Observables and dynamical frames in gravity

Philipp Höhn

Okinawa Institute of Science and Technology

QG2023 Nijmegen July 11, 2023

based on: Goeller, PH, Kirklin 2206.01198; Carrozza, Eccles, PH 2205.00913

What are interesting observables in gravity and how do you constract them?

What are interesting observables in gravity and how do you constract them?

multiple approaches

dressed observables

[Giddings, Donnelly, Harlow, Mertens, Dong, Shenker, Stanford, ...]

relational observables [Rovelli, Bergmann, Komar, ...]

What are interesting observables in gravity and how do you constract them?

multiple approaches

dressed observables

[Giddings, Donnelly, Harlow, Mertens, Dong, Shenker, Stanford, ...]

single-integral rep. [DeWitt, Marolf, Giddings, Chataignier, ..

covariant rep.

[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner,...]

relational observables

[Rovelli, Bergmann, Komar, ...]

canon. power-series rep. [Dittrich, Thiemann, ...]

What are interesting observables in gravity and how do you constract them?

multiple approaches

dressed observables

[Giddings, Donnelly, Harlow, Mertens, Dong, Shenker, Stanford, ...]

single-integral rep. [DeWitt, Marolf, Giddings, Chataignier, ..

Relation? \Rightarrow covariant rep.

[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner,...]

relational observables

[Rovelli, Bergmann, Komar, ...]

canon. power-series rep. [Dittrich, Thiemann, ...]

One approach for all?

What are interesting observables in gravity and how do you constract them?

multiple approaches

dressed observables [Giddings, Donnelly, Harlow, Mertens, Dong, Shenker, Stanford, ...]

single-integral rep. [DeWitt, Marolf, Giddings, Chataignier, ..

Relation? \Rightarrow

relational ideas involved \Rightarrow can one clarify link to dynamical/quantum frame program?

 \Rightarrow can we formulate general covariance in terms of observables?

covariant rep. [Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner,...]

> relational observables [Rovelli, Bergmann, Komar, ...]

canon. power-series rep. [Dittrich, Thiemann, ...]

One approach for all?

bulk diffeos are gauge \Rightarrow want observables inv. under those

 $O[f_*\phi] = O[\phi]$

diffeo $f: \mathcal{M} \to \mathcal{M}$

- bulk diffeos are gauge \Rightarrow want observables inv. under those \bigcirc
 - \Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$O[\phi] = \int_{\mathscr{M}} \alpha[\phi] = \int_{\mathscr{M}=f(\mathscr{M})} f_*\alpha[\phi] = O[f_*\phi]$$

 $O[f_*\phi] = O[\phi]$ diffeo $f: \mathcal{M} \to \mathcal{M}$

 $\alpha[f_*\phi] = f_*\alpha[\phi]$

is gauge-invariant (e.g. $\alpha = R$, then $O[\phi] = S_{EH}[g]$)

- bulk diffeos are gauge \Rightarrow want observables inv. under those
 - \Rightarrow *a priori* not difficult to come by, e.g. any covariant top-form:

$$O[\phi] = \int_{\mathscr{M}} \alpha[\phi] = \int_{\mathscr{M}=f(\mathscr{M})} f_*\alpha[\phi] = O[f_*\phi]$$

 \Rightarrow but *a priori* very nonlocal information

how do we construct phenomenologically interesting gauge-inv. observables with local information?

er those O[

 $O[f_*\phi] = O[\phi] \qquad \qquad \text{diffeo } f: \mathscr{M} \to \mathscr{M}$

top-form: $\alpha[f_*\phi] = f_*\alpha[\phi]$

is gauge-invariant (e.g. $\alpha = R$, then $O[\phi] = S_{EH}[g]$)

- bulk diffeos are gauge \Rightarrow want observables inv. under those \bigcirc
 - \Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$O[\phi] = \int_{\mathscr{M}} \alpha[\phi] = \int_{\mathscr{M}=f(\mathscr{M})} f_*\alpha[\phi] = O[f_*\phi]$$

