
Observables and dynamical frames in 
gravity

Philipp Höhn


Okinawa Institute of Science and Technology 


QG2023 Nijmegen

July 11, 2023

based on: Goeller, PH, Kirklin 2206.01198; Carrozza, Eccles, PH 2205.00913



The challenge of observables in gravity
What are interesting observables in gravity and how do you constract them?



The challenge of observables in gravity
What are interesting observables in gravity and how do you constract them?

multiple approaches 

dressed observables 
[Giddings, Donnelly, Harlow, Mertens, 


Dong, Shenker, Stanford, …]

relational observables 
[Rovelli, Bergmann, Komar, …]



The challenge of observables in gravity
What are interesting observables in gravity and how do you constract them?

multiple approaches 

dressed observables 
[Giddings, Donnelly, Harlow, Mertens, 


Dong, Shenker, Stanford, …]

relational observables 
[Rovelli, Bergmann, Komar, …]

covariant rep. 
[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner,…]

single-integral rep. 
[DeWitt, Marolf, Giddings, Chataignier, …]

canon. power-series rep. 
[Dittrich, Thiemann, …] 



The challenge of observables in gravity
What are interesting observables in gravity and how do you constract them?

multiple approaches 

dressed observables 
[Giddings, Donnelly, Harlow, Mertens, 


Dong, Shenker, Stanford, …]

relational observables 
[Rovelli, Bergmann, Komar, …]

covariant rep. 
[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner,…]

single-integral rep. 
[DeWitt, Marolf, Giddings, Chataignier, …]

canon. power-series rep. 
[Dittrich, Thiemann, …] 

Relation?             One approach for all?⇒



The challenge of observables in gravity
What are interesting observables in gravity and how do you constract them?

multiple approaches 

dressed observables 
[Giddings, Donnelly, Harlow, Mertens, 


Dong, Shenker, Stanford, …]

relational observables 
[Rovelli, Bergmann, Komar, …]

covariant rep. 
[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner,…]

single-integral rep. 
[DeWitt, Marolf, Giddings, Chataignier, …]

canon. power-series rep. 
[Dittrich, Thiemann, …] 

Relation?             One approach for all?⇒

relational ideas involved        can one clarify link to dynamical/quantum frame program?⇒

 can we formulate general covariance in terms of observables?⇒
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Minkowski

frame orientation space

• “gauge transformations”:                                        Λμ
ν eν

a Λμ
ν ∈ SO+(3,1)

       group valued frameeμ
a ∈ O(3,1)

dynamical/internal frames in gravity: different in- and output spaces              ℛ−1[ϕ] : ℳ → 𝒪 frame orientation space

spacetime

• gauge transformations:                    ℛ−1[ f*ϕ] = ℛ−1[ϕ] ∘ f −1 f ∈ Diff(ℳ)

       may be “group valued frame”ℛ−1[ϕ] ∈ Diff(ℳ, 𝒪) dynamical coord. system

frame a set of field-dep. scalars
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spacetime ℳ

A[ϕ]

ℛ−1
𝒪

OA,ℛ[ϕ]

relational observable

answers “what is the value of (certain component of)  at the event in 

spacetime, where the frame field  is in local orientation ?” 

A
ℛ−1 o ∈ 𝒪

locally deparametrized field theory

(no more gauge symmetry)

gauge symmetry here
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OA,ℛ[ϕ] = (ℛ[ϕ])*A[ϕ]

observable on the local frame orientation space  𝒪

If  a covariant local quantity (e.g. tensor field) on spacetime,  
get frame-dressed observable:

A[ f*ϕ] = f*A[ϕ]

[Goeller, PH, Kirklin ’22]
dressed = covariant relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content   
    some gauge cov. frame     (typically locally built from matter)⇒ ℛ−1[ f*ϕ] = ℛ−1[ϕ] ∘ f −1

gauge inv.

dressed and cov. rel. obs are equivalent/unified  
if frame (scalar) fields allowed to be general 

(so allowed to be built locally or non-locally from matter or metric)

 equips dressed observable with clear interpretation⇒
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Toy example: -model [Giddings, Marolf, Hartle ’06]Z 4 scalar reference fields  parametrizing spacetime Zk

set    and ℛ−1[ϕ] = Z ξ = o

= φ(ℛ(o)) = (ℛ)*φ(o)

rel. observable “what’s the value of scalar at event where frame field is in orientation ?”o

equivalent to our construction

Oφ,ℛ[ϕ](o) = ∫ℳ
d4y |g | φ(y) δ4(ℛ−1(y) − o)

∂ℛ−1

∂y
χ𝒩

 can generalise to non-globally defined frames via characteristic fct  of frame image ⇒ χ𝒩[ϕ] 𝒩[ϕ] ⊂ ℳ

+ general smearings and tensor fields

[Goeller, PH, Kirklin ’22]

single-integral and covariant  
relational observables equivalent 
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observables [Dittrich, Thiemann, … ]
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relation cov. & can. PS: choose Cauchy slice           


          presymplectic form      
Σ

⇒ ΩΣ kinematical phase 

space 𝒫ADM

constraint surface

𝒞 = πΣ(𝒮)
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only on 𝒞 smeared ADM constraints
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Σ
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space 𝒫ADM

constraint surface

𝒞 = πΣ(𝒮)

[Lee, Wald ’90]

mod out deg. directions

πΣ

covariant relational observable restricts to canonical one

OA,R[ϕ] = ÕA,R ∘ πΣ[ϕ]

under certain restrictions, canonical one can be written as power series:

ÕA,R ≈
∞

∑
n=0

1
n!

