

Causality violations in Lorentzian path integrals for discrete gravity

Seth Kurankyi Asante, FSU Jena arXiv:2112.15387

Bianca Dittrich, Sebastian Steinhaus, Hal Haggard, José Diogo Simão, José Padua-Argüelles

Quantum Gravity 2023

Radboud University, Nijmegen

July 11 , 2023

Gravitational Path Integral

Non-perturbative quantum gravity

Many approaches-
$$\mathscr{Z} = \int_{M/\text{Diff}(M)} [\mathscr{D}\mu(\text{geom})] e^{-iS[\text{geom}]}$$

What are the fundamental degrees of freedom for QG?

Gravitational Path Integral

Non-perturbative quantum gravity

Many approaches- $\mathscr{Z} = \int_{M/\text{Diff}(M)} [\mathscr{D}\mu(\text{geom})] e^{-iS[\text{geom}]}$

What are the fundamental degrees of freedom for QG?

Path Integral approaches

[Bianca's talk]

- \star Computing Lorentzian path integrals
 - Deal with convergence, high oscillatory integrals. Picard-Lefschetz methods
 - Euclidean path integral via Wick rotation of limited usage

Gravitational Path Integral

Non-perturbative quantum gravity

Many approaches- $\mathscr{Z} = \int_{M/\text{Diff}(M)} [\mathscr{D}\mu(\text{geom})] e^{-iS[\text{geom}]}$

What are the fundamental degrees of freedom for QG?

Path Integral approaches

[Bianca's talk]

- \star Computing Lorentzian path integrals
 - Deal with convergence, high oscillatory integrals. Picard-Lefschetz methods
 - Euclidean path integral via Wick rotation of limited usage

 \star What configurations should be summed over in path integral?

- impose causality conditions on geometries?
- Allow topology change? Picard-Lefschetz can inform

2

Causality Violations

2D gravity

[Sorkin, Luoko]

Causality violating configurations gets imaginary contributions to the action

- Topology changes

Which configurations are enhanced or suppressed?

[Sorkin, Luoko '97]

2D: Supress trouser-like configurations

[Dittrich, Padua-Argüelles, SKA]

4D: Enhancing Yarmulke configurations lead to non-sensible results

Causality Violations

2D gravity

[Sorkin, Luoko]

Causality violating configurations gets imaginary contributions to the action

- Topology changes

Yarmulke

Which configurations are enhanced or suppressed?

2D: Supress trouser-like configurations [Sorkin, Luoko '97]

[Dittrich, Padua-Argüelles, SKA]

4D: Enhancing Yarmulke configurations lead to non-sensible results

Is there a general mechanism to deal with causal violations?

Outline

Lorentzian Regge Calculus

- Lorentzian Angles
- Analytical Continuation

Path Integrals: Picard Lefschetz

- deSitter Cosmology examples
- Mechanism to suppress causal irregularities

Outline

Lorentzian Regge Calculus

- Lorentzian Angles
- Analytical Continuation

Path Integrals: Picard Lefschetz

• deSitter Cosmology examples

Mechanism to suppress causal irregularities

Regge Calculus [Regge '61]

Discretization of Einstein Hilbert action (length/metric formulation)

Regge Calculus [Regge '61]

Discretization of Einstein Hilbert action (length/metric formulation)

- based on simplicial discretization

- use Minkowski flat simplices: piecewise flat geometry

- curvature δ_h distributed on co-dim 2 surfaces
- dynamics: Regge equations of motion
 - variations of edge lengths
- other variables possible: area, area-angle Regge calculus

Lorentzian spacetimes

Lorentzian Angles

[Alexandrov '01, Sorkin '19, Jia '21, SKA, Dittrich, Padua-Argüelles '21]

Lorentzian spacetimes

Lorentzian Angles

[Alexandrov '01, Sorkin '19, Jia '21, SKA, Dittrich, Padua-Argüelles '21]

 $\theta_{12} = \cosh^{-1}(x_1 \cdot x_2)$ $\theta_{13} = \sinh^{-1}(x_1 \cdot x_3) \mp \frac{\pi i}{2}$ $\theta_{14} = -\cosh^{-1}(-x_1 \cdot x_4) \mp \pi i$ $\theta_{35} = \cosh^{-1}(x_3 \cdot x_5) \mp \pi i$

Lorentzian spacetimes

Lorentzian Angles

[Alexandrov '01, Sorkin '19, Jia '21, SKA, Dittrich, Padua-Argüelles '21]

Choice of $\mp i\pi/2$ for light ray crossings

$$\theta_{12} = \cosh^{-1}(x_1 \cdot x_2)$$

$$\theta_{13} = \sinh^{-1}(x_1 \cdot x_3) \mp \frac{\pi i}{2}$$

$$\theta_{14} = -\cosh^{-1}(-x_1 \cdot x_4) \mp \pi i$$

$$\theta_{35} = \cosh^{-1}(x_3 \cdot x_5) \mp \pi i$$

Two choices L_{\pm} can either enhance or suppress irregular configurations

(Hinge) Causality

2D Triangulations

Regular configuration

Causal violation generic in Regge Calculus

Irregular configurations:

Trouser-like

(Hinge) Causality

2D Triangulations

Regular configuration

Causal violation generic in Regge Calculus

Irregular configurations:

[Jordan, Loll '13]

Higher Dimensions: Other causality conditions Edge causality, Vertex Causality

7

Complexification

Deform path integral into complex plane

Simple Complexification:

$$a \star b = a_0 b_0 \, e^{i\phi} + \sum_i a_i b_i \qquad |a|_{\star}^2 = a \star a \qquad a, b \in \mathbb{R}^n$$

Complexification

Deform path integral into complex plane

Simple Complexification:

$$a \star b = a_0 b_0 \ e^{i\phi} + \sum_i a_i b_i \qquad |a|_{\star}^2 = a \star a \qquad a, b \in \mathbb{R}^n$$

Complex angles

$$\theta = -i\log\frac{a \star b + |a \wedge b|_{\star}}{|a|_{\star}|b|_{\star}} \qquad \qquad \theta(\phi) = \begin{cases} \theta^+ & \text{for } \phi \in (0,\pi) \\ \theta^- & \text{for } \phi \in (-\pi,0) \end{cases}$$

Generalizes complex dihedral angles in Regge calculus

Complexification

Deform path integral into complex plane

Simple Complexification:

$$a \star b = a_0 b_0 \, e^{i\phi} + \sum_i a_i b_i \qquad |a|_{\star}^2 = a \star a \qquad a, b \in \mathbb{R}^n$$

Complex angles

$$\theta = -i \log \frac{a \star b + |a \wedge b|_{\star}}{|a|_{\star} |b|_{\star}}$$

8

$$\theta(\phi) = \begin{cases} \theta^+ & \text{for } \phi \in (0,\pi) \\ \theta^- & \text{for } \phi \in (-\pi,0) \end{cases}$$

Generalizes complex dihedral angles in Regge calculus

Analytical continuation

- extend $\theta(\phi)$ to the region $\phi \in (-2\pi, 2\pi]$
- 4π periodic

Complex Regge Calculus

Analytical continued dihedral angles

$$\delta^{\pm}(\phi) = 2\pi \pm \sum_{\sigma} \theta^{\pm}_{\sigma}(\phi)$$

 $\delta^+ = \delta^-$ regular configurations

[Dittrich, Padua-Argüelles, SKA]

action

$$S_{\mathrm{R}}[\mathcal{T}] = \sum_{\mathrm{hinges}} |\operatorname{Vol}_{h}| \,\delta_{h} - \Lambda \sum_{\sigma} |\operatorname{Vol}_{\sigma}|$$

Complex Regge Calculus

Analytical continued dihedral angles

 $\delta^{\pm}(\phi) = 2\pi \pm \sum_{\sigma} \theta^{\pm}_{\sigma}(\phi)$ $\delta^{+} = \delta^{-} \text{ regular configurations}$

Complex Regge action

No ambiguity for regular configurations

$$S_{\rm R}^{L_+} = S_{\rm R}^{L_-}$$

Branch cuts for irregular configurations

[Dittrich, Padua-Argüelles, SKA]

Lorentzian data

 $\phi = -\pi$

 $-iS_{\rm R}^{L_+} \downarrow -iS_{\rm R}^{L_-}$

9

Outline

Lorentzian Regge Calculus

• Lorentzian Angles

• Analytical Continuation

Path Integrals: Picard Lefschetz

• deSitter Cosmology examples

Mechanism to suppress causal irregularities

Lorentzian Path Integrals

Idea:

[Witten '01 '09, Vassiliev, Tanizaki, Koike,...]

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$Z = \int_X \mathrm{d}x \, e^{iS(x)/\hbar} \qquad \longrightarrow \qquad Z = \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \mathrm{d}x \, e^{iS(x)/\hbar}$$

Summary:

Lorentzian Path Integrals

Idea:

[Witten '01 '09, Vassiliev, Tanizaki, Koike,...]

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$Z = \int_X \mathrm{d}x \, e^{iS(x)/\hbar} \qquad \longrightarrow \qquad Z = \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \mathrm{d}x \, e^{iS(x)/\hbar}$$

Summary:

- Complexify integration domain $X \to X^{\mathbb{C}}$

Lorentzian Path Integrals

Idea:

[Witten '01 '09, Vassiliev, Tanizaki, Koike,...]

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$Z = \int_X \mathrm{d}x \, e^{iS(x)/\hbar} \qquad \longrightarrow \qquad Z = \sum_{\sigma} n_{\sigma} \int_{\mathcal{J}_{\sigma}} \mathrm{d}x \, e^{iS(x)/\hbar}$$

Summary:

- Complexify integration domain $X \to X^{\mathbb{C}}$

- Find critical points of action in the complex domain $p_{\sigma} \in X^{\mathbb{C}}$

Lorentzian Path Integrals

Idea:

[Witten '01 '09, Vassiliev, Tanizaki, Koike,...]

