Calibrating the continuum approximation

 of discrete quantum gravity

Sumati Surya
Raman Research Institute

Quantum Gravity 2023

Outline

- The Continuum Approximation of quantum gravity: With or Without Discreteness
- The Causal Set Way : Quantising the causal structure
- The Continuum Approximation: random discretisation
- Does the Continuum emerge from Dynamics?
- Uniqueness?
- Calibrating the continuum approximation: new techniques

The Continuum Approximation: With or Without Discreteness

- Different Physics at different scales:

GR: $V \gg V_{p}$, Planck scale: $V \sim V_{p}$, Trans-Planckian scale: $V \ll V_{p}(?)$

- GR emergent from Planck scale : what Planck scale physics should one forget to get GR?
- Quantum Gravity DOF $\mathbb{Q G}$: Discrete or Continuum
- $\mathbb{Q G} \sim(M, g)$ at $V \gg V_{p}$
- How do we recognise the continuum approximation when we see it?

Continuum or Discrete DOF

- If $\mathbb{Q G}$ is a quantum spacetime geometry (or any other classically equivalent set of continuum quantities), with some continuity requirements: $C^{2}, C^{1}, C^{0} \ldots$ OR is discrete (graph, triangulation, network, causal set, ..)
- What distinguishing features does $\mathbb{Q G}$ have at the Planck scale V_{p} ? (Is there physics below V_{p} for continuum theories?)
- Say your theory spits out a (coherent state of continuum geometry $(M, g) \in \mathscr{M}_{r}$ but $r<2$ or some pre-geometric \mathbf{Q} (example: piece-wise continuous, orbifolds, extra dimensions, etc.)
- Does (M, g) or \mathbf{Q} approximate $(\mathbf{M}, \mathbf{g}) \in \mathscr{M}_{2}$ (or desired differentiability) at a scale $V \gg V_{p}$?

Uniqueness

- Is this approximation unique?

$$
\mathbb{Q G} \sim_{V}(\mathbf{M}, \mathbf{g}) \text { AND } \mathbb{Q} \mathbb{G} \sim_{V}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right) \text { are }(\mathbf{M}, \mathbf{g}) \text { and }\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right) \text { "close" at } V \gg V_{p} \text { ? }
$$

- What does it mean for two spacetimes to be close at a given scale?

- Bombelli, 2000, Bombelli and Noldus, 2004
-Burtscher and Allen, 2021,
--Kunzinger and Steinbauer, 2021, ...

The Causal Set Way: Quantising the Causal Structure

Lorentzian Spacetime (Causal, Distinguishing) $=(M, \prec)+\epsilon$
-Hawking, Hawking-King-MacCarthy, Malament, Kronheimer-Penrose
(M, \prec) is a poset :(i) Acyclic: $x<y, y<x \Rightarrow x=y$ (ii) Transitive: $x<y, y<z \Rightarrow x<z$

The Causal Set Hypothesis: \quad\begin{tabular}{l}

- Myrheim, 1978

- Bombelli, Lee, Meyer and Sorkin, 1987
\end{tabular}

..Robb, Zeeman, Penrose, Kronheimer, Finkelstein, Myrheim, Hemion, 't Hooft ...

1. Locally finite posets or Causal Sets are the fine grained structure of spacetime
2. Continuum Approximation: Order + Number \sim Spacetime (counting replaces volume)

The Continuum Approximation

- $n \sim \rho V$ correspondence has to be diffeo invariant
- Random discretisation via a Poisson sprinkling process:
- $P_{V}(n)=\frac{(\rho V)^{n}}{n!} e^{-\rho V},\langle n\rangle=\rho V, \Delta n=\sqrt{\rho V}$
- For every causal spacetime (M, g) there is a kinematic ensemble $\{C\}_{\rho}$ (first quantisation)
- $C \sim_{\rho}(M, g)$ is a faithful embedding at density ρ if :

```
\rho sets a scale
```

