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Path integral

Interference gives our cleanest description of the Universe as formalized by the

Feynman path integral. But how is this conditionally
convergent oscillatory integral defined?
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Path integral

In quantum gravity, the path integral for gravity has influenced many

explorations

Wheeler: A classical trajectory emerges as an interference phenomena in
quantum mechanics. Classical spacetime spacetime should emerge as an

interference effect in superspace

 The Wheeler-DeWitt equation

H P[P =0 XYLTD] =0

The path integral over spacetimes
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Problems with the
Feynman Path integral




Path integral

What is the problem? And why should we care?

Feynman and Hibbs: “...we feel that the possible awkwardness of the
special definition of the sum over all paths may eventually require new
definitions to be formulated. Nevertheless, the concept of the sum
over paths, like the concept of an ordinary integral, is independent of
a special definition and valid in spite of the failure of such definitions”

Terence Tau: “The point of rigour is not to destroy all intuition; instead,
it should be used to destroy bad intuition while clarifying and
evaluating good intuition. It is only with a combination of both
rigorous formalism and good intuition that one can tackle complex
mathematical problems.”



Conditional convergence

Alternating sums occur in many places, ranging from classical systems, and
wave optics, to quantum physics

* Absolutely v.s. conditionally convergent sums
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Oscillatory integrals

Oscillatory integrals occur in many places, ranging from classical systems,
and wave optics, to quantum physics 1) T
' (0,0) |

* Fresnel integral can be defined with the typical regularization

o0 R :
. . — 1
[ e™dx = lim J ¢idx = — (1 + i)y /= lim erf (l R) = (1 i)\ﬁ
— 00 R— 00 _PR 2 R—oo \/5 120° | 60°
* Higher dimensional generalizations run into problems -
N N2 ¢R D2
. 2 . [I'(N/2, — iR
JHely%dyl = lim - J e rN=1dr = lim in)M*| 1 ( R 210° 330°
e R—o00 I'(N/2) J, R— o0 ['(N/2) T e

270°

oscillates around the box cutoff regulator for N = 2 and diverges for N > 2.
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Infinite dimensional integrals

Integration theory is an application of measure theory

sigma-algebra </ on the space Q sigma-measure u : o/ - [0,00]

1. Qe d 1. u@) =
2. Aed=>Aed 2. A € d,n € N,pairwise disjoint

3. A,edneN=>U2 A €d = u(U2,A,) = Y uA,)

We deflne integrals of positive S|mple functions as a finite sum

f= 2 a;1, Integrates to J fdu = Z a; u(A;)
=1 '
leading to the general integral for p05|t|ve functlons
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where gis simpleand 0 < g < f




Infinite dimensional integrals

The infinite product of Lebesgue measures is not a sigma measure.

* Lebesgue formalized the standard measure on geometric spaces
/’t([aa b]) — b —d

* Unfortunately, the infinite product is not a measure due to translation
invariance ., H dx.

=1
The measure of the n-dimensional hypercube can be subdivided

1 = u([0,11") = 2"u([0,1/2]") In the limit n -
the subcube has a vanishing measure p([0,1/2]*) =0

and so does any subset that we construct from them. t
Such measures are useless in physics!



Infinite dimensional integrals

There exist infinite-dimensional measures that that are not translation invariant

1.0
Restricted Brownian motion moving '
between two points, leads to the .
Brownian bridge measure. When applied 0.0
to a space of N slits, the measure forms %%
an N-dimensional integral
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with stiffness, W. Note that the paths are not differentiable!
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New definition of the
Feynman Path integral



Picard-Lefschetz theory

Picard-Lefschetz theory suggests another route for theories with analytic

actions. One-dimensional case:
I = J' e/ dx
R

 Analytically continue the
integrand into the complex plane if(x) = h(x) + iH(x)

* Find all saddle points |
I = Z nie’H(xi)J e"dx 4

* Find the steepest ascent and " 7 e
descent contours associated T
with the real part of the exponent Absolutely convergent .
—_— 5 > >

* Deform the integration domainto Thimble is relevant when the ascent contour
the relevant descent thimbles Intersects the original integration contour



New proposal for real-time QM

When applying Picard-Lefschetz theory to the real-time path integral, can we
deform the paths and define the integral using the Brownian bridge measure
for each relevant instanton?

