Observables and dynamical frames in gravity

Philipp Höhn

Okinawa Institute of Science and Technology

QG2023 Nijmegen
July 11, 2023

The challenge of observables in gravity

What are interesting observables in gravity and how do you constract them?

The challenge of observables in gravity

- What are interesting observables in gravity and how do you constract them?
- multiple approaches

The challenge of observables in gravity

- What are interesting observables in gravity and how do you constract them?
- multiple approaches

The challenge of observables in gravity

- What are interesting observables in gravity and how do you constract them?
- multiple approaches
covariant rep.
[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner,...]
dressed observables [Giddings, Donnelly, Harlow, Mertens, Dong, Shenker, Stanford, ...]

The challenge of observables in gravity

- What are interesting observables in gravity and how do you constract them?
- multiple approaches

covariant rep.
[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner, ...]

$$
\text { Relation? } \quad \Rightarrow \quad \text { One approach for all? }
$$

${ }^{\circ}$ relational ideas involved \Rightarrow can one clarify link to dynamical/quantum frame program?
\Rightarrow can we formulate general covariance in terms of observables?

Gauge-invariant observables \& locality in gravity

bulk diffeos are gauge \Rightarrow want observables inv. under those
$O\left[f_{*} \phi\right]=O[\phi]$
diffeo $f: \mathscr{M} \rightarrow \mathscr{M}$

Gauge-invariant observables \& locality in gravity

- bulk diffeos are gauge \Rightarrow want observables inv. under those
\Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$
O\left[f_{*} \phi\right]=O[\phi]
$$

$$
\text { diffeo } f: \mathscr{M} \rightarrow \mathscr{M}
$$

$$
\left.O[\phi]=\int_{\mathscr{M}} \alpha[\phi]=\int_{\mathscr{M}=f(\mathscr{M})} f_{*} \alpha[\phi]=O\left[f_{*} \phi\right] \quad \text { is gauge-invariant (e.g. } \alpha=R, \text { then } O[\phi]=S_{E H}[g]\right)
$$

Gauge-invariant observables \& locality in gravity

- bulk diffeos are gauge \Rightarrow want observables inv. under those
\Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$
O\left[f_{*} \phi\right]=O[\phi] \quad \text { diffeo } f: \mathscr{M} \rightarrow \mathscr{M}
$$

$$
\alpha\left[f_{*} \phi\right]=f_{*} \alpha[\phi]
$$

$O[\phi]=\int_{\mathscr{M}} \alpha[\phi]=\int_{\mathscr{M}=f(. \mathscr{M})} f_{*} \alpha[\phi]=O\left[f_{*} \phi\right] \quad$ is gauge-invariant (e.g. $\alpha=R$, then $\left.O[\phi]=S_{E H}[g]\right)$
\Rightarrow but a priori very nonlocal information
how do we construct phenomenologically interesting gauge-inv. observables with local information?

Gauge-invariant observables \& locality in gravity

- bulk diffeos are gauge \Rightarrow want observables inv. under those
\Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$
O\left[f_{*} \phi\right]=O[\phi]
$$

$$
\text { diffeo } f: \mathscr{M} \rightarrow \mathscr{M}
$$

$$
\alpha\left[f_{*} \phi\right]=f_{*} \alpha[\phi]
$$

$O[\phi]=\int_{\mathscr{M}} \alpha[\phi]=\int_{\mathscr{M}=f(\mathscr{M})} f_{*} \alpha[\phi]=O\left[f_{*} \phi\right] \quad$ is gauge-invariant (e.g. $\alpha=R$, then $\left.O[\phi]=S_{E H}[g]\right)$
\Rightarrow but a priori very nonlocal information
how do we construct phenomenologically interesting gauge-inv. observables with local information?

