Causality violations in Lorentzian path integrals for discrete gravity

Seth Kurankyi Asante, FSU Jena

```
arXiv:2112.15387
```

Bianca Dittrich, Sebastian Steinhaus, Hal Haggard, José Diogo Simão, José Padua-Argüelles

Quantum Gravity 2023

Radboud University, Nijmegen
July 11, 2023

Gravitational Path Integral

Non-perturbative quantum gravity
Many approaches-

$$
\mathscr{Z}=\int_{M / \text { Diff(} M)}[\mathscr{D} \mu(\text { geom })] e^{-\mathrm{i}\{[\text { geom }]}
$$

What are the fundamental degrees of freedom for QG ?

Gravitational Path Integral

Non-perturbative quantum gravity
Many approaches-

$$
\mathscr{Z}=\int_{M / \operatorname{Diff}(M)}[\mathscr{D} \mu(\text { geom })] e^{-\mathrm{i} S[\text { geom }]}
$$

What are the fundamental degrees of freedom for QG ?

Path Integral approaches

[Bianca's talk]

* Computing Lorentzian path integrals
- Deal with convergence, high oscillatory integrals. Picard-Lefschetz methods
- Euclidean path integral via Wick rotation of limited usage

Gravitational Path Integral

Non-perturbative quantum gravity
Many approaches- $\quad \mathscr{Z}=\int_{M / \operatorname{Diff}(M)}[\mathscr{D} \mu($ geom $)] e^{-\mathrm{i} S[\text { geom }]}$
What are the fundamental degrees of freedom for QG ?

Path Integral approaches

[Bianca's talk]
\star Computing Lorentzian path integrals

- Deal with convergence, high oscillatory integrals. Picard-Lefschetz methods
- Euclidean path integral via Wick rotation of limited usage

太 What configurations should be summed over in path integral?

- impose causality conditions on geometries?
- Allow topology change?

Picard-Lefschetz can inform

Causality Violations

2D gravity

Causality violating configurations gets imaginary contributions to the action

- Topology changes

Yarmulke

Which configurations are enhanced or suppressed?

2D: Supress trouser-like configurations
4D: Enhancing Yarmulke configurations lead to non-sensible results

Causality Violations

2D gravity

Causality violating configurations gets imaginary contributions to the action

- Topology changes

Yarmulke

Which configurations are enhanced or suppressed?

2D: Supress trouser-like configurations
[Dittrich, Padua-Argüelles, SKA]
4D: Enhancing Yarmulke configurations lead to non-sensible results

Is there a general mechanism to deal with causal violations?

Outline

Lorentzian Regge Calculus

- Lorentzian Angles
- Analytical Continuation

Path Integrals: Picard Lefschetz

- deSitter Cosmology examples
- Mechanism to suppress causal irregularities

Outline

Lorentzian Regge Calculus

- Lorentzian Angles
- Analytical Continuation

Path Integrals: Picard Lefschetz

- deSitter Cosmology examples
- Mechanism to suppress causal irregularities

Discrete gravity

Regge Calculus [Regge '61]

Discretization of Einstein Hilbert action (length/metric formulation)

$$
S_{\mathrm{EH}}=\int_{\mathscr{M}} d^{D} x \sqrt{|g|}(R-2 \Lambda) \quad \longleftrightarrow S_{\text {Regge }}[\mathscr{T}]=\sum_{h: \text { hinge }} \operatorname{Vol}_{h} \delta_{h}-\Lambda \sum_{\sigma: \text { simplex }} \operatorname{Vol}_{\sigma}
$$

Discrete gravity

Regge Calculus [Regge '61]

Discretization of Einstein Hilbert action (length/metric formulation)

$$
S_{\mathrm{EH}}=\int_{\mathscr{M}} d^{D} x \sqrt{|g|}(R-2 \Lambda) \quad \longleftrightarrow S_{\text {Regge }}[\mathscr{T}]=\sum_{h: \text { hinge }} \operatorname{Vol}_{h} \delta_{h}-\Lambda \sum_{\sigma: \text { simplex }} \operatorname{Vol}_{\sigma}
$$

- based on simplicial discretization
- use Minkowski flat simplices: piecewise flat geometry
- curvature δ_{h} distributed on co-dim 2 surfaces

- dynamics: Regge equations of motion
- variations of edge lengths
- other variables possible: area, area-angle Regge calculus