 \Rightarrow but *a priori* very nonlocal information

Example: scalar field $\varphi(x)$

$$f_*\varphi(x) = \varphi(f^{-1}(x))$$

 \Rightarrow

$$O[f_*\phi] = O[\phi] \qquad \qquad \text{diffeo} f \colon \mathscr{M} \to \mathscr{M}$$

 $\alpha[f_*\phi] = f_*\alpha[\phi]$

is gauge-invariant (e.g. $\alpha = R$, then $O[\phi] = S_{EH}[g]$)

how do we construct phenomenologically interesting gauge-inv. observables with local information?

$$\varphi(x)$$
 only gauge-inv. if $\begin{cases} x \in \partial \mathcal{M}, \text{ as } f^{-1}(x) \\ \text{or } \varphi = const. \end{cases}$

- bulk diffeos are gauge \Rightarrow want observables inv. under those \bigcirc
 - \Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$O[\phi] = \int_{\mathscr{M}} \alpha[\phi] = \int_{\mathscr{M}=f(\mathscr{M})} f_*\alpha[\phi] = O[f_*\phi]$$

 \Rightarrow but *a priori* very nonlocal information

Example: scalar field $\varphi(x)$

$$f_*\varphi(x) = \varphi(f^{-1}(x))$$

 \Rightarrow

 $O[f_*\phi] = O[\phi]$ diffeo $f : \mathcal{M} \to \mathcal{M}$

 $\alpha[f_*\phi] = f_*\alpha[\phi]$

is gauge-invariant (e.g. $\alpha = R$, then $O[\phi] = S_{EH}[g]$)

how do we construct phenomenologically interesting gauge-inv. observables with local information?

$$\varphi(x)$$
 only gauge-inv. if $\begin{cases} x \in \partial \mathcal{M}, \text{ as } f^{-1}(x) \\ \text{or } \varphi = const. \end{cases}$

\Rightarrow tension between usual notion of bulk locality (in terms of fixed event labeling) and gauge-invariance

- bulk diffeos are gauge \Rightarrow want observables inv. under those
- \Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$O[\phi] = \int_{\mathscr{M}} \alpha[\phi] = \int_{\mathscr{M}=f(\mathscr{M})} f_*\alpha[\phi] = O[f_*\phi]$$

 \Rightarrow but *a priori* very nonlocal information

Example: scalar field $\varphi(x)$

$$f_*\varphi(x) = \varphi(f^{-1}(x))$$

 \Rightarrow notion of locality that fails is one based on fixed, non-dynamical – and hence unphysical – reference frames

 \Rightarrow

$$O[f_*\phi] = O[\phi] \qquad \qquad \text{diffeo } f \colon \mathscr{M} \to \mathscr{M}$$

 $\alpha[f_*\phi] = f_*\alpha[\phi]$

is gauge-invariant (e.g. $\alpha = R$, then $O[\phi] = S_{EH}[g]$)

how do we construct phenomenologically interesting gauge-inv. observables with local information?

$$\varphi(x)$$
 only gauge-inv. if $\begin{cases} x \in \partial \mathcal{M}, \text{ as } f^{-1}(x) \\ \text{or } \varphi = const. \end{cases}$

\Rightarrow tension between usual notion of bulk locality (in terms of fixed event labeling) and gauge-invariance

will not give up gauge-invariance, but adjust notion of locality

Dynamical reference frames in gravity

"The theory.... introduces two kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other things, e.g., the electro-magnetic field, the material point, etc. This, in a certain sense, is inconsistent; strictly speaking measuring rods and clocks would have to be represented as solutions of the basic equations..., not, as it were, as theoretically self-sufficient entities..."