Example: scalar field $\varphi(x)$

$$
f_{*} \varphi(x)=\varphi\left(f^{-1}(x)\right) \quad \Rightarrow \quad \varphi(x) \text { only gauge-inv. if }\left\{\begin{array}{l}
x \in \partial \mathscr{M}, \text { as } f^{-1}(x)=x \\
\text { or } \varphi=\text { const }
\end{array}\right.
$$

Gauge-invariant observables \& locality in gravity

- bulk diffeos are gauge \Rightarrow want observables inv. under those
\Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$
O\left[f_{*} \phi\right]=O[\phi]
$$

$$
\text { diffeo } f: \mathscr{M} \rightarrow \mathscr{M}
$$

$$
\alpha\left[f_{*} \phi\right]=f_{*} \alpha[\phi]
$$

$O[\phi]=\int_{\mathscr{M}} \alpha[\phi]=\int_{\mathscr{U}=f(\mathscr{M})} f_{*} \alpha[\phi]=O\left[f_{*} \phi\right] \quad$ is gauge-invariant (e.g. $\alpha=R$, then $\left.O[\phi]=S_{E H}[g]\right)$
\Rightarrow but a priori very nonlocal information
how do we construct phenomenologically interesting gauge-inv. observables with local information?

Example: scalar field $\varphi(x)$

$$
f_{*} \varphi(x)=\varphi\left(f^{-1}(x)\right) \quad \Rightarrow \quad \varphi(x) \text { only gauge-inv. if }\left\{\begin{array}{l}
x \in \partial \mathscr{M}, \text { as } f^{-1}(x)=x \\
\text { or } \varphi=\text { const }
\end{array}\right.
$$

tension between usual notion of bulk locality (in terms of fixed event labeling) and gauge-invariance

Gauge-invariant observables \& locality in gravity

- bulk diffeos are gauge \Rightarrow want observables inv. under those
\Rightarrow a priori not difficult to come by, e.g. any covariant top-form:

$$
O\left[f_{*} \phi\right]=O[\phi] \quad \text { diffeo } f: \mathscr{M} \rightarrow \mathscr{M}
$$

$O[\phi]=\int_{\mathscr{M}} \alpha[\phi]=\int_{\mathscr{M}=f(. \mathscr{M})} f_{*} \alpha[\phi]=O\left[f_{*} \phi\right] \quad$ is gauge-invariant (e.g. $\alpha=R$, then $\left.O[\phi]=S_{E H}[g]\right)$
\Rightarrow but a priori very nonlocal information
how do we construct phenomenologically interesting gauge-inv. observables with local information?

Example: scalar field $\varphi(x)$

$$
f_{*} \varphi(x)=\varphi\left(f^{-1}(x)\right) \quad \Rightarrow \quad \varphi(x) \text { only gauge-inv. if }\left\{\begin{array}{l}
x \in \partial \mathscr{M}, \text { as } f^{-1}(x)=x \\
\text { or } \varphi=\text { const }
\end{array}\right.
$$

\Rightarrow tension between usual notion of bulk locality (in terms of fixed event labeling) and gauge-invariance
will not give up gauge-invariance, but adjust notion of locality
\Rightarrow notion of locality that fails is one based on fixed, non-dynamical - and hence unphysical - reference frames

Dynamical reference frames in gravity

"The theory.... introduces two kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other things, e.g., the electro-magnetic field, the material point, etc. This, in a certain sense, is inconsistent; strictly speaking measuring rods and clocks would have to be represented as solutions of the basic equations..., not, as it were, as theoretically self-sufficient entities..."

Dynamical reference frames in gravity

"The theory.... introduces two kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other things, e.g., the electro-magnetic field, the material point, etc. This, in a certain sense, is inconsistent; strictly speaking measuring rods and clocks would have to be represented as solutions of the basic equations..., not, as it were, as theoretically self-sufficient entities..."
A. Einstein 1951
${ }^{\circ}$ internal frames (tetrad) in SR: different in- and output spaces:
$e_{a}^{\mu} \in \mathrm{O}(3,1) \quad$ group valued frame

- "gauge transformations":

$$
\Lambda^{\mu}{ }_{\nu} e_{a}^{\nu} \quad \Lambda^{\mu}{ }_{\nu} \in \mathrm{SO}_{+}(3,1)
$$