Discrete gravity
 Lorentzian spacetimes

Lorentzian Angles

[Alexandrov '01, Sorkin '19, Jia ‘21, SKA, Dittrich, Padua-Argüelles '21]

Discrete gravity

Lorentzian spacetimes

Lorentzian Angles

[Alexandrov '01, Sorkin '19, Jia ‘21, SKA, Dittrich, Padua-Argüelles '21]

$$
\begin{aligned}
& \theta_{12}=\cosh ^{-1}\left(x_{1} \cdot x_{2}\right) \\
& \theta_{13}=\sinh ^{-1}\left(x_{1} \cdot x_{3}\right) \mp \frac{\pi \mathrm{i}}{2} \\
& \theta_{14}=-\cosh ^{-1}\left(-x_{1} \cdot x_{4}\right) \mp \pi \mathrm{i} \\
& \theta_{35}=\cosh ^{-1}\left(x_{3} \cdot x_{5}\right) \mp \pi \mathrm{i}
\end{aligned}
$$

Discrete gravity

Lorentzian spacetimes

Lorentzian Angles

[Alexandrov '01, Sorkin '19, Jia '21, SKA, Dittrich, Padua-Argüelles '21]

Choice of $\mp \mathrm{i} \pi / 2$ for light ray crossings

$$
\begin{aligned}
& \theta_{12}=\cosh ^{-1}\left(x_{1} \cdot x_{2}\right) \\
& \theta_{13}=\sinh ^{-1}\left(x_{1} \cdot x_{3}\right) \mp \frac{\pi \mathrm{i}}{2} \\
& \theta_{14}=-\cosh ^{-1}\left(-x_{1} \cdot x_{4}\right) \mp \pi \mathrm{i} \\
& \theta_{35}=\cosh ^{-1}\left(x_{3} \cdot x_{5}\right) \mp \pi \mathrm{i}
\end{aligned}
$$

Two choices L_{\mp} can either enhance or suppress irregular configurations

(Hinge) Causality

2D Triangulations

Regular configuration

Irregular configurations:

(Hinge) Causality

2D Triangulations

Regular configuration

Irregular configurations:

[Jordan, Loll '13]
Higher Dimensions: Other causality conditions Edge causality, Vertex Causality

Complexification

Deform path integral into complex plane
Simple Complexification: $\quad a \star b=a_{0} b_{0} e^{i \phi}+\sum_{i} a_{i} b_{i} \quad|a|_{\star}^{2}=a \star a \quad a, b \in \mathbb{R}^{n}$

Complexification

Deform path integral into complex plane

Simple Complexification: $\quad a \star b=a_{0} b_{0} e^{i \phi}+\sum_{i} a_{i} b_{i} \quad|a|_{\star}^{2}=a \star a \quad a, b \in \mathbb{R}^{n}$

Complex angles $\quad \theta=-i \log \frac{a \star b+|a \wedge b|_{\star}}{|a|_{\star}|b|_{\star}}$

$$
\theta(\phi)= \begin{cases}\theta^{+} & \text {for } \phi \in(0, \pi) \\ \theta^{-} & \text {for } \phi \in(-\pi, 0)\end{cases}
$$

Generalizes complex dihedral angles in Regge calculus

Complexification

Deform path integral into complex plane

Simple Complexification: $\quad a \star b=a_{0} b_{0} e^{i \phi}+\sum_{i} a_{i} b_{i} \quad|a|_{\star}^{2}=a \star a \quad a, b \in \mathbb{R}^{n}$

Complex angles

$$
\theta=-i \log \frac{a \star b+|a \wedge b|_{\star}}{|a|_{\star}|b|_{\star}}
$$

$$
\theta(\phi)= \begin{cases}\theta^{+} & \text {for } \phi \in(0, \pi) \\ \theta^{-} & \text {for } \phi \in(-\pi, 0)\end{cases}
$$

Generalizes complex dihedral angles in Regge calculus

Analytical continuation

- extend $\theta(\phi)$ to the region $\quad \phi \in(-2 \pi, 2 \pi]$
- 4π periodic

Complex Regge Calculus

Analytical continued dihedral angles

$$
\begin{aligned}
& \delta^{ \pm}(\phi)=2 \pi \pm \sum_{\sigma} \theta_{\sigma}^{ \pm}(\phi) \\
& \delta^{+}=\delta^{-} \text {regular configurations }
\end{aligned}
$$

action

$$
S_{\mathrm{R}}[\mathscr{T}]=\sum_{\text {hinges }}\left|\mathrm{Vol}_{h}\right| \delta_{h}-\Lambda \sum_{\sigma}\left|\mathrm{Vol}_{\sigma}\right|
$$

