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Gravitational Path Integral
Non-perturbative quantum gravity

 What are the fundamental degrees of freedom for QG ?

𝒵 = ∫M/Diff(M)
[𝒟μ(geom)] e−i S[geom]Many approaches- 
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Gravitational Path Integral
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- Deal with convergence, high oscillatory integrals.
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★ Computing Lorentzian path integrals
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Gravitational Path Integral
Non-perturbative quantum gravity

Path Integral approaches

 What are the fundamental degrees of freedom for QG ?

𝒵 = ∫M/Diff(M)
[𝒟μ(geom)] e−i S[geom]

- impose causality conditions on geometries? 

- Allow topology change?

- Deal with convergence, high oscillatory integrals.

Many approaches- 

★ Computing Lorentzian path integrals

★ What configurations should be summed over in path integral ?

- Euclidean path integral via Wick rotation of limited usage

Picard-Lefschetz methods

Picard-Lefschetz can inform

[Bianca’s talk]
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Causality Violations

Yarmulke

Causality violating configurations gets imaginary contributions to the action

Trouser

2D gravity

Which configurations are enhanced or suppressed ?

- Topology changes

[Sorkin, Luoko ]

Enhancing Yarmulke configurations lead to non-sensible results
[Dittrich, Padua-Argüelles, SKA]

[Sorkin, Luoko ’97 ]
Supress trouser-like configurations

4D:

2D:
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Causality Violations

Yarmulke

Causality violating configurations gets imaginary contributions to the action

Trouser

2D gravity

Is there a general mechanism to deal with causal violations?

Which configurations are enhanced or suppressed ?

- Topology changes

[Sorkin, Luoko ]

Enhancing Yarmulke configurations lead to non-sensible results
[Dittrich, Padua-Argüelles, SKA]

[Sorkin, Luoko ’97 ]
Supress trouser-like configurations

4D:

2D:
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Lorentzian Regge Calculus

๏ Lorentzian Angles
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๏ Analytical Continuation

Path Integrals: Picard Lefschetz

๏ deSitter Cosmology examples

๏ Mechanism to suppress causal irregularities
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Discrete gravity
Regge Calculus [Regge ‘61]

Discretization of Einstein Hilbert action

SEH = ∫ℳ
dDx |g | (R − 2Λ) SRegge[𝒯] = ∑

h:hinge

Volh δh − Λ ∑
σ:simplex

Volσ

(length/metric formulation)
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Discrete gravity
Regge Calculus [Regge ‘61]

Discretization of Einstein Hilbert action

SEH = ∫ℳ
dDx |g | (R − 2Λ) SRegge[𝒯] = ∑

h:hinge

Volh δh − Λ ∑
σ:simplex

Volσ

- based on simplicial discretization

- curvature  distributed on co-dim 2 surfacesδh

- use Minkowski flat simplices: piecewise flat geometry 

- dynamics: Regge equations of motion

(length/metric formulation)

- other variables possible: area, area-angle  Regge calculus

- variations of edge lengths
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Discrete gravity

Lorentzian Angles

Lorentzian spacetimes

𝕄2

S1S2

T2

T1

[Alexandrov ’01, Sorkin ’19, Jia ‘21, SKA, Dittrich, Padua-Argüelles ’21]
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Discrete gravity

Lorentzian Angles

Lorentzian spacetimes

𝕄2

S1S2

T2

T1

x2
x1

x4

x3

x5

θ12 = cosh−1(x1 ⋅ x2)

θ13 = sinh−1(x1 ⋅ x3) ∓
π i
2

θ14 = − cosh−1(−x1 ⋅ x4) ∓ π i

θ35 = cosh−1(x3 ⋅ x5) ∓ π i

[Alexandrov ’01, Sorkin ’19, Jia ‘21, SKA, Dittrich, Padua-Argüelles ’21]
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Discrete gravity

Lorentzian Angles

Lorentzian spacetimes

𝕄2

S1S2

T2

T1

x2
x1

x4

x3

x5

θ12 = cosh−1(x1 ⋅ x2)

θ13 = sinh−1(x1 ⋅ x3) ∓
π i
2

θ14 = − cosh−1(−x1 ⋅ x4) ∓ π i

θ35 = cosh−1(x3 ⋅ x5) ∓ π i

[Alexandrov ’01, Sorkin ’19, Jia ‘21, SKA, Dittrich, Padua-Argüelles ’21]