Dynamical reference frames in gravity

"The theory.... introduces two kinds of physical things, i.e., (1) measuring rods and clocks, (2) all other things, e.g., the electro-magnetic field, the material point, etc. This, in a certain sense, is inconsistent; strictly speaking measuring rods and clocks would have to be represented as solutions of the basic equations..., not, as it were, as theoretically self-sufficient entities..."
A. Einstein 1951
internal frames (tetrad) in SR: different in- and output spaces:

$$
e_{a}^{\mu} \in \mathrm{O}(3,1) \quad \text { group valued frame }
$$

- "gauge transformations":

$$
\Lambda_{\nu}^{\mu} e_{a}^{\nu} \quad \Lambda_{\nu}^{\mu} \in \operatorname{SO}_{+}(3,1)
$$

spacetime
dynamical/internal frames in gravity: different in- and output spaces $\mathscr{R}^{-1}[\phi] \in \operatorname{Diff}(\mathscr{M}, \mathcal{O}) \quad$ may be "group valued frame"

- gauge transformations:
$\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1}$
$f \in \operatorname{Diff}(\mathscr{M}) \quad$ frame a set of field-dep. scalars

Dressed observables in a nutshell

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]
Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

Dressed observables in a nutshell

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...] Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant
${ }^{\circ}$ For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos: $\quad x\left[f_{*} \phi\right]=f(x[\phi])$

Dressed observables in a nutshell

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...] Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos: $\quad x\left[f_{*} \phi\right]=f(x[\phi])$
\Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

$$
\begin{aligned}
& \Rightarrow \text { E.g. shoot geodesic in from bdry: } \quad x=x_{\tau, z, W}[g] \\
& \Rightarrow \text { transforms covariantly: } \quad x_{\tau, z, W}\left[f_{*} g\right]=f\left(x_{\tau, z, W}[g]\right) \\
& \text { so, e.g. } O_{\varphi, x}[\phi]=\varphi\left(x_{\tau, z, W}[g]\right) \quad \text { is gauge-inv. }
\end{aligned}
$$

dressed observable: what's the value of scalar at end of geodesic?

Dressed observables in a nutshell

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...] Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

For scalar field means finding dynamical specification $x[\phi]$ of spacetime event s.t. for bulk diffeos: $\quad x\left[f_{*} \phi\right]=f(x[\phi])$
\Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

$$
\begin{aligned}
& \Rightarrow \text { E.g. shoot geodesic in from bdry: } \quad x=x_{\tau, z, W}[g] \\
& \quad \Rightarrow \text { transforms covariantly: } \quad x_{\tau, z, W}\left[f_{*} g\right]=f\left(x_{\tau, z, W}[g]\right) \\
& \text { so, e.g. } O_{\varphi, x}[\phi]=\varphi\left(x_{\tau, z, W}[g]\right) \\
& \text { is gauge-inv. }
\end{aligned}
$$

dressed observable: what's the value of scalar at end of geodesic?

Dynamical frame?

Dressed observables in a nutshell

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...] Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

$$
\text { For scalar field means finding dynamical specification } x[\phi] \text { of spacetime event s.t. for bulk diffeos: } \quad x\left[f_{*} \phi\right]=f(x[\phi])
$$

\Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

$$
\begin{aligned}
& \Rightarrow \text { E.g. shoot geodesic in from bdry: } \quad x=x_{\tau, z, W}[g] \\
& \quad \Rightarrow \text { transforms covariantly: } \quad x_{\tau, z, W}\left[f_{*} g\right]=f\left(x_{\tau, z, W}[g]\right) \\
& \text { so, e.g. } O_{\varphi, x}[\phi]=\varphi\left(x_{\tau, z, W}[g]\right) \\
& \text { is gauge-inv. }
\end{aligned}
$$

dressed observable: what's the value of scalar at end of geodesic?

Dynamical frame: $\quad \mathcal{O}=(\tau, z, W)$ 'local orientation space'

$$
\begin{aligned}
\text { frame } \mathscr{R}[g]: \mathcal{O} \rightarrow \mathscr{M} \quad(\tau, z, W) \mapsto x_{\tau, z, W}[g] \\
\text { gauge-cov. } \mathscr{R}\left[f_{*} g\right]=f \circ \mathscr{R}[g] \quad \text { [Goeller, PH, Kirklin '22] }
\end{aligned}
$$

Dressed observables in a nutshell

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...] Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

$$
\text { For scalar field means finding dynamical specification } x[\phi] \text { of spacetime event s.t. for bulk diffeos: } \quad x\left[f_{*} \phi\right]=f(x[\phi])
$$

\Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

\Rightarrow restrict to $\mathcal{O}_{1} \subset \mathcal{O}$ s.t. injective (e.g. fix bdry vector field W)
\Rightarrow E.g. shoot geodesic in from bdry: $\quad x=x_{\tau, z, W}[g]$
\Rightarrow transforms covariantly: $\quad x_{\tau, z, W}\left[f_{*} g\right]=f\left(x_{\tau, z, W}[g]\right)$
so, e.g. $O_{\varphi, x}[\phi]=\varphi\left(x_{\tau, z, W}[g]\right) \quad$ is gauge-inv.
dressed observable: what's the value of scalar at end of geodesic?

