{\pi G}{3}}
$$

Schrödinger representation

$$
T \rightarrow \hat{T}, \quad E_{2} \rightarrow \hat{E}
$$

Self-adjointness

- It is crucial that \hat{E}_{1}, \hat{E}_{2} are self-adjoint, otherwise

Self-adjointness

- It is crucial that \hat{E}_{1}, \hat{E}_{2} are self-adjoint, otherwise
- Well, they are not observables!

Self-adjointness

- It is crucial that \hat{E}_{1}, \hat{E}_{2} are self-adjoint, otherwise
- Well, they are not observables!
- Also issues with defining the conditional probability

Self-adjointness

- Unbounded symmetric operator \hat{A} is self-adjoint iff its deficiency indices

$$
n_{ \pm}(\hat{A}):=\operatorname{dim}\left[\operatorname{ker}\left(\hat{A}^{*} \pm i \hat{l}\right)\right]
$$

obey

$$
n_{+}=0=n_{-}
$$

where

$$
\operatorname{ker}\left(\hat{A}^{*} \pm i \hat{l}\right)=\left\{K_{ \pm} \mid\left(\hat{A}^{*} \pm i \hat{l}\right) K_{ \pm}=0\right\}
$$

Self-adjointness

- Unbounded symmetric operator \hat{A} is self-adjoint iff its deficiency indices

$$
n_{ \pm}(\hat{A}):=\operatorname{dim}\left[\operatorname{ker}\left(\hat{A}^{*} \pm i \hat{l}\right)\right]
$$

obey

$$
n_{+}=0=n_{-}
$$

where

$$
\operatorname{ker}\left(\hat{A}^{*} \pm i \hat{l}\right)=\left\{K_{ \pm} \mid\left(\hat{A}^{*} \pm i \hat{l}\right) K_{ \pm}=0\right\}
$$

- Turns out both \hat{E}_{1}, \hat{E}_{2} are self-adjoint

Outline

Problem of Time and Conditional Probability Interpretation

The Model

The Probability

The Probability

Conditional probability of $E_{2} \in\left[e_{2}^{(1)}=e_{2}^{(0)}-\Delta e_{2}, e_{2}^{(2)}=e_{2}^{(0)}+\Delta e_{2}\right]$ given that $T=T_{0}$, for a density operator $\hat{\rho}$:

$$
P\left(E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right] \mid T=T_{0}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho} \hat{\mathcal{P}}_{e_{2}^{(0)}}(t) \hat{\mathcal{P}}_{T_{0}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho}\right]}
$$

The Probability

Conditional probability of $E_{2} \in\left[e_{2}^{(1)}=e_{2}^{(0)}-\Delta e_{2}, e_{2}^{(2)}=e_{2}^{(0)}+\Delta e_{2}\right]$ given that $T=T_{0}$, for a density operator $\hat{\rho}$:

$$
P\left(E_{2} \in\left[e_{2}^{(1)}, e_{2}^{(2)}\right] \mid T=T_{0}\right)=\frac{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho} \hat{\mathcal{P}}_{e_{2}^{(0)}}(t) \hat{\mathcal{P}}_{T_{0}}(t)\right]}{\int_{-\infty}^{\infty} d t \operatorname{Tr}\left[\hat{\mathcal{P}}_{T_{0}}(t) \hat{\rho}\right]}
$$

The density operator $\hat{\rho}=\left|\psi_{\rho}\right\rangle\left\langle\psi_{\rho}\right|$ localized in configuration space

$$
\begin{aligned}
\left|\psi_{\rho}\right\rangle= & \int_{-\infty}^{\infty} d O_{1} \int_{-\infty}^{\infty} d O_{2} N_{\rho} \Theta\left(O_{1}-o_{1}^{(1)}\right) \Theta\left(o_{1}^{(2)}-O_{1}\right) \times \\
& \Theta\left(O_{2}-o_{2}^{(1)}\right) \Theta\left(o_{2}^{(2)}-O_{2}\right)\left|O_{1}, O_{2}\right\rangle
\end{aligned}
$$

The Probability

At the moment

- Denominator computed exactly

The Probability

At the moment

- Denominator computed exactly
- Numerator obtained it under certain approximations (under construction)

The Probability

The very preliminary! and aproximate result:

Summary

- We propose a solution to the problem of time based on conditional probability method

Summary

- We propose a solution to the problem of time based on conditional probability method
- Free of issues of Page-Wooters formalism

Summary

- We propose a solution to the problem of time based on conditional probability method
- Free of issues of Page-Wooters formalism
- Realistic: clock and "other quantity" are both quantum, observable, and interact with each other

Summary

- We propose a solution to the problem of time based on conditional probability method
- Free of issues of Page-Wooters formalism
- Realistic: clock and "other quantity" are both quantum, observable, and interact with each other
- Model incorporates a solution to the collapse problem via decoherence (didn't mention in this talk)

Summary

- We propose a solution to the problem of time based on conditional probability method
- Free of issues of Page-Wooters formalism
- Realistic: clock and "other quantity" are both quantum, observable, and interact with each other
- Model incorporates a solution to the collapse problem via decoherence (didn't mention in this talk)
- Stay tuned for the paper coming out soon!