Choice  of  for light ray crossings∓iπ/2

Two choices  can either enhance or suppress irregular configurations L∓
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(Hinge) Causality

Regular configuration

Causal violation generic in Regge Calculus 

Irregular configurations:

2D Triangulations

YarmulkeTrouser-like 

b
a

b
a

d

c

ee

a

aa
b

cd
c

b

b

d
a

a

e

e



7

(Hinge) Causality

Regular configuration

Causal violation generic in Regge Calculus 

Irregular configurations:

2D Triangulations

Yarmulke

Other causality conditions  Edge causality, Vertex Causality

Trouser-like 

b
a

b
a

d

c

ee

a

aa
b

cd
c

b

b

d
a

a

e

e

[Jordan, Loll ’13 ]

Higher Dimensions: 
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Complexification

a ⋆ b = a0b0 eiϕ +∑
i

aibiSimple Complexification:

Deform path integral into complex plane

|a |2
⋆ = a ⋆ a

[Dittrich, Padua-Argüelles, SKA]

a, b ∈ ℝn
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Complexification

a ⋆ b = a0b0 eiϕ +∑
i

aibiSimple Complexification:

Deform path integral into complex plane

Complex angles θ = − i log
a ⋆ b + |a ∧ b |⋆

|a |⋆ |b |⋆

|a |2
⋆ = a ⋆ a

Generalizes complex dihedral angles in Regge calculus

θ(ϕ) = {θ+ for ϕ ∈ (0,π)
θ− for ϕ ∈ (−π,0)

[Dittrich, Padua-Argüelles, SKA]

a, b ∈ ℝn
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Complexification

a ⋆ b = a0b0 eiϕ +∑
i

aibiSimple Complexification:

Deform path integral into complex plane

Complex angles θ = − i log
a ⋆ b + |a ∧ b |⋆

|a |⋆ |b |⋆

|a |2
⋆ = a ⋆ a

Generalizes complex dihedral angles in Regge calculus

θ(ϕ) = {θ+ for ϕ ∈ (0,π)
θ− for ϕ ∈ (−π,0)

θ+ = − θ−

-2π -π 0 π 2π
-3

0

3

Analytical continuation θ−

θ+

ϕ ∈ (−2π,2π]- extend  to the regionθ(ϕ)

-  4    periodicπ

[Dittrich, Padua-Argüelles, SKA]

a, b ∈ ℝn
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Analytical continued dihedral angles 

δ+ = δ−

Complex Regge Calculus

δ±(ϕ) = 2π ± ∑
σ

θ±
σ (ϕ)

action

SR[𝒯] = ∑
hinges

|Volh | δh − Λ∑
σ

|Volσ |

[Dittrich, Padua-Argüelles, SKA]

regular configurations
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Euclidean data

Lorentzian data

ϕ = 0

ϕ = π

ϕ = 2π

ϕ = − π

iSL−
R iSL+

R

−iSL−
R−iSL+

R

−SE
RSE

R

Complex Regge action

Analytical continued dihedral angles 

δ+ = δ−

No ambiguity for regular configurations

Complex Regge Calculus

δ±(ϕ) = 2π ± ∑
σ

θ±
σ (ϕ)

action

Branch cuts for irregular configurations

complex plane

SR[𝒯] = ∑
hinges

|Volh | δh − Λ∑
σ

|Volσ |

SL+
R = SL−

R

[Dittrich, Padua-Argüelles, SKA]

regular configurations
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๏ Analytical Continuation

Path Integrals: Picard Lefschetz

๏ deSitter Cosmology examples

๏ Mechanism to suppress causal irregularities
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Idea:

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

Z = ∫X
dx eiS(x)/ℏ Z = ∑

σ

nσ ∫𝒥σ

dx eiS(x)/ℏ

Picard-Lefschetz  method

Summary:

[ Witten ’01 ’09, Vassiliev, Tanizaki, Koike,…]

Lorentzian Path Integrals
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Idea:

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

- Complexify integration domain

Z = ∫X
dx eiS(x)/ℏ Z = ∑

σ

nσ ∫𝒥σ

dx eiS(x)/ℏ

Picard-Lefschetz  method

Summary:

- Find critical points of action in the complex domain

[ Witten ’01 ’09, Vassiliev, Tanizaki, Koike,…]

X → Xℂ

pσ ∈ Xℂ

Lorentzian Path Integrals
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Idea:

Along thimbles: 

Real part of integrand decreases monotonically while imaginary part is constant

Lefschetz thimbles

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

- Complexify integration domain

- Use critical points in the complex domain to find integration cycles

Z = ∫X
dx eiS(x)/ℏ Z = ∑

σ

nσ ∫𝒥σ

dx eiS(x)/ℏ

Picard-Lefschetz  method

Summary:

- Find critical points of action in the complex domain

[ Witten ’01 ’09, Vassiliev, Tanizaki, Koike,…]

X → Xℂ

𝒥σ

pσ ∈ Xℂ

Lorentzian Path Integrals
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Idea:

- Express real integration domain in terms of Lefschetz thimbles

Along thimbles: 

Real part of integrand decreases monotonically while imaginary part is constant

Lefschetz thimbles

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

- Complexify integration domain

- Use critical points in the complex domain to find integration cycles

Z = ∫X
dx eiS(x)/ℏ Z = ∑

σ

nσ ∫𝒥σ

dx eiS(x)/ℏ

Picard-Lefschetz  method

Summary:

- Find critical points of action in the complex domain

[ Witten ’01 ’09, Vassiliev, Tanizaki, Koike,…]

X → Xℂ

𝒥σ

pσ ∈ Xℂ

X = ∑
σ

nσ𝒥σ

Lorentzian Path Integrals
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FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
2

N2
=

⇤

3
�

1

a2
. (2.20)

The two possible solutions (corresponding to the two possible signs for ȧ) starting from a given

a(0) are

a(t) =

vuut
a(0)2 +

1

3
Nt

 
⇤Nt + 6�1

r
⇤

3
a(0)2 � 1

!
(2.21)

where �1 = ±1. One can now eliminate N in favour of the final boundary value a(1); this yields

a(t) =

vuut
a(0)2(t � 1)2 + a(1)2t2 �

6

⇤
t(t � 1)

 
1 + �1�2

r
⇤

3
a(0)2 � 1

r
⇤

3
a(1)2 � 1

!
(2.22)

where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.

FLRW spacetimes

No boundary proposal

af

Applications: Cosmology

Discrete: Ball model

a0

Topology changing configuration

Features:

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander….]

sh
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deSitter cosmological spacetime

sh

ai

af

discretization
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FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
2

N2
=

⇤

3
�

1

a2
. (2.20)

The two possible solutions (corresponding to the two possible signs for ȧ) starting from a given

a(0) are

a(t) =
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a(0)2 +

1

3
Nt
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r
⇤

3
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!
(2.21)

where �1 = ±1. One can now eliminate N in favour of the final boundary value a(1); this yields

a(t) =
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where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.

FLRW spacetimes

No boundary proposal

af

Euclidean saddle points Lorentzian saddle points

Applications: Cosmology

Discrete: Ball model Discrete: Shell model

a0

Topology changing configuration Causal violations at hinges

Features:

For small af

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander….]

sh
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FLRW spacetimesApplications: Cosmology

deSitter cosmological spacetime

sh
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af

discretization
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FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
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=
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3
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where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.

No boundary proposal

af

a0

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander….]

sh
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EuclideanLorentzian

Regular sector Irregular sector
sh

0−
β
24

−
β
8

β = (li + lf )2

[Dittrich, Gielen, Schander,  SKA, Padua-Argüelles ,..]

FLRW spacetimesApplications: Cosmology

Hinge Causality-Violations

(discrete) Lapse

deSitter cosmological spacetime

sh

ai

af

discretization
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FIG. 1: Representation of a no-boundary saddle point for the path integral: the geometry starts o↵ as a

Riemannian 4-sphere which is then glued to one half of de Sitter spacetime.