Dynamical frame: $\quad \mathcal{O}=(\tau, z, W)$ 'local orientation space’

$$
\text { frame } \mathscr{R}[g]: \mathcal{O} \rightarrow \mathscr{M} \quad(\tau, z, W) \mapsto x_{\tau, z, W}[g]
$$

$$
\text { gauge-cov. } \mathscr{R}\left[f_{*} g\right]=f \circ \mathscr{R}[g]
$$

[Goeller, PH, Kirklin '22]

Dressed observables in a nutshell

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]
Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

$$
\text { For scalar field means finding dynamical specification } x[\phi] \text { of spacetime event s.t. for bulk diffeos: } \quad x\left[f_{*} \phi\right]=f(x[\phi])
$$

\Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

\Rightarrow restrict to $\mathcal{O}_{1} \subset \mathcal{O}$ s.t. injective (e.g. fix bdry vector field W)
frame field
$\mathscr{R}_{1}^{-1}[g]: \mathcal{N}_{1}[g] \subset \mathscr{M} \rightarrow \mathcal{O}_{1}$
$x \mapsto\left(T(x), Z^{k}(x)\right)$
$\mathcal{O}=(\tau, z, W)$ 'local orientation space’
frame $\mathscr{R}[g]: \mathcal{O} \rightarrow \mathscr{M} \quad(\tau, z, W) \mapsto x_{\tau, z, W}[g]$
gauge-cov. $\left.\mathscr{R}\left[f_{*} g\right]=f \circ \mathscr{R}[g] \quad[G o e l l e r, ~ P H, ~ K i r k l i n ~ ' 22] ~\right] ~$

Dressed observables in a nutshell

[Giddings, Donnelly, Harlow, Shenker, Stanford, ...]
Aim: given some "naked" (non-invariant) field quantity, "dress" it with suitable DoFs to composite operator that is invariant

$$
\text { For scalar field means finding dynamical specification } x[\phi] \text { of spacetime event s.t. for bulk diffeos: } \quad x\left[f_{*} \phi\right]=f(x[\phi])
$$

\Rightarrow often, "dressing" means "anchoring" the non-invariant quantity to asymptotia where gauge diffeos act trivially

\Rightarrow restrict to $\mathcal{O}_{1} \subset \mathcal{O}$ s.t. injective (e.g. fix bdry vector field W)
frame field
$\mathscr{R}_{1}^{-1}[g]: \mathcal{N}_{1}[g] \subset \mathscr{M} \rightarrow \mathcal{O}_{1}$
$x \mapsto\left(T(x), Z^{k}(x)\right)$
$\mathcal{O}=(\tau, z, W)$ 'local orientation space’

$$
\text { frame } \mathscr{R}[g]: \mathcal{O} \rightarrow \mathscr{M} \quad(\tau, z, W) \mapsto x_{\tau, z, W}[g]
$$

$$
\text { gauge-cov. } \mathscr{R}\left[f_{*} g\right]=f \circ \mathscr{R}[g] \quad[\text { Goeller, PH, Kirklin '22] }
$$

Covariant relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Covariant relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

If $A\left[f_{*} \phi\right]=f_{*} A[\phi]$ a covariant local quantity (e.g. tensor field) on spacetime, get frame-dressed observable:
$\longrightarrow O_{A, \mathscr{R}}[\phi]=(\mathscr{R}[\phi])^{*} A[\phi]$
gauge inv.
observable on the local frame orientation space ©

Covariant relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

If $A\left[f_{*} \phi\right]=f_{*} A[\phi]$ a covariant local quantity (e.g. tensor field) on spacetime, get frame-dressed observable:
locally deparametrized field theory
(no more gauge symmetry)
observable on the local frame orientation space ©
relational observable
answers "what is the value of (certain component of) A at the event in spacetime, where the frame field \mathscr{R}^{-1} is in local orientation $o \in \mathcal{O}$?"