- $C \hookrightarrow(M, g)$ is order preserving
- n_{V} : number of points in spacetime volume V is a random variable, $P_{V}(n)=\frac{(\rho V)^{n}}{n!} e^{-\rho V}$

Causal Set Non-locality

- The nearest neighbours lie all along the light cone
- A continuum-like causal set is a graph without a fixed valency

Preserving Local Lorentz invariance

Theorem : —Bombelli, Henson and Sorkin,2006
There is no measurable map $D: \Omega \rightarrow H$ which is equivariant, i.e., $D \circ \Lambda=\Lambda \circ D$.

- Measure triple (Ω, Σ, μ)
- unit hyperbola $H \subset \mathbb{M}^{d}$ (fdtl directions)

Proof: If such a map existed, then $\mu_{D}=\mu \circ D^{-1}$ is a Lorentz invariant probability measure on H which is not possible since is H non-compact.

Calibrating the Continuum Approximation

- Is this approximation unique?

FUNDAMENTAL CONJECTURE:

If $C \sim_{\rho}(\mathbf{M}, \mathbf{g})$ AND $C \sim_{\rho}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$ then (\mathbf{M}, \mathbf{g}) and $\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$ are "close" at some $\rho^{-1} \gg V_{p}$.

- Order Invariants \mathcal{O} as Geometric Invariants \mathbb{G}
- WEAK FORM OF FUNDAMENTAL CONJECTURE:

If $C \sim_{(\rho, \mathscr{O})}(\mathbf{M}, \mathbf{g})$ AND $C \sim_{(\rho, \mathcal{O})}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$ then $(\mathbf{M}, \mathbf{g}) \sim_{(\rho, \mathbb{G})}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$

- Which order invariants \mathcal{O} correspond to Geometric Observables \mathbb{G} ?

Geometric Reconstruction: geometry from counting

- Dimension Estimators - Myrheim, Myer, Glaser \& Surya, ..
- Timelike Distance —Brightwell \& Gregory
- Spatial Homology —Major, Rideout \& Surya

- Spatial and Spacelike Distance — Rideout \& Wallden, Eichhorn, Mizera \& Surya, Eichhorn, Surya \& Versteegen
- D'Alembertian - Sorkin, Henson, Benincasa \& Dowker, Dowker \& Glaser
- Benincasa-Dowker-Glaser Action - Benincasa \& Dowker, Dowker \& Glaser
- GHY terms in the Action - Buck, Dowker, Jubb \& Surya
- Locality and Interval Abundance - Glaser \& Surya

- Horizon Molecules - Barton, Counsell, Dowker, Gould \& Jubb, Machet and Wang
- Scalar Field Greens functions - Johnston, Dowker, Surya \& Nomaan X
- Scalar Field SJ vacuum - Johnston, Sorkin, Yazdi, Nomaan X, Surya
- Entanglement Entropy —Dou \& Sorkin, Sorkin \& Yazdi, Yazdi, Nomaan X, Surya
- Null Geodesics from Ladder molecules -- with A. Bhattacharya and A. Mathur, 2022

Example: Dimension Estimator

- If $C \sim_{\rho}\left(\mathbb{M}^{d}, \eta\right)$
- Myrheim-Myer dimension estimator $\langle r\rangle=\frac{2\langle R\rangle}{\langle n\rangle^{2}}=\frac{\Gamma(d+1) \Gamma(d / 2)}{4 \Gamma(3 d / 2)}$
- If $C \sim_{\rho}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$, then $\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right) \sim_{(\rho, d)}\left(\mathbb{M}^{d}, \eta\right)$
- Example $\mathbf{M}^{\prime}=\mathbb{R}^{d} \times S^{1}, \mathbf{g}=\eta \oplus l:$ For $\rho^{-1} \gg V_{c} \times\left|S^{1}\right|, C \sim_{\rho, d}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$
- Therefore if C has Myrheim-Myer dimension d, then it cannot approximate a spacetime of dimension $d^{\prime} \neq d$.

