

New Approaches in Flat Space Holography and Observational Signatures

Summary: 2205.01799 Work with: Verlinde 1902.08207, 1911.02018, 2208.01059 KZ 2012.05870 Banks 2108.04806 Gukov, Lee, 2205.02233 Li, Lee, Chen 2209.07543 He, Raclariu, 2305.14411 Zhang 2304.12349

Kathryn Zurek

Motivation: Understanding Spacetime Fluctuations And Possible Observational Signatures

• Old view: quantum gravity effects visible only at ultrashort distances

 $l_p \sim 10^{-35} \text{ m} \sim 10^{-43} \text{ s}$

Motivation: Understanding Spacetime Fluctuations And Possible Observational Signatures

• New view: Entanglement, non-local and infrared effects are now broadly understood to be important

• Naive EFT seems to break down

Studied extensively in context of BH

$$l_p \sim 10^{-35} \text{ m} \sim 10^{-43} \text{ s}$$

UV effects may not decouple in IR

Thermodynamics of Black Holes Entropy and Information in Black Holes

Entropy is Information it counts the number of bits

Quantum Fuzziness At black hole horizons

• Degrees of freedom PIXELS can fluctuate thermodynamically

$$S = \frac{A}{4G} \qquad \qquad T \sim \frac{1}{R}$$

• Causes mass of black hole to fluctuate, which shifts horizon

$$\delta R \sim \sqrt{l_p R}$$

Unobservably small in a black hole

$$\delta R^2 \sim \frac{R^2}{\sqrt{S_{\rm BH}}}$$

Marolf 2003

Brownian Noise **UV effects can be transmuted in infrared**

Brownian Noise UV effects can be transmuted in infrared

The World as a Hologram **Certain Physics at Horizons has Universal Characteristics**

Black Hole Horizon

Cosmological Horizon

The information of quantum gravity is encapsulated in the number of degrees of freedom on the Area bounding a volume

Flat Space Horizon

Why would flat empty space have the same uncertainty as a (quantum) black hole?

An Experimental Measurement Defines a Horizon

• Some horizon features are Universal

• Whether black hole, cosmological or light sheet

Black Hole - (Empty!) Causal Diamond Dictionary Mapping is precise in certain contexts (such as AdS/CFT)

• Horizon

Black Hol

- Black Hole Temperature
- **Black Hole Mass**
- Thermodynamic Free Energy
- Thermodynamic Entropy

- Horizon defined by null rays
- Size of Causal Diamond $T \sim 1/L$
- Modular Fluctuation $M = \frac{1}{2\pi L} \left(K - \left\langle K \right\rangle \right)$
- Partition Function

$$F = -\frac{1}{\beta} \log \operatorname{tr} \left(e^{-\beta K} \right)$$

• Entanglement Entropy $S = \langle K \rangle = \frac{A}{\Delta G}$

Black Holes Vs. Flat Empty Space *E. Verlinde, KZ* 1902.08207 **The Topological Black Hole** *E. Verlinde, KZ* 1911.02018

• As long as we are interested in only the part of spacetime inside the causal diamond, the metric in some common spacetimes can be mapped to "topological black hole"

$$ds^{2} = dudv + dy^{2}$$

$$ds^{2} = -f(R)dT^{2} + \frac{dR^{2}}{f(R)} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$f(R) = 1 - \frac{R}{L} + 2\Phi$$

Our Argument: Calculate Vacuum Fluctuation Step 1

- Number of holographic degrees of freedom is the entropy $S = \frac{A}{4G_N} = \frac{8\pi^2 R^2}{l_m^2}$
- Each d.o.f. has temperature set by size of volume $T = \frac{1}{4\pi R}$ • Statistical argument: $\Delta M \sim \sqrt{S}$

$$\bar{S}T = \frac{1}{\sqrt{2}l_p}$$

Are these 2 steps justified? (The effect is large)

these degrees of freedom have QM fluctuations?

$$\Delta M \sim \sqrt{ST}$$

• Does spacetime respond to these fluctuations (in a particular way)?

 $\Phi \sim h_{uu} h_{vv}$

• Do horizons in flat empty space have an entropy associated with them, and do

$$= \frac{1}{\sqrt{2l_p}}$$

$$\sim \frac{\delta L^2}{L^2}$$

What can we test in interferometers? **1. Fundamental Uncertainty in Light Ray Operators**

$$X^{v}(y) = \tilde{\ell}_{p}^{2} \int_{-L}^{L} du \int d^{d-2}y' f(y, y') T_{uu}$$
$$X^{u}(y) = \tilde{\ell}_{p}^{2} \int_{-L}^{L} dv \int d^{d-2}y' f(y, y') T_{vv}(y) = \tilde{\ell}_{p}^{2} \int_{-L}^{L} dv \int d^{d-2}y' f(y, y') T_{vv}(y)$$

$$[X^+(z,\bar{z}), X^-(z',\bar{z}')] = 8\pi i G_N G(z - z')$$

Modular Hamiltonian is shockwave on-shell action!

$$K = \frac{1}{8\pi G_N} \int d^2 y \lim_{y \to y'} \nabla_y \nabla_{y'} X^{-1}$$