dressed = covariant relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

If $A\left[f_{*} \phi\right]=f_{*} A[\phi]$ a covariant local quantity (e.g. tensor field) on spacetime, get frame-dressed observable:

dressed and cov. rel. obs are equivalent/unified if frame (scalar) fields allowed to be general (so allowed to be built locally or non-locally from matter or metric)
\Rightarrow equips dressed observable with clear interpretation

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime
$O_{\varphi, x}[\phi]=\int_{\mathscr{M}} d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(Z^{k}(y)-\xi^{k}\right)\left|\frac{\partial Z}{\partial y}\right|$
relational observable
answers "what is the value of φ at the event $x[\phi]$ in spacetime, where the reference fields take values ξ^{k} ?"

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime
$O_{\varphi, x}[\phi]=\int_{\mu}\left(d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(Z^{k}(y)-\xi^{k}\right)\left|\frac{\partial Z}{\partial y}\right| \quad\right.$ cov. top-form $\alpha\left[f_{*} \phi\right]=f_{*} \alpha[\phi]$
relational observable
answers "what is the value of φ at the event $x[\phi]$ in spacetime, where the reference fields take values ξ^{k} ?"

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime

$$
O_{\varphi, x}[\phi]=\int_{\mathscr{M}} d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(Z^{k}(y)-\xi^{k}\right)\left|\frac{\partial Z}{\partial y}\right| \quad \text { relation to cov. rep.? }
$$

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime

$$
O_{\varphi, x}[\phi]=\int_{\mathscr{M}} d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(Z^{k}(y)-\xi^{k}\right)\left|\frac{\partial Z}{\partial y}\right| \quad \text { relation to cov. rep.? } \quad \text { set } \mathscr{R}^{-1}[\phi]=Z \text { and } \xi=o
$$

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime

$$
O_{\varphi, \mathscr{R}}[\phi](o)=\int_{\mathscr{M}} d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(\mathscr{R}^{-1}(y)-o\right)\left|\frac{\partial \mathscr{R}^{-1}}{\partial y}\right|
$$

$$
\text { set } \mathscr{R}^{-1}[\phi]=Z \text { and } \xi=o
$$

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime

$$
\begin{array}{rlr}
O_{\varphi, \mathscr{R}}[\phi](o) & =\int_{\mathscr{M}} d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(\mathscr{R}^{-1}(y)-o\right)\left|\frac{\partial \mathscr{R}^{-1}}{\partial y}\right| & \text { set } \mathscr{R}^{-1}[\phi]=Z \text { and } \xi=o \\
& =\varphi(\mathscr{R}(o))=(\mathscr{R})^{*} \varphi(o) \quad \text { equivalent to our construction } &
\end{array}
$$

rel. observable "what's the value of scalar at event where frame field is in orientation o ?"

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime

$$
\begin{aligned}
O_{\varphi, \mathscr{R}}[\phi](o) & =\int_{\mathscr{M}} d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(\mathscr{R}^{-1}(y)-o\right)\left|\frac{\partial \mathscr{R}^{-1}}{\partial y}\right| \chi_{\mathscr{N}} \\
& =\varphi(\mathscr{R}(o))=(\mathscr{R})^{*} \varphi(o) \quad \quad \text { equivalent to our construction }
\end{aligned}
$$

rel. observable "what's the value of scalar at event where frame field is in orientation o ?"
\Rightarrow can generalise to non-globally defined frames via characteristic fct $\chi_{\mathcal{N}[\phi]}$ of frame image $\mathscr{N}[\phi] \subset \mathscr{M}$

Single-integral relational observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime

$$
\begin{aligned}
O_{\varphi, \mathscr{R}}[\phi](o) & =\int_{\mathscr{M}} d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(\mathscr{R}^{-1}(y)-o\right)\left|\frac{\partial \mathscr{R}^{-1}}{\partial y}\right| \chi_{\mathscr{N}} \\
& =\varphi(\mathscr{R}(o))=(\mathscr{R})^{*} \varphi(o) \quad \quad \text { equivalent to our construction }
\end{aligned}
$$

rel. observable "what's the value of scalar at event where frame field is in orientation o ?"
\Rightarrow can generalise to non-globally defined frames via characteristic fct $\chi_{\mathcal{N}[\phi]}$ of frame image $\mathscr{N}[\phi] \subset \mathscr{M}$

