Calibrating the continuum approximation of discrete quantum gravity

Sumati Surya Raman Research Institute

Quantum Gravity 2023

Outline

- The Causal Set Way : Quantising the causal structure

 - Does the Continuum emerge from Dynamics?
 - Uniqueness?
- Calibrating the continuum approximation: new techniques

The Continuum Approximation of quantum gravity: With or Without Discreteness

• The Continuum Approximation: random discretisation

The Continuum Approximation: With or Without Discreteness

• Different Physics at different scales:

- Quantum Gravity DOF QG: Discrete or Continuum
- $\mathbb{QG} \sim (M,g)$ at $V > V_p$

• How do we recognise the continuum approximation when we see it?

- GR: $V \gg V_p$, Planck scale: $V \sim V_p$, Trans-Planckian scale: $V \ll V_p$ (?)
- GR emergent from Planck scale : what Planck scale physics should one forget to get GR?

Continuum or Discrete DOF

- If QG is a quantum spacetime geometry (or any other classically equivalent set of continuum quantities), with some continuity requirements: $C^2, C^1, C^0...$ OR is discrete (graph, triangulation, network, causal set, ...)
- What distinguishing features does \mathbb{QG} have at the Planck scale V_p ? (Is there physics) below V_p for continuum theories?)
- Say your theory spits out a (coherent state of) continuum geometry $(M,g) \in \mathcal{M}_r$ but r < 2 or some pre-geometric **Q** (example: piece-wise continuous, orbifolds, extra dimensions, etc.)
- Does (M,g) or **Q** approximate $(\mathbf{M},\mathbf{g}) \in \mathcal{M}_2$ (or desired differentiability) at a scale $V \gg V_p?$

Uniqueness

Is this approximation unique?

• What does it mean for two spacetimes to be close at a given scale?

- Bombelli, 2000, Bombelli and Noldus, 2004 -Burtscher and Allen, 2021, --Kunzinger and Steinbauer, 2021, ...

A

$\mathbb{QG} \sim_V (\mathbf{M}, \mathbf{g}) \text{ AND } \mathbb{QG} \sim_V (\mathbf{M}', \mathbf{g}') \text{ are } (\mathbf{M}, \mathbf{g}) \text{ and } (\mathbf{M}', \mathbf{g}') \text{ "close" at } V \gg V_p$?

 \boldsymbol{B}

The Causal Set Way: Quantising the Causal Structure

Lorentzian Spacetime (Causal, Distinguishing) = $(M, \prec) + \epsilon$

 (M, \prec) is a poset :(i) Acyclic: $x \prec y, y \prec x \Rightarrow x = y$ (ii) Transitive: $x \prec y, y \prec z \Rightarrow x \prec z$

The Causal Set Hypothesis:

-Myrheim, 1978 -Bombelli, Lee, Meyer and Sorkin, 1987

1. Locally finite posets or Causal Sets are the fine grained structure of spacetime

2. Continuum Approximation: *Order + Number ~ Spacetime* (counting replaces volume)

-Hawking, Hawking-King-MacCarthy, Malament, Kronheimer-Penrose

...Robb, Zeeman, Penrose, Kronheimer, Finkelstein, Myrheim, Hemion, 't Hooft

The Continuum Approximation

- $n \sim \rho V$ correspondence has to be diffeo invariant
- Random discretisation via a Poisson sprinkling process:

•
$$P_V(n) = \frac{(\rho V)^n}{n!} e^{-\rho V}, \langle n \rangle = \rho$$

- For every causal spacetime (M, g) there is a kinematic ensemble $\{C\}_{\rho}$ (first quantisation)
- $C \sim_{\rho} (M, g)$ is a faithful embedding at density ρ if :
 - $C \hookrightarrow (M, g)$ is order preserving

 ρ sets a scale

• n_V : number of points in spacetime volume V is a random variable, $P_V(n) = \frac{(\rho v)}{n!} e^{-\rho V}$

Causal Set Non-locality

- The nearest neighbours lie all along the light cone
- A continuum-like causal set is a graph without a fixed valency •

Preserving Local Lorentz invariance <u>Theorem</u> : — Bombelli, Henson and Sorkin,2006

There is no measurable map $D: \Omega \to H$ which is equivariant, i.e., $D \circ \Lambda = \Lambda \circ D$.