J e/Xdx = lim [ g-(X)e®dx = lim ZJ go(X)edx = ZJ e Xdx

R— o0 R— o0 i i 7,

For a regulator g, that converges to 1 as R - o, Is analytic in the complex
plane, decays rapidly enough that no contributions from infinity are
iIntroduced. Extreme paths cancel out and we obtain a unigue result:
x(T)=x, |
o= [ s B emon| iy oo ocr

*(O0)=% 'c / e \ \ Real, positive

sum over relevant / probability measure

classical solutions
: ) exit ' phase, reduces to Maslow phase
contour in space of complexities paths in semiclassical limit

associated with the relevant instanton



New proposal for real-time QM

The structure of the path integral is completely organized by the classical
paths. Note that this formula is exact and not the saddle point
approximation. For more details see arXiv:2207.12798 (JF and Neil Turok)

x(T)=x
Glx;, x; T = J eiSl/gy = D eiS[xd/hJ e *dy, (8x) O(T)
O=% 'c / I nc \ \ Real, positive

sum over relevant ’ probability measure

classical solutions
phase, reduces to Maslow phase

contour In space of complexities paths in semiclassical limit

associated with the relevant instanton

where the instantons are defined by

mX = — V'(x), with x(0) = x,, and x(T') = x;

This formula should also apply to gravity!



New proposal for real-time QM

The structure of the path integral is completely organized by the classical
paths. Note that this formula is exact and not the saddle point
approximation. For more details see arXiv:2207.12798 (JF and Neil Turok)

x(T)=x, | |
Glx;, x; T = J eSWhgx= ) elS[xd/hJ e *dy, (8x) O(T)

x(0)=x I
’ 'c / ¢ \ \ Real, positive

sum over relevant ’ probability measure

classical solutions
phase, reduces to Maslow phase

contour In space of complexities paths in semiclassical limit

associated with the relevant instanton

An instanton is relevant if and only if there exists a steepest ascent
deformation of the saddle point to a real path



The propagator in action
Glxy, x5 T S1x(?)]



Poschli-Teller potentlal

Enough formalism! How to study this all in practice? 10 -
The harmonic oscillator is fully solvable but too simple!
The Teller potential is both generic and solvable.

- — S S B

oo Vx)  V(x) %0
= | X xX) =
2m o0x? cosh(x)?

with the propagator

ihk2T

Glxy, xg; 1] = Z O, (XD (xp)e BT J ¢k(x1)qb]j< (Xp)e ™ 2

O0<n<N — 00

O(7)

with ¢.(x) proportional to the Legendre polynomials



Caustics in the propagator

The propagator consists of an interference pattern structured by caustics!
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Caustics in the propagator

Caustics separate regions with distinct numbers of real solutions to the

boundary value problem

mx(t) =

IIIIIIIIII

4L

2V, tanh(x(£))

with x(0) = xy, x(T') = x,

cosh?(x(?))
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the propagator

there are always either 1 or 3 real classical paths
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Caust

The potential barrier
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Caustics in the propagator

The potential barrier
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Caustics in the propagator

Not only in the propagator but also in the Schrodinger equation
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Relevant classmal paths

How about complex
saddle points?

The real WKB
approximation does a
good job in the triple-
iImage but fails in the
single-image region.

We must include
complex classical paths
solving the boundary
value problem




Complex WKB
approximation works |
great, till the complex
saddle point seizes to |
exist!