A. Einstein 1951

Dynamical reference frames in gravity

"The theory.... introduces two kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other things, e.g., the electro-magnetic field, the material point, etc. This, in a certain sense, is inconsistent; strictly speaking measuring rods and clocks would have to be represented as solutions of the basic equations..., not, as it were, as theoretically self-sufficient entities..."

internal frames (tetrad) in SR: different in- and output spaces:

 $e_a^{\mu} \in O(3,1)$ group valued frame

• "gauge transformations":

A. Einstein 1951

spaces: $\Lambda^{\mu}_{\ \nu} \ e^{\nu}_{a} \qquad \Lambda^{\mu}_{\ \nu} \in \mathrm{SO}_{+}(3,1)$

Dynamical reference frames in gravity

"The theory.... introduces two kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other things, e.g., the electro-magnetic field, the material point, etc. This, in a certain sense, is inconsistent; strictly speaking measuring rods and clocks would have to be represented as solutions of the basic equations..., not, as it were, as theoretically self-sufficient entities..."

internal frames (tetrad) in SR: different in- and output spaces: \bigcirc

 $e_a^{\mu} \in O(3,1)$ group valued frame

• "gauge transformations":

dynamical/internal frames in gravity: different in- and output spaces

 $\mathscr{R}^{-1}[\phi] \in \operatorname{Diff}(\mathscr{M}, \mathscr{O})$ may be "group valued frame"

• gauge transformations:

A. Einstein 1951

Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]

Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos:

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]

 $x[f_*\phi] = f(x[\phi])$

Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos:

 \Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]

 $x[f_*\phi] = f(x[\phi])$

 $x = x_{\tau,z,W}[g]$ \Rightarrow E.g. shoot geodesic in from bdry: \Rightarrow transforms covariantly: $x_{\tau,z,W}[f_*g] = f(x_{\tau,z,W}[g])$ so, e.g. $O_{\varphi,x}[\phi] = \varphi(x_{\tau,z,W}[g])$ is gauge-inv. dressed observable: what's the value of scalar at end of geodesic?

Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos:

 \Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]

 $x[f_*\phi] = f(x[\phi])$

 $x = x_{\tau,z,W}[g]$ \Rightarrow E.g. shoot geodesic in from bdry: \Rightarrow transforms covariantly: $x_{\tau,z,W}[f_*g] = f(x_{\tau,z,W}[g])$ so, e.g. $O_{\varphi,x}[\phi] = \varphi(x_{\tau,z,W}[g])$ is gauge-inv. dressed observable: what's the value of scalar at end of geodesic?

Dynamical frame?

Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos:

 \Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]

 $x[f_*\phi] = f(x[\phi])$

 $x = x_{\tau,z,W}[g]$ \Rightarrow E.g. shoot geodesic in from bdry: \Rightarrow transforms covariantly: $x_{\tau,z,W}[f_*g] = f(x_{\tau,z,W}[g])$ so, e.g. $O_{\varphi,x}[\phi] = \varphi(x_{\tau,z,W}[g])$ is gauge-inv. dressed observable: what's the value of scalar at end of geodesic?

Dynamical frame: $\mathcal{O} = (\tau, z, W)$ 'local orientation space' frame $\mathscr{R}[g] : \mathscr{O} \to \mathscr{M}$ $(\tau, z, W) \mapsto x_{\tau, z, W}[g]$ [Goeller, PH, Kirklin '22] gauge-cov. $\mathscr{R}[f_*g] = f \circ \mathscr{R}[g]$

Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos:

 \Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

 \Rightarrow restrict to $\mathcal{O}_1 \subset \mathcal{O}$ s.t. injective (e.g. fix bdry vector field W)

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]

 $x[f_*\phi] = f(x[\phi])$

 $x = x_{\tau,z,W}[g]$ \Rightarrow E.g. shoot geodesic in from bdry: \Rightarrow transforms covariantly: $x_{\tau,z,W}[f_*g] = f(x_{\tau,z,W}[g])$ so, e.g. $O_{\varphi,x}[\phi] = \varphi(x_{\tau,z,W}[g])$ is gauge-inv. dressed observable: what's the value of scalar at end of geodesic?