+ general smearings and tensor fields

Single-integral = covariant rel. observables

[DeWitt, Marolf, Giddings, Chataignier,
Aim: localize non-inv. quantities relative to reference scalar fields built from field content \Rightarrow some gauge cov. frame $\mathscr{R}^{-1}\left[f_{*} \phi\right]=\mathscr{R}^{-1}[\phi] \circ f^{-1} \quad$ (typically locally built from matter)

Toy example: Z-model [Giddings, Marolf, Hartle '06] 4 scalar reference fields Z^{k} parametrizing spacetime

$$
\begin{aligned}
O_{\varphi, \mathscr{R}}[\phi](o) & =\int_{\mathscr{M}} d^{4} y \sqrt{|g|} \varphi(y) \delta^{4}\left(\mathscr{R}^{-1}(y)-o\right)\left|\frac{\partial \mathscr{R}^{-1}}{\partial y}\right| \chi_{\mathscr{N}} \\
& =\varphi(\mathscr{R}(o))=(\mathscr{R})^{*} \varphi(o) \quad \quad \text { equivalent to our construction }
\end{aligned}
$$

rel. observable "what's the value of scalar at event where frame field is in orientation o ?"
\Rightarrow can generalise to non-globally defined frames via characteristic fct $\chi_{\mathcal{N}[\phi]}$ of frame image $\mathscr{N}[\phi] \subset \mathscr{M}$

+ general smearings and tensor fields
single-integral and covariant relational observables equivalent

Power series representation of relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

Power series representation of relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

relation cov. \& can. PS: choose Cauchy slice Σ
$\Rightarrow \quad$ presymplectic form $\quad \Omega_{\Sigma}$
[Lee, Wald '90]

mod out deg. directions

Power series representation of relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

relation cov. \& can. PS: choose Cauchy slice Σ

$$
\Rightarrow \quad \text { presymplectic form } \quad \Omega_{\Sigma}
$$

[Lee, Wald '90]

mod out deg. directions
covariant relational observable restricts to canonical one

$$
O_{A, R}[\phi]=\tilde{O}_{A, R} \circ \pi_{\Sigma}[\phi]
$$

Power series representation of relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

relation cov. \& can. PS: choose Cauchy slice Σ
$\Rightarrow \quad$ presymplectic form Ω_{Σ}
[Lee, Wald '90]

mod out deg. directions

$$
O_{A, R}[\phi]=\tilde{O}_{A, R} \circ \pi_{\Sigma}[\phi]
$$

under certain restrictions, canonical one can be written as power series:

Power series representation of relational observables

Aim: localize non-inv. quantities relative to reference scalar fields built from field content in canonical formulation

relation cov. \& can. PS: choose Cauchy slice Σ
$\Rightarrow \quad$ presymplectic form Ω_{Σ}
[Lee, Wald '90]

$$
O_{A, R}[\phi]=\tilde{O}_{A, R} \circ \pi_{\Sigma}[\phi]
$$

under certain restrictions, canonical one can be written as power series:

Quasilocal generalizations

Internal frame changes

restrict to injective frames with overlapping images $\mathcal{N}_{1}[\phi] \cap \mathcal{N}_{2}[\phi] \neq \varnothing$
change of frame map:

$$
\mathscr{R}_{1 \rightarrow 2}[\phi]=\mathscr{R}_{2}^{-1}[\phi] \circ \mathscr{R}_{1}[\phi]: \mathcal{O}_{1} \rightarrow \mathcal{O}_{2}
$$

dynamical coord. change

Internal frame changes

restrict to injective frames with overlapping images $\mathcal{N}_{1}[\phi] \cap \mathcal{N}_{2}[\phi] \neq \varnothing$
change of frame map:

$$
\mathscr{R}_{1 \rightarrow 2}[\phi]=\mathscr{R}_{2}^{-1}[\phi] \circ \mathscr{R}_{1}[\phi]: \mathcal{O}_{1} \rightarrow \mathcal{O}_{2}
$$

dynamical coord. change

Note: $\quad \mathscr{R}_{1 \rightarrow 2}[\phi]=\left(\mathscr{R}_{1}[\phi]\right) * \mathscr{R}_{2}^{-1}[\phi]=O_{\mathscr{R}_{2}^{-1}, \mathscr{R}_{1}}[\phi]$
is rel. observable describing 2nd frame rel. to 1st \Rightarrow gauge-inv.