<u>Proof</u>: If such a map existed, then $\mu_D = \mu \circ D^{-1}$ is a Lorentz invariant probability measure on H which is not possible since is H non-compact.

- Measure triple (Ω, Σ, μ)
- unit hyperbola $H \subset \mathbb{M}^d$ (fdtl directions)

Calibrating the Continuum Approximation

• Is this approximation unique?

FUNDAMENTAL CONJECTURE:

- Order Invariants \mathcal{O} as Geometric Invariants \mathbb{G}
- WEAK FORM OF FUNDAMENTAL CONJECTURE:

If $C \sim_{(\rho, \mathcal{O})} (\mathbf{M}, \mathbf{g})$ AND $C \sim_{(\rho, \mathcal{O})} (\mathbf{M}', \mathbf{g}')$ then $(\mathbf{M}, \mathbf{g}) \sim_{(\rho, \mathbb{G})} (\mathbf{M}', \mathbf{g}')$

• Which order invariants \mathcal{O} correspond to Geometric Observables \mathbb{G} ?

If $C \sim_{\rho} (\mathbf{M}, \mathbf{g})$ AND $C \sim_{\rho} (\mathbf{M}', \mathbf{g}')$ then (\mathbf{M}, \mathbf{g}) and $(\mathbf{M}', \mathbf{g}')$ are "close" at some $\rho^{-1} \gg V_p$.

Geometric Reconstruction: geometry from counting

- Dimension Estimators Myrheim, Myer, Glaser & Surya, ...
- Timelike Distance — Brightwell & Gregory
- Spatial Homology Major, Rideout & Surya
- Spatial and Spacelike Distance Rideout & Wallden, Eichhorn, Mizera & Surya, Eichhorn, Surya & Versteegen
- Sorkin, Henson, Benincasa & Dowker, Dowker & Glaser • D'Alembertian
- Benincasa-Dowker-Glaser Action Benincasa & Dowker, Dowker & Glaser
- GHY terms in the Action Buck, Dowker, Jubb & Surya
- Locality and Interval Abundance Glaser & Surya
- Horizon Molecules Barton, Counsell, Dowker, Gould & Jubb, Machet and Wang
- Scalar Field Greens functions Johnston, Dowker, Surya & Nomaan X
- Scalar Field SJ vacuum Johnston, Sorkin, Yazdi, Nomaan X, Surya
- Entanglement Entropy Dou & Sorkin, Sorkin & Yazdi, Yazdi, Nomaan X, Surya
- Null Geodesics from Ladder molecules -- with A. Bhattacharya and A. Mathur, 2022

Example: Dimension Estimator

• If $C \sim_{\rho} (\mathbb{M}^d, \eta)$

• If
$$C \sim_{\rho} (\mathbf{M}', \mathbf{g}')$$
, then $(\mathbf{M}', \mathbf{g}') \sim_{(\rho, d)} (\mathbb{M}^d, \eta)$

- Example $\mathbf{M}' = \mathbb{R}^d \times S^1$, $\mathbf{g} = \eta \oplus l$: For $\rho^{-1} > V_c \times |S^1|$, $C \sim_{\rho,d} (\mathbf{M}', \mathbf{g}')$
- dimension $d' \neq d$.

• Myrheim-Myer dimension estimator $\langle r \rangle = \frac{2\langle R \rangle}{\langle n \rangle^2} = \frac{\Gamma(d+1)\Gamma(d/2)}{4\Gamma(3d/2)}$

• Therefore if C has Myrheim-Myer dimension d, then it cannot approximate a spacetime of

But is the continuum emergent from dynamics?

Lorentzian Path Sum over Ω_n

• Ω_n : sample space of all n-element causal sets

•
$$|\Omega_n| \sim 2^{\frac{n^2}{4} + \frac{3n}{2} + o(n)}$$

- Typical causal sets are Kleitmann-Rothschild: $|\Omega_{KR}| \sim 2^{\frac{n^2}{4} + \frac{3n}{2} + o(n)}$
- Other layered Posets are subdominant: ~ $2^{c(d)n^2 + o(n^2)}$,

- Kleitman and Rothschild, Trans AMS, 1975 - J. Henson, D. Rideout, R. Sorkin and S.Surya, JEM, 2015

 $c(d) \le 1/4$

-D. Dhar, JMP, 1978 - Promel, Steger, Taraz 2001

Do manifold-like causal sets stand a chance?