Dynamical frame: $\mathcal{O} = (\tau, z, W)$ 'local orientation space' frame $\mathscr{R}[g]: \mathscr{O} \to \mathscr{M}$ $(\tau, z, W) \mapsto x_{\tau, z, W}[g]$ [Goeller, PH, Kirklin '22] gauge-cov. $\mathscr{R}[f_*g] = f \circ \mathscr{R}[g]$

Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos:

 \Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

 \Rightarrow restrict to $\mathcal{O}_1 \subset \mathcal{O}$ s.t. injective (e.g. fix bdry vector field W)

frame field $\mathscr{R}_1^{-1}[g] : \mathscr{N}_1[g] \subset \mathscr{M} \to \mathscr{O}_1$

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]

 $x[f_*\phi] = f(x[\phi])$

 $x = x_{\tau,z,W}[g]$ \Rightarrow E.g. shoot geodesic in from bdry: \Rightarrow transforms covariantly: $x_{\tau,z,W}[f_*g] = f(x_{\tau,z,W}[g])$ so, e.g. $O_{\varphi,x}[\phi] = \varphi(x_{\tau,z,W}[g])$ is gauge-inv. dressed observable: what's the value of scalar at end of geodesic?

Dynamical frame: $\mathcal{O} = (\tau, z, W)$ 'local orientation space' frame $\mathscr{R}[g]: \mathscr{O} \to \mathscr{M}$ $(\tau, z, W) \mapsto x_{\tau, z, W}[g]$ [Goeller, PH, Kirklin '22] gauge-cov. $\mathscr{R}[f_*g] = f \circ \mathscr{R}[g]$ $x \mapsto (T(x), Z^k(x))$ reference scalars/dyn. coords

Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos:

 \Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

 \Rightarrow restrict to $\mathcal{O}_1 \subset \mathcal{O}$ s.t. injective (e.g. fix bdry vector field W)

frame field $\mathscr{R}_1^{-1}[g] : \mathscr{N}_1[g] \subset \mathscr{M} \to \mathscr{O}_1$

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]

 $x[f_*\phi] = f(x[\phi])$

 $x = x_{\tau, \tau, W}[g]$ \Rightarrow E.g. shoot geodesic in from bdry:

 $O_{\varphi,x}[\phi] = \varphi(x_{\tau,z,W}[g]) = (\mathscr{R}_1[g])^* \varphi[\tau,z]$ is gauge-inv. dressed observable: what's the value of scalar at end of geodesic? rel. obs.: what's the value of φ where frame in local orientation τ, z ? **Dynamical frame:** $\mathcal{O} = (\tau, z, W)$ 'local orientation space' frame $\mathscr{R}[g]: \mathscr{O} \to \mathscr{M}$ $(\tau, z, W) \mapsto x_{\tau, z, W}[g]$ [Goeller, PH, Kirklin '22] gauge-cov. $\mathscr{R}[f_*g] = f \circ \mathscr{R}[g]$ $x \mapsto (T(x), Z^k(x))$ reference scalars/dyn. coords

Covariant relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter) [Goeller, PH, Ki

	L 1	•	1001
\ Ir	K	IN	'22]

Covariant relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

If $A[f_*\phi] = f_*A[\phi]$ a covariant local quantity (e.g. tensor field) on spacetime, get frame-dressed observable:

 $O_{A,\mathcal{R}}[\phi] = (\mathcal{R}[\phi])^* A[\phi]$

gauge inv.

observable on the local frame orientation space ${\cal O}$

[Goeller, PH, K

	L 1	•	1001
\ Ir	K	IN	'22]

Covariant relational observables

If $A[f_*\phi] = f_*A[\phi]$ a covariant local quantity (e.g. tensor field) on spacetime, get frame-dressed observable:

 $O_{A,\mathcal{R}}[\phi] = (\mathcal{R}[\phi])^* A[\phi]$

gauge inv.

observable on the local frame orientation space ${\cal O}$

relational observable

answers "what is the value of (certain component of) A at the event in spacetime, where the frame field \mathscr{R}^{-1} is in local orientation $o \in \mathscr{O}$?"