If we again work in the particularly convenient gauge N = N/a where N is a constant, the first

order Friedmann equation in (2.15) is

ȧ
2

N2
=

⇤

3
�

1

a2
. (2.20)

The two possible solutions (corresponding to the two possible signs for ȧ) starting from a given

a(0) are

a(t) =

vuut
a(0)2 +
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3
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⇤Nt + 6�1
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where �1 = ±1. One can now eliminate N in favour of the final boundary value a(1); this yields
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where �2 is another sign that can be chosen freely, coming from the ambiguity in eliminating N

in favour of a(1). Evaluating the action (2.13) on this solution again leads to (2.19), with the two

signs �1 and �2 free as before.

Below we will compare these continuum results for the stationary phase approximation to those

obtained in the discrete setting of Regge calculus. The sign ambiguities in (2.19) will also be

important in the discussion there, so a few more comments regarding their interpretation might

be useful. First of all, note that if one chooses either a(0) = a⇤ or a(1) = a⇤, there is only a

single global sign to choose. Furthermore, the Hamilton–Jacobi function is, for any choice of signs,

purely imaginary if a(0)  a⇤ and a(1)  a⇤ (so that all classical solutions are Euclidean) and real

if a(0) � a⇤ and a(1) � a⇤ (so that all classical solutions are Lorentzian). For the remaining case

where a(0)  a⇤ and a(1) � a⇤, which is considered in the no-boundary proposal, the two sign

ambiguities amount to a choice of sign for the imaginary part (resulting from evolution from a(0)

to a⇤) and the sign for the real part (resulting from evolution from a⇤ to a(1)), respectively.

No boundary proposal

af

a0

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander….]

sh
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Ball model

ϕ = 0

ϕ = π

ϕ = 2π

ϕ = − π

iSL−
R iSL+

R

−iSL−
R−iSL+

R

−SE
RSE

R

Lefschetz thimbles

Path of steepest descent
Thimble

Path of steepest ascent
Anti-thimblesh

Cosmology Examples

Real part of action decreases along thimbles Re(W ) < 0

Thimble along Euclidean axis at ϕ = 2π

∫ dsh eW

Vilenkin choice

opposite Hartle-Hawking choice

e+SE
leads to

e−SE
Feldbrugge et al..
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Ball model

ϕ = 0
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ϕ = 0

ϕ = π

ϕ = 2π
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−iSL−
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−SE
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Shell model

Lefschetz thimbles

Path of steepest descent
Thimble

Path of steepest ascent
Anti-thimblesh

sh

Cosmology Examples

Real part of action decreases along thimbles Re(W ) < 0

Thimble along Euclidean axis at ϕ = 2π

∫ dsh eW

Vilenkin choice

opposite Hartle-Hawking choice

e+SE
leads to

e−SE
Feldbrugge et al..
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Ball model

ϕ = 0

ϕ = π

ϕ = 2π

ϕ = − π

iSL−
R iSL+

R

−iSL−
R−iSL+

R

−SE
RSE

R

15

Deform integration contoursCosmology Examples

Suppression from rotation of integration contour

Include configurations with irregular causalities

Lefschetz thimbles picks the suppressing side of the branch cut. 

integration vanishes

Re(W ) < 0

∫ dsh eW
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ϕ = 0

ϕ = π

ϕ = 2π
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ϕ = 0

ϕ = π
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ϕ = − π

iSL−
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−iSL−
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−SE
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Shell model

15

Deform integration contoursCosmology Examples

Suppression from rotation of integration contour

Include configurations with irregular causalities

Lefschetz thimbles picks the suppressing side of the branch cut. 

integration vanishes

Re(W ) < 0

∫ dsh eW
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Concluding  Remarks

• Progress in computing Lorentzian path integrals for discrete gravity

• (Hinge) causality-violating configurations have branch cuts  for complex Regge action

• Wick rotation determined by dynamics: overcome conformal factor problem
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• Test more features with examples: Higher dimensional integrals
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Concluding  Remarks

• Progress in computing Lorentzian path integrals for discrete gravity

• (Hinge) causality-violating configurations have branch cuts  for complex Regge action

• Wick rotation determined by dynamics: overcome conformal factor problem

• Picard-Lefschetz: Fast convergence along Lefschetz thimbles

• Application to effective spin foams

• Causality violations in EPRL/FK spin foam models

THANK YOU !

• Can allow for causal violations: Examples give suppression via Picard-Lefschetz formalism

Outlook:
• Test more features with examples: Higher dimensional integrals

[Dittrich, Padua-Argüelles ’23]