Layered Posets are not manifold-like

The Benincasa-Dowker-Glaser Action

$$S_{BDG}^{(d)}(C) = \mu \left(n + \sum_{j=0}^{j_{max}} \lambda_j N_j \right)$$
$$S_{BDG}^{(4)} = \frac{4}{\sqrt{6}} \left(n - N_0 + 9N_1 - 16N_2 + 8N_3 \right)$$

For the KR poset:

— Benincasa & Dowker 2010, — Dowker & Glaser 2011 — Glaser 2012

Do manifold-like causal sets stand a chance? Yes!

Bilayer Posets :

Suppression for:

/

$$\tan(-\frac{\mu\lambda_0}{2}) > \sqrt{3}$$

$$d = 4, \quad \mu = \left(\frac{l}{l_p}\right)^2 \Rightarrow l \approx 1.452 l_p$$

The discrete Einstein Hilbert action in any dimension suppresses all k-layer orders for k < < n: Action wins over Entropy

—Loomis and Carlip, 2017 — A.Anand Singh, A.Mathur and Surya, 2021 —P. Carlip, S. Carlip and S. Surya, 2022 P. Carlip, S. Carlip and S. Surya, in preparation

 $\sim n/4$

Why d = 4 spacetime?

Does the *d* dimensional discrete Einstein Hilbert action suppress $d' \neq d$? (Some hints..)

State Sum Models: Lorentzian Statistical Geometry

$$Z_{\beta} = \sum_{c \in \Omega} \exp(i\beta S_{BDG}(c)),$$

Inverse "temp": $\beta \rightarrow i\beta$ $Z_{\beta} \rightarrow \tilde{Z}_{\beta} = \sum \exp(-\beta S_{BDG}(c))$ $c \in \Omega$

 $S^1 \times \mathbb{R}$

Track Observables O for continuum-non-continuum phases

 Myrheim-Myer dimension estimator 	0
 Interval Abundance 	-100 Action -200
 Action 	-300
• Height	25
Finite size scaling to know if $\langle \mathcal{O} \rangle \lim_{n \to \infty} \mathbb{G}$	20 Height 15 10
	5

Computationally very expensive!!

- Cunningham & Surya, 2020

Is the Continuum Unique?

Calibrating the Continuum Approximation: new techniques

- $(M,g) \sim_{\rho} (M',g')$: what does this mean?
- Lorentzian spacetimes via GH convergence
- Can we define ρ -closeness?
- \bullet Convergence in $\rho \rightarrow \infty$ limit

Bombelli, 2000, Bombelli and Noldus, 2004
 Burtscher and Allen, 2021,
 -Kunzinger and Steinbauer, 2021

-- Bombelli and Meyer, 1989 -- Minguzzi and Suhr , 2022 -- Muller, 2022

Uniform Random Sampling Method

Lorentzian Uniform Random Sampling - Causal Sets

- Consider two spacetimes (M, g), (M', g') of volume ~ V
- Random sampling produces a causal set c by using causality relation \prec in (M, g)
- Ω_n : ensemble of *n*-element causal sets
- $P_n(c | M)$, $c \in \Omega_n$ is a probability distribution.
- Since $\sum P_n(c \mid M) = 1$, $\sqrt{P_n(c \mid M)}$ form coordinates on positive part of the sphere in $\mathbb{R}^{|\Omega_n|}$ $c \in \Omega_{n}$

•
$$d_n(M, M') = \frac{2}{\pi} \cos^{-1} \left(\sum_{c \in \Omega_n} \sqrt{P_n(c \mid M)} \sqrt{P_n(c \mid M)} \right)$$

Closeness function but not a distance function

(B, d_R) Distance between Abstract Metric Spaces (A, d_A) ,

 $d_{GH} \equiv \inf_{(M,d),\Phi,\Psi} d_H(\Phi(A),\Psi(B))$

• Calculating this quantity explicitly is very hard!

$$d_{GH}(\mathbb{S}^m, \mathbb{S}^n) \leq \frac{\pi}{2}$$
$$d_{GH}(\mathbb{S}^0, \mathbb{S}^n) = \frac{\pi}{2}$$
$$d_{GH}(\mathbb{S}^m, \mathbb{S}^\infty) = \frac{\pi}{2}$$