Complex Regge Calculus

Analytical continued dihedral angles

$$
\delta^{ \pm}(\phi)=2 \pi \pm \sum_{\sigma} \theta_{\sigma}^{ \pm}(\phi)
$$

$$
\delta^{+}=\delta^{-} \text {regular configurations }
$$

Complex Rage action

No ambiguity for regular configurations

$$
S_{\mathrm{R}}^{L_{+}}=S_{\mathrm{R}}^{L_{-}}
$$

$$
\phi=2 \pi
$$

$\phi=2 \pi \stackrel{S_{\mathrm{R}}^{E}}{\longleftrightarrow}$
Branch cuts for irregular configurations

$$
S_{\mathrm{R}}[\mathscr{T}]=\sum_{\text {hinges }}\left|\operatorname{Vol}_{h}\right| \delta_{h}-\Lambda \sum_{\sigma}\left|\operatorname{Vol}_{\sigma}\right|
$$

e
\square

Br
action

$$
\operatorname{lel}^{2}
$$

$$
\begin{gathered}
-i S_{\mathrm{R}}^{L_{+}} \downarrow-i S_{\mathrm{R}}^{L_{-}} \\
\phi=-\pi
\end{gathered}
$$

Lorentzian data

Outline

Lorentzian Regge Calculus

- Lorentzian Angles
- Analytical Continuation

Path Integrals: Picard Lefschetz

- deSitter Cosmology examples
- Mechanism to suppress causal irregularities

Picard-Lefschetz method

Lorentzian Path Integrals

Idea:

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$
Z=\int_{X} \mathrm{~d} x e^{i S(x) / \hbar} \longrightarrow Z=\sum_{\sigma} n_{\sigma} \int_{\mathscr{J}_{\sigma}} \mathrm{d} x e^{i S(x) / \hbar}
$$

Summary:

Picard-Lefschetz method

Lorentzian Path Integrals

Idea:

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$
Z=\int_{X} \mathrm{~d} x e^{i S(x) / \hbar} \longrightarrow Z=\sum_{\sigma} n_{\sigma} \int_{\mathscr{J}_{\sigma}} \mathrm{d} x e^{i S(x) / \hbar}
$$

Summary:

- Complexify integration domain $\quad X \rightarrow X^{\mathbb{C}}$

Picard-Lefschetz method

Lorentzian Path Integrals

Idea:

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$
Z=\int_{X} \mathrm{~d} x e^{i S(x) / \hbar} \longrightarrow Z=\sum_{\sigma} n_{\sigma} \int_{\mathscr{J}_{\sigma}} \mathrm{d} x e^{i S(x) / \hbar}
$$

Summary:

- Complexify integration domain $\quad X \rightarrow X^{\mathbb{C}}$
- Find critical points of action in the complex domain $\quad p_{\sigma} \in X^{\mathbb{C}}$

Picard-Lefschetz method

Lorentzian Path Integrals

Idea:

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$
Z=\int_{X} \mathrm{~d} x e^{i S(x) / \hbar} \longrightarrow Z=\sum_{\sigma} n_{\sigma} \int_{\mathscr{I}_{\sigma}} \mathrm{d} x e^{i S(x) / \hbar}
$$

Summary:

- Complexify integration domain $\quad X \rightarrow X^{\mathbb{C}}$
- Find critical points of action in the complex domain $\quad p_{\sigma} \in X^{\mathbb{C}}$
- Use critical points in the complex domain to find integration cycles Lefschetz thimbles \mathscr{J}_{σ} Along thimbles:

Real part of integrand decreases monotonically while imaginary part is constant

Picard-Lefschetz method

Lorentzian Path Integrals

Idea:

Converts oscillatory integrals into sum of integrations with exponentially fast convergence

$$
Z=\int_{X} \mathrm{~d} x e^{i S(x) / \hbar} \longrightarrow Z=\sum_{\sigma} n_{\sigma} \int_{\mathscr{I}_{\sigma}} \mathrm{d} x e^{i S(x) / \hbar}
$$

Summary:

- Complexify integration domain $\quad X \rightarrow X^{\mathbb{C}}$
- Find critical points of action in the complex domain $\quad p_{\sigma} \in X^{\mathbb{C}}$
- Use critical points in the complex domain to find integration cycles Lefschetz thimbles \mathscr{J}_{σ} Along thimbles:

Real part of integrand decreases monotonically while imaginary part is constant

- Express real integration domain in terms of Lefschetz thimbles $\quad X=\sum_{\sigma} n_{\sigma} \mathscr{J}_{\sigma}$

Applications: Cosmology

FLRW spacetimes

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander....]
No boundary proposal

Features:

Discrete: Ball model
Topology changing configuration

Applications: Cosmology

FLRW spacetimes

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander....]