But is the continuum emergent from dynamics?

Lorentzian Path Sum over Ω_{n}
 $$
Z=\sum_{c \in \Omega_{n}} \exp \left(i S_{B D G}(c)\right)
$$

- Ω_{n} : sample space of all n-element causal sets
- $\left|\Omega_{n}\right| \sim 2^{\frac{n^{2}}{4}+\frac{n_{n}}{2}+o(n)}$
- Typical causal sets are Kleitmann-Rothschild: $\left|\Omega_{K R}\right| \sim 22^{\frac{n}{4}+\frac{3 n}{2}+o(n)}$

- Kleitman and Rothschild, Trans AMS, 1975
- J. Henson, D. Rideout, R. Sorkin and S.Surya, JEM, 2015
- Other layered Posets are subdominant: $\sim 2^{c(d) n^{2}+o\left(n^{2}\right)}, \quad c(d) \leq 1 / 4$
-D. Dhar, JMP, 1978

- Promel, Steger, Taraz 2001

Layered Posets are not manifold-like

Do manifold-like causal sets stand a chance?

The Benincasa-Dowker-Glaser Action

$$
\begin{gathered}
S_{B D G}^{(d)}(C)=\mu\left(n+\sum_{j=0}^{j_{\text {max }}} \lambda_{j} N_{j}\right) \\
S_{B D G}^{(4)}=\frac{4}{\sqrt{6}}\left(n-N_{0}+9 N_{1}-16 N_{2}+8 N_{3}\right)
\end{gathered}
$$

For the KR poset:

Do manifold-like causal sets stand a chance? Yes!

Bilayer Posets:

$$
\begin{aligned}
& S_{B D G}^{(4)}=\mu\left(n+\lambda_{0} N_{0}\right) \\
& Z_{\text {bilayer }}\left[\mu, \lambda_{0}\right] \sim \int_{0}^{1 / 2} \mathrm{~d} p\left|\mathscr{C}_{p, n}\right| \exp \left(i S_{L}(p)\right)=e^{i \mu n} \int_{0}^{1 / 2} \mathrm{~d} p \exp \left[n^{2}\left(i \mu \lambda_{0} p / 2+h(2 p) / 4\right)+o\left(n^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Suppression for: } \\
& \\
& \tan \left(-\frac{\mu \lambda_{0}}{2}\right)>\sqrt{3} \\
& d=4, \quad \mu=\left(\frac{l}{l_{p}}\right)^{2} \Rightarrow l \approx 1.452 l_{p}
\end{aligned}
$$

The discrete Einstein Hilbert action in any dimension suppresses all k-layer orders for $k \ll n$:

Action wins over Entropy

Do manifold-like causal sets emerge?

Why $d=4$ spacetime?
Does the d dimensional discrete Einstein Hilbert action suppress $d^{\prime} \neq d$? (Some hints..)

State Sum Models: Lorentzian Statistical Geometry

$$
Z_{\beta}=\sum_{c \in \Omega} \exp \left(i \beta S_{B D G}(c)\right),
$$

Inverse "temp": $\beta \rightarrow i \beta$

$$
Z_{\beta} \rightarrow \tilde{Z}_{\beta}=\sum_{c \in \Omega} \exp \left(-\beta S_{B D G}(c)\right)
$$

- Surya 2012,

2d Orders

$\beta<\beta_{c}$: Continuum phase
$\beta>\beta_{c}$: "Connected/Quantum" Phase

- Glaser, O’Connor and Surya, 2018
$T^{2} \times \mathbb{R}$
- Cunningham \& Surya, 2020

Track Observables \mathcal{O} for continuum-non-continuum phases

- Myrheim-Myer dimension estimator
- Interval Abundance
- Action
- Height

Finite size scaling to know if $\langle\mathcal{O}\rangle \lim _{n \rightarrow \infty} \mathbb{G}$

Computationally very expensive!!