Lim, Memoli & Smith, 2022

 p_2

• Let (M, d) be a metric space such that $\Phi : A \hookrightarrow M$, $\Psi : B \hookrightarrow M$ are two **isometric embeddings**

• Gromov-Hausdorff Distance: **shortest** Hausdorff distance over all possible isometric embeddings

Null Distance Function for GH Convergence

- Time function $T: (M, d) \rightarrow \mathbb{R}$ -- monotonic, etc.
- $\gamma(p,q)$: piece-wise causal curve: allow it to go backward and forward in time!
- The length along the curve is defined as $L_T(\gamma(p,q)) = \sum |T(s_i) T(s_{i-1})|$
- Null Distance function: $d_T(p,q) \equiv \inf_{T} L_T(\gamma(p,q))$ IS a genuine distance function $\gamma(p,q)$
- Can be used to study convergence of FRW-type spacetimes

Workshop on Non-regular spacetimes, ESI, Vienna, March 2023

Sormani and Vega, 2016

Allen and Burtscher, 2020

Allen and Burtscher, 2020

GH-like distance for 2d orders using a lattice embedding

- $S = (1, 2, ..., n), U = (u_1, ..., u_n), V = (v_1, ..., v_n), u_i \in S, v_i \in S$
- 2d order $C = U \cap V$: $e_i = (u_i, v_i) \prec e_i = (u_i, v_i) \Leftrightarrow u_i < u_i, v_i < v_i$
- Examples:
 - $u_1 < u_2 \dots < u_n, v_1 < v_2 \dots < v_n \Rightarrow C$ is a chain
 - $u_1 < u_2 \dots < u_n, v_n < v_{n-1} \dots < v_1 \Rightarrow C$ is an antichain
 - U, V randomly sampled : random 2d order ~ (\mathbb{D}^2, η)
- ullet Every 2d order can be embedded as a 2d order into the light cone lattice $\,\mathscr{L}$
- The null distance function on $\mathscr{L}: d_t(a, b) = \frac{1}{2}(|u_b|)$

•
$$A, B \subseteq \mathcal{L}, \quad d_H(A, B) = \sup \inf_{a \in A} \inf_{b \in B} d_t(a, b)$$

• Let $c_1, c_2 \in \Omega_{2d}$, $\mathscr{E}_i : c_i \hookrightarrow \mathscr{L}$, $d_{GH}(c_1, c_2) \equiv \inf_{\mathscr{E}_i} d_H^{\leftrightarrow}(\mathscr{E}_1(c_1), \mathscr{E}_2(c_2))$

-Work in progress with Alan Daniel Santhosh

$$-u_{a}|+|v_{b}-v_{a}|)$$

Preliminary calculations...

- $d_{GH}(a_n, a_{n+1}) = 1$, $d_{GH}(c_n, c_{n+1}) = 1$
- $d_{GH}(a_n, c_n) = m$, n = 2m or n = 2m + 1

•
$$d_{GH}(B_2, c_n) = \frac{n}{4}$$
, $d_{GH}(B_2, a_n) = \frac{n}{4} + \frac{1}{2}$

•
$$d_{GH}(KR, c_n) \le \frac{n}{2}$$
, $d_{GH}(KR, a_n) = \frac{n}{4}$

•
$$d_{GH}(L_4, c_n) \le \frac{n}{8}$$
, $d_{GH}(L_4, a_n) \le \frac{3n}{8}$

- Distance between Antichain a_n and Chain c_n grows the fastest
- Distance between the K-layer poset -- does it get closer to c_n than a_n as K increases?
- Measuring distance between random orders : challenging and may need numerical work

In Conclusion...

- - QG ~ (\mathbf{M}, \mathbf{g})
- In CST, the continuum approximation is recognised using geometric order invariants O
- New Lorentzian geometric tools to calibrate how close Lorentzian QG is to a smooth

spacetime..

• Can they help us determine this up to a scale: $(\mathbf{M}, \mathbf{g}) \sim_V (\mathbf{M}', \mathbf{g}')$?

• The Continuum Approximation could be relevant to many approaches to quantum gravity:

• Uniqueness: If $\mathbb{QG} \sim_V (\mathbf{M}, \mathbf{g})$ AND $\mathbb{QG} \sim_V (\mathbf{M}', \mathbf{g}')$ then $(\mathbf{M}, \mathbf{g}) \sim_V (\mathbf{M}', \mathbf{g}')$

Thank you!