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$Z = \int_X \mathrm{d}x \, e^{iS(x)/\hbar} \qquad \longrightarrow \qquad Z = \sum_{\sigma} n_{\sigma} \int_{\mathcal{F}_{\sigma}} \mathrm{d}x \, e^{iS(x)/\hbar}$$

Summary:

- Complexify integration domain $X \to X^{\mathbb{C}}$

- Find critical points of action in the complex domain $p_{\sigma} \in X^{\mathbb{C}}$

- Use critical points in the complex domain to find integration cycles Lefschetz thimbles \mathcal{F}_{σ} Along thimbles:

Real part of integrand decreases monotonically while imaginary part is constant

Lorentzian Path Integrals

Idea:

[Witten '01 '09, Vassiliev, Tanizaki, Koike,...]

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$Z = \int_X \mathrm{d}x \, e^{iS(x)/\hbar} \qquad \longrightarrow \qquad Z = \sum_{\sigma} n_{\sigma} \int_{\mathcal{F}_{\sigma}} \mathrm{d}x \, e^{iS(x)/\hbar}$$

Summary:

- Complexify integration domain $X \to X^{\mathbb{C}}$

- Find critical points of action in the complex domain $p_{\sigma} \in X^{\mathbb{C}}$

- Use critical points in the complex domain to find integration cycles Lefschetz thimbles \mathcal{J}_{σ} Along thimbles:

Real part of integrand decreases monotonically while imaginary part is constant

- Express real integration domain in terms of Lefschetz thimbles X

$$X = \sum_{\sigma} n_{\sigma} \mathcal{F}_{\sigma}$$

FLRW spacetimes

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander....]

No boundary proposal

Features:

Discrete: Ball model

Topology changing configuration

FLRW spacetimes

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander....]

No boundary proposal

deSitter cosmological spacetime

discretization

Features:

Discrete: Ball model

Topology changing configuration

Euclidean saddle points For small a_f Discrete: Shell model

Causal violations at hinges

Lorentzian saddle points

FLRW spacetimes

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander....]

No boundary proposal

deSitter cosmological spacetime

discretization

FLRW spacetimes

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander....]

No boundary proposal

deSitter cosmological spacetime

discretization

 S_h

Hinge Causality-Violations

[Dittrich, Gielen, Schander, SKA, Padua-Argüelles ,..]

Cosmology Examples

Lefschetz thimbles

 $\int \mathrm{d}s_h e^W$

Real part of action decreases along thimbles $\operatorname{Re}(W) < 0$

Thimble along Euclidean axis at $\phi = 2\pi$ leads to $e^{+S^{E}}$ Vilenkin choice opposite Hartle-Hawking choice $e^{-S^{E}}$ Feldbrugge et al..

14

Real part of action decreases along thimbles $\operatorname{Re}(W) < 0$

Thimble along Euclidean axis at $\phi = 2\pi$ leads to $e^{+S^{E}}$ Vilenkin choice opposite Hartle-Hawking choice $e^{-S^{E}}$ Feldbrugge et al..

Cosmology Examples

Deform integration contours

 $ds_h e^W$

Suppression from rotation of integration contour

Include configurations with irregular causalities

Lefschetz thimbles picks the suppressing side of the branch cut. Re(W) < 0

Suppression from rotation of integration contour

Include configurations with irregular causalities

Lefschetz thimbles picks the suppressing side of the branch cut. Re(W) < 0

- Progress in computing Lorentzian path integrals for discrete gravity
- (Hinge) causality-violating configurations have branch cuts for complex Regge action
- Wick rotation determined by dynamics: overcome conformal factor problem

- Progress in computing Lorentzian path integrals for discrete gravity
- (Hinge) causality-violating configurations have branch cuts for complex Regge action
- Wick rotation determined by dynamics: overcome conformal factor problem
- Picard-Lefschetz: Fast convergence along Lefschetz thimbles
- Can allow for causal violations: Examples give suppression via Picard-Lefschetz formalism

- Progress in computing Lorentzian path integrals for discrete gravity
- (Hinge) causality-violating configurations have branch cuts for complex Regge action
- Wick rotation determined by dynamics: overcome conformal factor problem
- Picard-Lefschetz: Fast convergence along Lefschetz thimbles
- Can allow for causal violations: Examples give suppression via Picard-Lefschetz formalism

Outlook:

- Test more features with examples: Higher dimensional integrals
- Application to effective spin foams [Dittrich, Padua-Argüelles '23]
- Causality violations in EPRL/FK spin foam models

- Progress in computing Lorentzian path integrals for discrete gravity
- (Hinge) causality-violating configurations have branch cuts for complex Regge action
- Wick rotation determined by dynamics: overcome conformal factor problem
- Picard-Lefschetz: Fast convergence along Lefschetz thimbles
- Can allow for causal violations: Examples give suppression via Picard-Lefschetz formalism

Outlook:

- Test more features with examples: Higher dimensional integrals
- Application to effective spin foams [Dittrich, Padua-Argüelles '23]
- Causality violations in EPRL/FK spin foam models

THANK YOU!