[Goeller, PH, Kirklin '22]

- Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

dressed = covariant relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

If $A[f_*\phi] = f_*A[\phi]$ a covariant local quantity (e.g. tensor field) on spacetime, get frame-dressed observable:

 $O_{A,\mathscr{R}}[\phi] = (\mathscr{R}[\phi])^* A[\phi]$

gauge inv.

observable on the local frame orientation space ${\cal O}$

dressed and cov. rel. obs are equivalent/unified if frame (scalar) fields allowed to be general (so allowed to be built locally or non-locally from matter or metric) \Rightarrow equips dressed observable with clear interpretation

[Goeller, PH, Kirklin '22]

Aim: localize non-inv. quantities relative to reference scalar fields built from field content

 \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

[DeWitt, Marolf, Giddings, Chataignier, ...]

<u>Aim:</u> localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] $O_{\varphi,x}[\phi] = \left[d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(Z^k(y) - \xi^k) \left| \frac{\partial Z}{\partial y} \right| \right]$

> relational observable answers "what is the value of ϕ at the event $x[\phi]$ in spacetime, where the reference fields take values ξ^k ?"

[DeWitt, Marolf, Giddings, Chataignier, ...]

4 scalar reference fields Z^k parametrizing spacetime

<u>Aim:</u> localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] **4 sc**

$$O_{\varphi,x}[\phi] = \int_{\mathscr{M}} d^4y \sqrt{|g|} \varphi(y) \,\delta^4(Z^k(y) - \xi^k) \left| \frac{\partial Z}{\partial y} \right|$$

elational observable answers "what is the value of ϕ at the event $x[\phi]$ in spacetime, where the reference fields take values ξ^k ?"

[DeWitt, Marolf, Giddings, Chataignier, ...]

calar reference fields Z^k parametrizing spacetime

cov. top-form $\alpha[f_*\phi] = f_*\alpha[\phi]$

<u>Aim:</u> localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

 $O_{\varphi,x}[\phi] = \int_{\mathscr{A}} d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(Z^k(y) - \xi^k) \left| \frac{\partial Z}{\partial y} \right| \qquad \text{relation to cov. rep.?}$

[DeWitt, Marolf, Giddings, Chataignier, ...]

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^k parametrizing spacetime

<u>Aim:</u> localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] $O_{\varphi,x}[\phi] = \left[\frac{d^4y}{\sqrt{|g|}} \varphi(y) \,\delta^4(Z^k(y) - \xi^k) \left| \frac{\partial Z}{\partial y} \right|$ relation to cov. rep.? [DeWitt, Marolf, Giddings, Chataignier, ...]

4 scalar reference fields Z^k parametrizing spacetime

set $\mathscr{R}^{-1}[\phi] = Z$ and $\xi = o$

Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06]

$$O_{\varphi,\mathcal{R}}[\phi](o) = \int_{\mathcal{M}} d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathcal{R}^{-1}(y) - o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \partial y \,\delta^4(\mathcal{R}^{-1}(y) + o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \partial y \,\delta^4(\mathcal{R}^{-1}(y) + o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \partial y \,\delta^4(\mathcal{R}^{-1}(y) + o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \partial y \,\delta^4(\mathcal{R}^{-1}(y) + o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \partial y \,\delta^4(\mathcal{R}^{-1}(y) + o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \partial y \,\delta^4(\mathcal{R}^{-1}(y) + o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \partial y \,\delta^4(\mathcal{R}^{-1}(y) + o) \left| \frac{\partial \mathcal{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \partial y \,\delta^4(\mathcal{R}^{-1}(y) + o)$$

[DeWitt, Marolf, Giddings, Chataignier, ...]