- Cunningham \& Surya, 2020

Is the Continuum Unique?

Calibrating the Continuum Approximation: new techniques

- $(M, g) \sim_{\rho}\left(M^{\prime}, g^{\prime}\right)$: what does this mean?
- Lorentzian spacetimes via GH convergence
- Can we define ρ-closeness?
- Convergence in $\rho \rightarrow \infty$ limit
- Bombelli, 2000, Bombelli and Noldus, 2004
-Burtscher and Allen, 2021,
--Kunzinger and Steinbauer, 2021
-- Bombelli and Meyer, 1989
-- Minguzzi and Suhr, 2022
-- Muller, 2022

Uniform Random Sampling Method

$$
P_{V}(n)=\frac{(\rho V)^{n}}{n!} e^{-\rho V}, \quad\langle n\rangle=\rho V
$$

\longrightarrow String is a set of measure zero $\Rightarrow d_{R S}(A, B) \approx 0$ upto scale ρ^{-1}

Lorentzian Uniform Random Sampling - Causal Sets

- Consider two spacetimes $(M, g), \quad\left(M^{\prime}, g^{\prime}\right)$ of volume $\sim V$
- Random sampling produces a causal set c by using causality relation $<$ in (M, g)
- Ω_{n} : ensemble of n-element causal sets
- $P_{n}(c \mid M), \quad c \in \Omega_{n}$ is a probability distribution.

- Since $\sum_{c \in \Omega_{n}} P_{n}(c \mid M)=1, \sqrt{P_{n}(c \mid M)}$ form coordinates on positive part of the sphere in $\mathbb{R}^{\left|\Omega_{n}\right|}$

$$
d_{n}\left(M, M^{\prime}\right) \simeq 0, \quad \text { upto } \quad \rho^{-1}
$$

- $d_{n}\left(M, M^{\prime}\right)=\frac{2}{\pi} \cos ^{-1}\left(\sum_{c \in \Omega_{n}} \sqrt{P_{n}(c \mid M)} \sqrt{P_{n}\left(c \mid M^{\prime}\right)}\right)$
- Closeness function but not a distance function

A

Distance between Abstract Metric Spaces $\left(A, d_{A}\right), \quad\left(B, d_{B}\right)$

- Let (M, d) be a metric space such that $\Phi: A \hookrightarrow M, \quad \Psi: B \hookrightarrow M$ are two isometric embeddings
- Gromov-Hausdorff Distance: shortest Hausdorff distance over all possible isometric embeddings

$$
d_{G H} \equiv \inf _{(M, d), \Phi, \Psi} d_{H}(\Phi(A), \Psi(B))
$$

Hausdorff distance

- Calculating this quantity explicitly is very hard!

$$
\begin{aligned}
& d_{G H}\left(\mathbb{S}^{m}, \mathbb{S}^{n}\right) \leq \frac{\pi}{2} \\
& d_{G H}\left(\mathbb{S}^{0}, \mathbb{S}^{n}\right)=\frac{\pi}{2} \\
& d_{G H}\left(\mathbb{S}^{m}, \mathbb{S}^{\infty}\right)=\frac{\pi}{2}
\end{aligned}
$$

Null Distance Function for GH Convergence

- Time function $T:(M, d) \rightarrow \mathbb{R}$-- monotonic, etc.
- $\gamma(p, q)$: piece-wise causal curve: allow it to go backward and forward ${ }^{p}$ in time!