{C[u], Ã}n

only on 𝒞 smeared ADM constraints

[Goeller, PH, Kirklin ’22]cov. & power series reps  
equivalent (under certain restrictions) 



Quasilocal generalizations

𝒜 ⊂ ∂ℳ

so far dyn. frames for parametrizing events:    x : 𝒮 → ℳ

∂ℳ
x[ϕ]

ℳ

e.g. boundary anchored geodesic frame

e.g. minimal surfaces in holography

gauge covariance x[ f*ϕ] = f(x[ϕ])

 turn local cov. quantity into relational observable, e.g.  ⇒ φ(x[ϕ])

can generalize to parametrizing extended objects:         x : 𝒮 → 𝒦

e.g. space of d-dim submanifolds

 turn cov. quantities on  into relational observables, e.g.  ⇒ 𝒦 Vol𝒰⊂ℳ(x[ϕ])

x[ϕ] = 𝒰𝒜

volumes of submanifolds as relational observables

[Goeller, PH, Kirklin ’22]

space of solutions



restrict to injective frames with overlapping images 𝒩1[ϕ] ∩ 𝒩2[ϕ] ≠ ∅

change of frame map:                        ℛ1→2[ϕ] = ℛ−1
2 [ϕ] ∘ ℛ1[ϕ] : 𝒪1 → 𝒪2

dynamical coord. change

[Goeller, PH, Kirklin ’22]

Internal frame changes
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restrict to injective frames with overlapping images 𝒩1[ϕ] ∩ 𝒩2[ϕ] ≠ ∅

change of frame map:                        ℛ1→2[ϕ] = ℛ−1
2 [ϕ] ∘ ℛ1[ϕ] : 𝒪1 → 𝒪2

dynamical coord. change

Note:               
is rel. observable describing 2nd frame rel. to 1st  gauge-inv.

ℛ1→2[ϕ] = (ℛ1[ϕ])*ℛ−1
2 [ϕ] = Oℛ−1

2 ,ℛ1
[ϕ]

⇒

 relational observables transform as               ⇒ OT,ℛ2
[ϕ] = (ℛ1→2[ϕ])*OT,ℛ1

[ϕ]

change of gauge-inv. description of  from internal 

perspective of frame 1 into internal perspective of frame 2

T

[Goeller, PH, Kirklin ’22]

Internal frame changes



Recall: general covariance
“All the laws of physics are the same in every reference frame.”

tA

xA

tB

xB

'A 'B

TA!B = 'B � '�1
A

spacetime

EA[ϕ] = 0 ⇔ EB[ϕ] = 0

spaces of solutions (local phase spaces) for the overlap relative to A and B are the same

 tension with gauge symmetry: colloquial statement of general covariance refers to quantities that are not gauge-invariant⇒

coordinate transformation 

is change/reorientation of 


external background frame

can only compare states and observables in the overlap of two fixed (non-dyn.) coordinate frames 
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tA

xA

tB

xB

'A 'B

TA!B = 'B � '�1
A

spacetime

can only compare states and observables in the overlap of two fixed (non-dyn.) coordinate frames 

EA[ϕ] = 0 ⇔ EB[ϕ] = 0

spaces of solutions (local phase spaces) for the overlap relative to A and B are the same

 tension with gauge symmetry: colloquial statement of general covariance refers to quantities that are not gauge-invariant⇒

can we have a formulation 

of general frame covariance 


that is gauge-invariant?

coordinate transformation 

is change/reorientation of 


external background frame



Dynamical frame covariance: a relational update 
of general covariance [Goeller, PH, Kirklin ’22]

δL[ϕ] = E[ϕ] + dθ[ϕ]

EoM term: E ≈ 0 bdry term

 can map EoM to orientation spaces⇒

 gauge-inv. EoMs for relational fields (in terms of relational observables)⇒

 can show: for gen. cov. Lagrangian  ⇒ L[ f*ϕ] = f*L[ϕ]

E1[ϕs] = 0 ⇔ E2[ϕs] = 0

EoMs relative to frames  and ℛ1 ℛ2

spaces of relational solutions (local physical phase spaces) for the overlap the same

“All the laws of physics are the same in every dynamical reference frame”



Summary 

dressed observables 
[Giddings, Donnelly, Harlow, Mertens, 


Dong, Shenker, Stanford, …]

relational observables 
[Rovelli, Bergmann, Komar, …]

covariant rep. 
[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner,…]

single-integral rep. 
[DeWitt, Marolf, Giddings, Chataignier, …]

canon. power-series rep. 
[Dittrich, Thiemann, …] 

one approach for all: dynamical frames help to unify and generalize different approaches to observables in gravity 

 suitably extended they are equivalent (up to fine print for canonical approach)⇒

relational/dyn. frame extension of general covariance to gauge-inv. descriptions of EoMs
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one approach for all: dynamical frames help to unify and generalize different approaches to observables in gravity 

 suitably extended they are equivalent (up to fine print for canonical approach)⇒

relational/dyn. frame extension of general covariance to gauge-inv. descriptions of EoMs

relational observables in QT (depends on approach) for QRFs: PH, Smith, Lock ’21; de la Hamette, Galley, PH, Müller, Loveridge ’21

perturbative AQFT: Rejzner, Fröb, ….


asymptotic safety: Baldazzi, Falls, Ferrero ‘21