Internal frame changes

restrict to injective frames with overlapping images $\mathcal{N}_{1}[\phi] \cap \mathcal{N}_{2}[\phi] \neq \varnothing$
change of frame map:

$$
\mathscr{R}_{1 \rightarrow 2}[\phi]=\mathscr{R}_{2}^{-1}[\phi] \circ \mathscr{R}_{1}[\phi]: \mathcal{O}_{1} \rightarrow \mathcal{O}_{2}
$$

dynamical coord. change

Note: $\quad \mathscr{R}_{1 \rightarrow 2}[\phi]=\left(\mathscr{R}_{1}[\phi]\right) * \mathscr{R}_{2}^{-1}[\phi]=O_{\mathscr{R}_{2}^{-1}, \mathscr{R}_{1}}[\phi]$
is rel. observable describing 2nd frame rel. to 1st \Rightarrow gauge-inv.
\Rightarrow relational observables transform as

$$
O_{T, \mathscr{R}_{2}}[\phi]=\left(\mathscr{R}_{1 \rightarrow 2}[\phi]\right)_{*} O_{T, \mathscr{R}_{1}}[\phi]
$$

Recall: general covariance

"All the laws of physics are the same in every reference frame."

can only compare states and observables in the overlap of two fixed (non-dyn.) coordinate frames

$$
E_{A}[\phi]=0 \quad \Leftrightarrow \quad E_{B}[\phi]=0
$$

spaces of solutions (local phase spaces) for the overlap relative to A and B are the same
\Rightarrow tension with gauge symmetry: colloquial statement of general covariance refers to quantities that are not gauge-invariant

Recall: general covariance

"All the laws of physics are the same in every reference frame."

can only compare states and observables in the overlap of two fixed (non-dyn.) coordinate frames

$$
E_{A}[\phi]=0 \quad \Leftrightarrow \quad E_{B}[\phi]=0
$$

spaces of solutions (local phase spaces) for the overlap relative to A and B are the same
\Rightarrow tension with gauge symmetry: colloquial statement of general covariance refers to quantities that are not gauge-invariant

can we have a formulation of general frame covariance that is gauge-invariant?

Dynamical frame covariance: a relational update of general covariance

\Rightarrow can map EoM to orientation spaces
\Rightarrow gauge-inv. EoMs for relational fields (in terms of relational observables)
\Rightarrow can show: for gen. cov. Lagrangian $L\left[f_{*} \phi\right]=f_{*} L[\phi]$

$$
E_{1}\left[\phi_{s}\right]=0 \quad \Leftrightarrow \quad E_{2}\left[\phi_{s}\right]=0
$$

$$
\text { EoMs relative to frames } \mathscr{R}_{1} \text { and } \mathscr{R}_{2}
$$

spaces of relational solutions (local physical phase spaces) for the overlap the same

Summary

o one approach for all: dynamical frames help to unify and generalize different approaches to observables in gravity

\Rightarrow suitably extended they are equivalent (up to fine print for canonical approach)
relational/dyn. frame extension of general covariance to gauge-inv. descriptions of EoMs

Summary

- one approach for all: dynamical frames help to unify and generalize different approaches to observables in gravity

covariant rep.
[Ferrero, Fredenhagen, Fröb, Khavkine, Rejzner, ...]

canon. power-series rep.
[Dittrich, Thiemann, ...]
\Rightarrow suitably extended they are equivalent (up to fine print for canonical approach)

- relational/dyn. frame extension of general covariance to gauge-inv. descriptions of EoMs
relational observables in QT (depends on approach)
for QRFs: PH, Smith, Lock '21; de la Hamette, Galley, PH, Müller, Loveridge '21 perturbative AQFT: Rejzner, Fröb,