- The length along the curve is defined as $L_{T}(\gamma(p, q))=\sum_{i}\left|T\left(s_{i}\right)-T\left(s_{i-1}\right)\right|$
- Null Distance function: $d_{T}(p, q) \equiv \inf _{\gamma(p, q)} L_{T}(\gamma(p, q))$ IS a genuine distance function
- Can be used to study convergence of FRW-type spacetimes

GH-like distance for 2 d orders using a lattice embedding

- $S=(1,2, \ldots n), U=\left(u_{1}, \ldots u_{n}\right), V=\left(v_{1}, \ldots v_{n}\right), u_{i} \in S, v_{i} \in S$
-Work in progress with Alan Daniel Santhosh
- 2 d order $C=U \cap V: e_{i}=\left(u_{i}, v_{i}\right) \prec e_{j}=\left(u_{j}, v_{j}\right) \Leftrightarrow u_{i}<u_{j}, v_{i}<v_{j}$
- Examples:
- $u_{1}<u_{2} \ldots<u_{n}, v_{1}<v_{2} \ldots<v_{n} \Rightarrow C$ is a chain
- $u_{1}<u_{2} \ldots<u_{n}, v_{n}<v_{n-1} \ldots<v_{1} \Rightarrow C$ is an antichain
- U, V randomly sampled : random 2 d order $\sim\left(\mathbb{D}^{2}, \eta\right)$
- Every 2d order can be embedded as a 2d order into the light cone lattice \mathscr{L}

- The null distance function on $\mathscr{L}: d_{t}(a, b)=\frac{1}{2}\left(\left|u_{b}-u_{a}\right|+\left|v_{b}-v_{a}\right|\right)$

$$
t=\frac{1}{2}(v+u), \quad x=\frac{1}{2}(v-u)
$$

- $A, B \subseteq \mathscr{L}, \quad d_{H}(A, B)=\sup _{a \in A} \inf _{b \in B} d_{t}(a, b)$
- Let $c_{1}, c_{2} \in \Omega_{2 d}, \quad \mathscr{E}_{i}: c_{i} \hookrightarrow \mathscr{L}, d_{G H}\left(c_{1}, c_{2}\right) \equiv \inf _{\mathscr{C}_{i}} d_{H}^{\leftrightarrow}\left(\mathscr{E}_{1}\left(c_{1}\right), \mathscr{E}_{2}\left(c_{2}\right)\right)$

Preliminary calculations

- $d_{G H}\left(a_{n}, a_{n+1}\right)=1, \quad d_{G H}\left(c_{n}, c_{n+1}\right)=1$
- $d_{G H}\left(a_{n}, c_{n}\right)=m, \quad n=2 m$ or $n=2 m+1$
. $d_{G H}\left(B_{2}, c_{n}\right)=\frac{n}{4}, \quad d_{G H}\left(B_{2}, a_{n}\right)=\frac{n}{4}+\frac{1}{2}$
. $d_{G H}\left(K R, c_{n}\right) \leq \frac{n}{2}, d_{G H}\left(K R, a_{n}\right)=\frac{n}{4}$

. $d_{G H}\left(L_{4}, c_{n}\right) \leq \frac{n}{8}, \quad d_{G H}\left(L_{4}, a_{n}\right) \leq \frac{3 n}{8}$
- Distance between Antichain a_{n} and Chain c_{n} grows the fastest
- Distance between the K-layer poset -- does it get closer to c_{n} than a_{n} as K increases?
- Measuring distance between random orders : challenging and may need numerical work

In Conclusion...

- The Continuum Approximation could be relevant to many approaches to quantum gravity:
- $\mathbb{Q G} \sim_{V}(\mathbf{M}, \mathbf{g})$
- Uniqueness: If $\mathbb{Q G} \sim_{V}(\mathbf{M}, \mathbf{g})$ AND $\mathbb{Q G} \sim_{V}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$ then $(\mathbf{M}, \mathbf{g}) \sim_{V}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$
- In CST, the continuum approximation is recognised using geometric order invariants \mathcal{O}
- New Lorentzian geometric tools to calibrate how close Lorentzian $\mathbb{Q G}$ is to a smooth spacetime..
- Can they help us determine this up to a scale: $(\mathbf{M}, \mathbf{g}) \sim_{V}\left(\mathbf{M}^{\prime}, \mathbf{g}^{\prime}\right)$?

Thank you!