No boundary proposal

Discrete: Ball model

Topology changing configuration

Euclidean saddle points
For small a_{f}
deSitter cosmological spacetime

discretization

Features:

Discrete: Shell model

Causal violations at hinges

Lorentzian saddle points

Applications: Cosmology

FLRW spacetimes

[Hartle, Hawking, Feldlbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander....]

No boundary proposal

discretization

Applications: Cosmology

FLRW spacetimes

[Hartle, Hawking, Feldbrugge, Lehners, Turok, Williams, Lui, Collins, Dittrich, Gielen, Schander....]

No boundary proposal

Hinge Causality-Violations
deSitter cosmological spacetime

discretization

Cosmology Examples

Lefschetz thimbles $\int \mathrm{d}_{s_{h}} e^{W}$

Real part of action decreases along thimbles $\operatorname{Re}(W)<0$
Thimble along Euclidean axis at $\phi=2 \pi \quad$ leads to $\quad e^{+S^{\mathrm{E}}} \quad$ Vilenkin choice opposite Hartle-Hawking choice $e^{-S^{\mathrm{E}}}$

Cosmology Examples

Lefschetz thimbles $\int \mathrm{d} s_{h} e^{W}$

Real part of action decreases along thimbles $\operatorname{Re}(W)<0$
$\begin{array}{rlll}\text { Thimble along Euclidean axis at } \phi=2 \pi & \text { leads to } & e^{+S^{\mathrm{E}}} & \begin{array}{l}\text { Vilenkin choice } \\ \text { opposite Hartle-Hawking choice }\end{array} e^{-S^{\mathrm{E}}}\end{array}$

Cosmology Examples

Suppression from rotation of integration contour
Include configurations with irregular causalities
Lefschetz thimbles picks the suppressing side of the branch cut. $\quad \operatorname{Re}(W)<0$

Cosmology Examples

Deform integration contours $\int \mathrm{ds}_{h} e^{W}$

Shell model

Suppression from rotation of integration contour
Include configurations with irregular causalities
Lefschetz thimbles picks the suppressing side of the branch cut. $\quad \operatorname{Re}(W)<0$

Concluding Remarks

- Progress in computing Lorentzian path integrals for discrete gravity
- (Hinge) causality-violating configurations have branch cuts for complex Regge action
- Wick rotation determined by dynamics: overcome conformal factor problem

Concluding Remarks

- Progress in computing Lorentzian path integrals for discrete gravity
- (Hinge) causality-violating configurations have branch cuts for complex Regge action
- Wick rotation determined by dynamics: overcome conformal factor problem
- Picard-Lefschetz: Fast convergence along Lefschetz thimbles
- Can allow for causal violations: Examples give suppression via Picard-Lefschetz formalism

Concluding Remarks

- Progress in computing Lorentzian path integrals for discrete gravity
- (Hinge) causality-violating configurations have branch cuts for complex Regge action
- Wick rotation determined by dynamics: overcome conformal factor problem
- Picard-Lefschetz: Fast convergence along Lefschetz thimbles
- Can allow for causal violations: Examples give suppression via Picard-Lefschetz formalism

Outlook:

- Test more features with examples: Higher dimensional integrals
- Application to effective spin foams [Dittrich, Padua-Argüelles '23]
- Causality violations in EPRL/FK spin foam models

Concluding Remarks

- Progress in computing Lorentzian path integrals for discrete gravity
- (Hinge) causality-violating configurations have branch cuts for complex Regge action
- Wick rotation determined by dynamics: overcome conformal factor problem
- Picard-Lefschetz: Fast convergence along Lefschetz thimbles
- Can allow for causal violations: Examples give suppression via Picard-Lefschetz formalism

Outlook:

- Test more features with examples: Higher dimensional integrals
- Application to effective spin foams [Dittrich, Padua-Argüelles '23]
- Causality violations in EPRL/FK spin foam models

THANK YOU !