4 scalar reference fields Z^k parametrizing spacetime

set
$$\mathscr{R}^{-1}[\phi]=Z\;\;$$
 and ξ =

= 0

<u>Aim:</u> localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06]

$$O_{\varphi,\mathscr{R}}[\phi](o) = \int_{\mathscr{M}} d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}}{\partial y} \right|^2 \partial y} \right|^2 d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) \,\delta^4(y) \,\delta$$

$$= \varphi(\mathscr{R}(o)) = (\mathscr{R})^* \varphi(o)$$

rel. observable "what's the value of scalar at event where frame field is in orientation o?"

[DeWitt, Marolf, Giddings, Chataignier, ...]

4 scalar reference fields Z^k parametrizing spacetime

 \mathscr{R}^{-1} ∂y

set
$$\mathscr{R}^{-1}[\phi] = Z$$
 and $\xi = o$

quivalent to our construction

[Goeller, PH, Kirklin '22]

<u>Aim:</u> localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06]

$$O_{\varphi,\mathscr{R}}[\phi](o) = \int_{\mathscr{M}} d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}^{-1}}{\partial y} \right| \chi_{\mathscr{N}} \qquad \text{set } \mathscr{R}^{-1}[\phi] = Z \text{ and } \xi = o$$

$$= \varphi(\mathscr{R}(o)) = (\mathscr{R})^* \varphi(o)$$

rel. observable "what's the value of scalar at event where frame field is in orientation o?"

[DeWitt, Marolf, Giddings, Chataignier, ...]

- 4 scalar reference fields Z^k parametrizing spacetime

quivalent to our construction

[Goeller, PH, Kirklin '22]

 \Rightarrow can generalise to non-globally defined frames via characteristic fct $\chi_{\mathcal{N}[\phi]}$ of frame image $\mathcal{N}[\phi] \subset \mathscr{M}$

<u>Aim:</u> localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06]

$$O_{\varphi,\mathscr{R}}[\phi](o) = \int_{\mathscr{M}} d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}^{-1}}{\partial y} \right| \chi_{\mathscr{N}} \qquad \text{set } \mathscr{R}^{-1}[\phi] = Z \text{ and } \xi = o$$

$$= \varphi(\mathscr{R}(o)) = (\mathscr{R})^* \varphi(o)$$

rel. observable "what's the value of scalar at event where frame field is in orientation o?"

+ general smearings and tensor fields

[DeWitt, Marolf, Giddings, Chataignier, ...]

- 4 scalar reference fields Z^k parametrizing spacetime

quivalent to our construction

[Goeller, PH, Kirklin '22]

 \Rightarrow can generalise to non-globally defined frames via characteristic fct $\chi_{\mathcal{N}[\phi]}$ of frame image $\mathcal{N}[\phi] \subset \mathscr{M}$

Single-integral = covariant rel. observables

<u>Aim:</u> localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}[f_*\phi] = \mathscr{R}^{-1}[\phi] \circ f^{-1}$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06]

$$O_{\varphi,\mathscr{R}}[\phi](o) = \int_{\mathscr{M}} d^4 y \sqrt{|g|} \varphi(y) \,\delta^4(\mathscr{R}^{-1}(y) - o) \left| \frac{\partial \mathscr{R}^{-1}}{\partial y} \right| \chi_{\mathscr{N}} \qquad \text{set } \mathscr{R}^{-1}[\phi] = Z \text{ and } \xi = o$$

$$= \varphi(\mathscr{R}(o)) = (\mathscr{R})^* \varphi(o)$$

rel. observable "what's the value of scalar at event where frame field is in orientation o?"

+ general smearings and tensor fields

single-integral and covariant relational observables equivalent [DeWitt, Marolf, Giddings, Chataignier, ...]

- 4 scalar reference fields Z^k parametrizing spacetime

quivalent to our construction

[Goeller, PH, Kirklin '22]

 \Rightarrow can generalise to non-globally defined frames via characteristic fct $\chi_{\mathcal{N}[\phi]}$ of frame image $\mathcal{N}[\phi] \subset \mathscr{M}$

<u>Aim</u>: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

[Dittrich, Thiemann, ...]