1 S[2d]\ s |
GwkB|T1, o; T) = Z \/ i det ( 8:1:0(’[):1:3 ) gtSlzel/h N\ N\@ |

-05

-1.0 |




Relevant classical paths

g(V()) — S[-x(-x09 Vos 1]

1 10}

Complex WKB
approximation works |
great, till the complex
saddle point seizes to
exist!
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With analytic |
continuations we can
move past the pole- |
crossing, and complete
the WKB approximation.

No solution to the N
boundary value problem!.. \. /




Interference is central to our
understanding of the quantum
universe

We propose a new definition of the
real-time path integral using Picard-
Lefschetz theory

Instantons go beyond complex
classical paths!

We hope that this will be useful in
quantum mechanics, quantum
field theory, and Lorentzian
quantum cosmology
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Oscillatory integrals

Oscillatory integrals occur in many places, ranging from classical systems,
and wave optics, to quantum physics

* Absolutely v.s. conditionally convergent integrals

[ = Jf(x)dx J\f(x) |dx < o0

e Fubini’s theorem

J'J'f(x, y)dx,y) = J [Jf(x, y) dx] dy = J [Jf(x, y) dy] dx when H | f(x, x) | d(x,y) < o0

 Dominated convergence theorem

n—0o0 n— Qoo

lim ” fn(x)dx] = I [ lim fn(x)] dx when |f (x)| <g(x) Vn with J'\ 2(x)|dx < o0



Feynman-Kac formula

When using a Wick rotation: interference -> statistical physics

J 6% [ (mx2/2—V(x))dt@ X = J 0 —% [ (mx2/2+V(x))dt9 X

which is still mathematically ill-defined. However, we can define the set of
symbols in terms of the Brownian bridge measure

J e—% f(mx2/2+V(x))d@ I

_ —L7 V(x)dtd
— 7
I o+ I mi22dt gy [ ¥ Hp(X)

The smoothing due to the kinetic term and wildness of the infinite product
“measure” are beautifully balanced in the Brownian bridge.



Picard-Lefschetz theory

* Fresnel integral

e 2 K ) U :
J e dx = lim J edx=(14+1)/— |
o0 R—o0 J_p 2 1.5+

e Multi-dimensional extension

1.0 |

K 1E

J] et )dxdy = lim 27Z'J re”dr = lim [i]l'—]l'ele =

R2 R— o0 0 R— o0 =
 Complex analysis 05 |

. 1+ [z 1+ | |
J e™ dx = J e~ dy = (1 +1),/— X = u -
R \/5 R 2 \/5 o

[[ ei(x2+y2) d(x, )7) — iJ 6_(”2"‘"2) d(u, V) — i Re[lr(R)]
R2 R2



Single plane lensing

A\ M2
Y(u,v) = (-) Jei”¢(x’”)dx

JU

Name Symbol K N o(x; )
Maximum/minimum A7 0 1 +1°

Fold A, 11 z° /3 + px

Cusp As 2 1 /4 + pox? /2 +
Swallowtail Ay 31 2° /5 + puzx® /3 + pox? /2 +
Butterfly As 4 1 2°/6 + pux® /4 + pzx® /3 + pex® /2 + iz
Elliptic umbilic D; 3 2 z} —3xix5 — pus3(x] + 5) — poe — 12y
Hyperbolic umbilic Dy 3 2 T3 + Th — U3T1Ty — Moy — [T
Parabolic umbilic Ds 4 2 x4+ 1125 + paxs + psxs + poTo + 1

Table I: The unfoldings of the seven elementary catastrophes with codimension K < 4, with

w=(I1,:E2,...,:BN) andp,:(/,tl,/,tz,...

, ). The normal forms are defined as the unfolding at

parameter pu = 0, i.e., ¢(x;0).
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Single plane lensing

Caustics and Stoke’s lines

‘P( u, 1/) — eiv(x4/4+,uzx2/2+,ulx)dx
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Single plane lensing
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Caustics and Stoke’s lines

\P( u, 1/) _ eiv(x5/5+,u3x3/3+//t2x2/2+,ulx)dx
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