 $X^{+}(y)X^{-}(y')$

w/Verlinde 2208.01059

What can we test in interferometers? 1. Fundamental Uncertainty in Light Ray Operators

$$X^{v}(y) = \tilde{\ell}_{p}^{2} \int_{-L}^{L} du \int d^{d-2}y' f(y, y') T_{uu}$$
$$X^{u}(y) = \tilde{\ell}_{p}^{2} \int_{-L}^{L} dv \int d^{d-2}y' f(y, y') T_{vv}(y) = \tilde{\ell}_{p}^{2} \int_{-L}^{L} dv \int d^{d-2}y' f(y, y') T_{vv}(y)$$

$$[X^+(z,\bar{z}), X^-(z',\bar{z}')] = 8\pi i G_N G(z - z')$$

$$\langle K \rangle = S_{\text{ent}} = \langle \Delta$$

What can we test in interferometers? **2. Accumulation/Memory into the infrared...**

Multiple shocks

w/Banks 2108.04806

Are these postulates reasonable? For flat empty space

- First postulate can be derived from celestial "soft" commutation relations
 - Commutation relations appearing in celestial holography are gauge equivalent to 't Hooft commutation relations (w/He&Raclariu 2305.14411)

$$[P_{-}(z,\bar{z}), X^{-}(z',\bar{z}')] = -\frac{1}{32\pi G_{N}} \Box_{z}(\Box_{z}+2) [N(z,\bar{z}), C(z',\bar{z}')]$$
$$= -\frac{i}{4\pi} \Box_{z}(\Box_{z}+2) (S \log|z-z'|^{2})$$
$$= -i\gamma^{z\bar{z}} \delta^{(2)}(z-z').$$

- 't Hooft commutation relations imply modular relation (w/E.Verlinde 2208.01059)
- 't Hooft commutation relations gives rise to a quantum noise term that turns EE into hydro (w/Zhang 2304.12349) —> accumulation of fluctuations

Hydrodynamics of Spacetime **Connecting UV Physics to the Infrared**

- i.e. Einstein Equation Reduces to a Navier-Stokes Equation

$$\left(\frac{d-2}{L^2} - \nabla_{\perp}^2\right)h_{uu} =$$

• With Quantum Source Zhang, KZ 2304.12349

$$\left(\frac{d-2}{L^2} - \nabla_{\perp}^2\right) \left[h_{uu}(u, \mathbf{x}_{\perp}), h_{vv}(v, \mathbf{x}_{\perp}')\right]$$

• Hydrodynamics has been studied extensively as an effective description of gravity

= () $[X^+(z,\bar{z}), X^-(z',\bar{z}')] = 8\pi i G_N G(z-z')$

Equivalent to 't Hooft commutation relation!

 $\left[\right] = \frac{i}{2} \ell_p^{d-2} \delta(u - u_0) \delta(v - v_0) \delta^{d-2} (\mathbf{x}_\perp - \mathbf{x}'_\perp)$

At a Light-Sheet Horizon Coordinates Reduced by One

$$\left(\frac{d-2}{L^2} - \nabla_{\perp}^2\right) \left[h_{uu}(u, \mathbf{x}_{\perp}), h_{vv}(v, \mathbf{x}_{\perp}')\right]$$

- What to do at the light front?
- Smear out horizon into stretched horizon of Planckian width
- Utilize Robertson uncertainty relation on min uncertainty state

$$\left\langle h_{uu}(u, \mathbf{x}_{\perp}) h_{uu}(u', \mathbf{x}_{\perp}') \right\rangle = \frac{\ell_p^{d-2}}{2\pi \tilde{\ell}_p} \delta$$
$$\left\langle h_{vv}(v, \mathbf{x}_{\perp}) h_{vv}(v', \mathbf{x}_{\perp}') \right\rangle = \frac{\ell_p^{d-2}}{2\pi \tilde{\ell}_p} \delta$$

At a Light-Sheet Horizon **Integrated Quantum Uncertainty**

d=4

 $\delta T_{\rm r.t.}^2 \sim$

 $\langle h_{uu}(u, \mathbf{x}_{\perp}) h_{uu}(u', \mathbf{x}'_{\perp}) \rangle = \frac{\ell_p^{d-2}}{2\pi \tilde{\ell}_p} \delta(u - u') f(\mathbf{x}_{\perp}; \mathbf{x}'_{\perp})$ $\left\langle h_{vv}(v, \mathbf{x}_{\perp}) h_{vv}(v', \mathbf{x}_{\perp}') \right\rangle = \frac{\ell_p^{d-2}}{2\pi \tilde{\ell}_p} \delta$

$$l_p T_{\rm r.t.}$$

$$f(v - v')f(\mathbf{x}_{\perp}; \mathbf{x}'_{\perp})$$

One Mountain, Many Faces w/He,Sivaramakrishnan,Wilson **Equivalent physical descriptions**

G. Gravitational Effective Action

A. AdS/CFT

w/Verlinde 1911.02018

H. "Pixellon"

KZ 2012.05870 w/Lee,Li,Chen 2209.07543

w/*Verlinde*, 2208.01059

C. Gravitational effective action / saddle point expansion w/Banks, 2108.04806

F. 2-d Models, e.g. JT gravity *w/Gukov, Lee 2205.02233*

E. Hydrodynamics EFT

w/Zhang 2304.12349

D. Shockwaves and Gravitational Memory

w/He, Raclariu 2305.14411

Experiment GQUEST Gravity from the Quantum Entanglement of SpaceTime

• Search for Fluctuations from Quantum Gravity

Caltech

Office of Science

w/*Verlinde*, 2208.01059

B. Light Ray Operators

w/Banks, 2108.04806

F. 2-d Models, e.g. JT gravity

w/Gukov, Lee 2205.02233

E. Hydrodynamics EFT

w/Zhang 2304.12349

D. Shockwaves and Gravitational Memory

w/He, Raclariu 2305.14411

C. Gravitational effective action / saddle point expansion