[Dittrich, Thiemann, ...]

<u>Aim</u>: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

<u>relation cov. & can. PS:</u> choose Cauchy slice Σ presymplectic form Ω_{Σ}

[Lee, Wald '90]

 π_{Σ}

mod out deg. directions

Power series representation of relational observables [Dittrich, Thiemann, ...]

Aim: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

<u>relation cov. & can. PS:</u> choose Cauchy slice Σ presymplectic form Ω_{Σ}

[Lee, Wald '90]

 π_{Σ}

mod out deg. directions

covariant relational observable restricts to canonical one

 $O_{A,R}[\phi] = \tilde{O}_{A,R} \circ \pi_{\Sigma}[\phi]$

 $\tilde{O}_{A,R} \approx$ only on ${\mathscr C}$

[Dittrich, Thiemann, ...]

Aim: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

<u>relation cov. & can. PS:</u> choose Cauchy slice Σ presymplectic form Ω_{Σ}

[Lee, Wald '90]

 π_{Σ}

mod out deg. directions

covariant relational observable restricts to canonical one

$$] = \tilde{O}_{A,R} \circ \pi_{\Sigma}[\phi]$$

under certain restrictions, canonical one can be written as power series:

$$\sum_{n=0}^{\infty} \frac{1}{n!} \{C[u], \tilde{A}\}_{n}$$

smeared ADM constraints

[Goeller, PH, Kirklin '22]

under certain restrictions, canonical one can be written as power series:

cov. & power series reps equivalent (under certain restrictions)

 $\tilde{O}_{A,R} \approx$ only on ${\mathscr C}$

[Dittrich, Thiemann, ...]

<u>Aim</u>: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

<u>relation cov. & can. PS:</u> choose Cauchy slice Σ presymplectic form Ω_{Σ}

[Lee, Wald '90]

 π_{Σ}

mod out deg. directions

covariant relational observable restricts to canonical one

$$] = \tilde{O}_{A,R} \circ \pi_{\Sigma}[\phi]$$

$$\sum_{n=0}^{\infty} \frac{1}{n!} \{C[u], \tilde{A}\}_{n}$$

smeared ADM constraints

[Goeller, PH, Kirklin '22]

Quasilocal generalizations

space of solutions

gauge covariance $x[f_*\phi] = f(x[\phi])$

 \Rightarrow turn local cov. quantity into relational observable, e.g. $\varphi(x[\phi])$

can generalize to parametrizing extended objects:

 \Rightarrow turn cov. quantities on \mathscr{K} into relational observables, e.g.

volumes of submanifolds as relational observables

e.g. boundary anchored geodesic frame

g. Vol
$$_{\mathscr{U} \subset \mathscr{M}}(\mathbf{x}[\phi])$$

e.g. minimal surfaces in holography

Internal frame changes

[Goeller, PH, Kirklin '22]

restrict to injective frames with overlapping images $\mathcal{N}_1[\phi] \cap \mathcal{N}_2[\phi] \neq \emptyset$

change of frame map:

$$\mathcal{R}_{1 \to 2}[\phi] = \mathcal{R}_2^{-1}[\phi] \circ \mathcal{R}_1[\phi] : \mathcal{O}_1 \to \mathcal{O}_1$$

dynamical coord. change

→ Ø₂

Internal frame changes

[Goeller, PH, Kirklin '22]

restrict to injective frames with overlapping images $\mathcal{N}_1[\phi] \cap \mathcal{N}_2[\phi] \neq \emptyset$

 $\mathscr{R}_{1\to 2}[\phi] = \mathscr{R}_2^{-1}[\phi] \circ \mathscr{R}_1[\phi] : \mathscr{O}_1 \to \mathscr{O}_2$ change of frame map:

dynamical coord. change

Note:
$$\mathscr{R}_{1\to 2}[\phi] = (\mathscr{R}_1[\phi])^* \mathscr{R}_2^{-1}[\phi] = O_{\mathscr{R}_2^{-1}, \mathscr{R}_1}[\phi]$$

is rel. observable describing 2nd frame rel. to 1st \Rightarrow gauge-inv.

Internal frame changes

[Goeller, PH, Kirklin '22]

restrict to injective frames with overlapping images $\mathcal{N}_1[\phi] \cap \mathcal{N}_2[\phi] \neq \emptyset$

 $\mathscr{R}_{1\to 2}[\phi] = \mathscr{R}_2^{-1}[\phi] \circ \mathscr{R}_1[\phi] : \mathscr{O}_1 \to \mathscr{O}_2$ change of frame map:

dynamical coord. change

Note:
$$\mathscr{R}_{1\to 2}[\phi] = (\mathscr{R}_1[\phi])^* \mathscr{R}_2^{-1}[\phi] = O_{\mathscr{R}_2^{-1}, \mathscr{R}_1}[\phi]$$

is rel. observable describing 2nd frame rel. to 1st \Rightarrow gauge-inv.

 \Rightarrow relational observables transform as

$$O_{T,\mathcal{R}_2}[\phi] = (\mathcal{R}_{1\to 2}[\phi])_* O_{T,\mathcal{R}_1}$$

change of gauge-inv. description of T from internal perspective of frame 1 into internal perspective of frame 2

Recall: general covariance

"All the laws of physics are the same in every reference frame."

can only compare states and observables in the overlap of two fixed (non-dyn.) coordinate frames

 $E_A[\phi] = 0$

spaces of solutions (local phase spaces) for the overlap relative to A and B are the same

 \Rightarrow tension with gauge symmetry: colloquial statement of general covariance refers to quantities that are not gauge-invariant

coordinate transformation is change/reorientation of external background frame

$$\Leftrightarrow \quad E_B[\phi] = 0$$

Recall: general covariance

"All the laws of physics are the same in every reference frame."

can only compare states and observables in the overlap of two fixed (non-dyn.) coordinate frames

 $E_A[\phi] = 0$

spaces of solutions (local phase spaces) for the overlap relative to A and B are the same

 \Rightarrow tension with gauge symmetry: colloquial statement of general covariance refers to quantities that are not gauge-invariant

coordinate transformation is change/reorientation of external background frame

$$\Leftrightarrow \quad E_B[\phi] = 0$$

Dynamical frame covariance: a relational update of general covariance [Goeller, PH, Kirklin '22]

spaces of relational solutions (local physical phase spaces) for the overlap the same

 \Rightarrow can map EoM to orientation spaces

 \Rightarrow gauge-inv. EoMs for relational fields (in terms of relational observables)

 \Rightarrow can show: for gen. cov. Lagrangian $L[f_*\phi] = f_*L[\phi]$

$$E_1[\phi_s] = 0 \quad \Leftrightarrow \quad E_2[\phi_s] = 0$$

EoMs relative to frames \mathscr{R}_1 and \mathscr{R}_2

"All the laws of physics are the same in every dynamical reference frame"

Summary

dressed observables [Giddings, Donnelly, Harlow, Mertens, Dong, Shenker, Stanford, ...]

 \Rightarrow suitably extended they are equivalent (up to fine print for canonical approach)

relational/dyn. frame extension of general covariance to gauge-inv. descriptions of EoMs

one approach for all: dynamical frames help to unify and generalize different approaches to observables in gravity

Summary

dressed observables [Giddings, Donnelly, Harlow, Mertens, Dong, Shenker, Stanford, ...]

 \Rightarrow suitably extended they are equivalent (up to fine print for canonical approach)

relational/dyn. frame extension of general covariance to gauge-inv. descriptions of EoMs

relational observables in QT (depends on approach)

one approach for all: dynamical frames help to unify and generalize different approaches to observables in gravity

for QRFs: PH, Smith, Lock '21; de la Hamette, Galley, PH, Müller, Loveridge '21 perturbative AQFT: Rejzner, Fröb, asymptotic safety: Baldazzi, Falls, Ferrero '21

