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Path integral
Interference gives our cleanest description of the Universe as formalized by the 
Feynman path integral. But how is this infinite-dimensional conditionally 
convergent oscillatory integral defined?



• The Wheeler-DeWitt equation

Wheeler: A classical trajectory emerges as an interference phenomena in 
quantum mechanics. Classical spacetime spacetime should emerge as an 
interference effect in superspace

• The path integral over spacetimes 
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Path integral
In quantum gravity, the path integral for gravity has influenced many 
explorations



Problems with the 

Feynman Path integral



Path integral

• Feynman and Hibbs: “...we feel that the possible awkwardness of the 
special definition of the sum over all paths may eventually require new 
definitions to be formulated. Nevertheless, the concept of the sum 
over paths, like the concept of an ordinary integral, is independent of 
a special definition and valid in spite of the failure of such definitions”


• Terence Tau: “The point of rigour is not to destroy all intuition; instead, 
it should be used to destroy bad intuition while clarifying and 
evaluating good intuition. It is only with a combination of both 
rigorous formalism and good intuition that one can tackle complex 
mathematical problems.”

What is the problem? And why should we care?



Conditional convergence
Alternating sums occur in many places, ranging from classical systems, and 
wave optics, to quantum physics


• Absolutely v.s. conditionally convergent sums
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Oscillatory integrals
Oscillatory integrals occur in many places, ranging from classical systems, 
and wave optics, to quantum physics


• Fresnel integral can be defined with the typical regularization
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• Higher dimensional generalizations run into problems

∫
N

∏
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Γ(N/2, − iR2)
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oscillates around the box cutoff regulator for N = 2 and diverges for N > 2.



sigma-measure 

1.  

2.  

Infinite dimensional integrals

f =
r
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Integration theory is an application of measure theory

A ∈ 𝒜 ⇒ Ac ∈ 𝒜
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We define integrals of positive simple functions as a finite sum

leading to the general integral for positive functions

∫Ω
f dμ = sup {∫Ω

g dμ where g is simple and 0 ≤ g ≤ f}



The infinite product of Lebesgue measures is not a sigma measure.


• Lebesgue formalized the standard measure on geometric spaces


• Unfortunately, the infinite product is not a measure due to translation 
invariance 

  The measure of the n-dimensional hypercube can be subdivided

                                    In the limit


the subcube has a vanishing measure

and so does any subset that we construct from them.

Such measures are useless in physics!  

Infinite dimensional integrals
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1 = μ([0,1]n) = 2nμ([0,1/2]n) n → ∞
μ([0,1/2]∞) = 0
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There exist infinite-dimensional measures that that are not translation invariant

Restricted Brownian motion moving 
between two points, leads to the 
Brownian bridge measure. When applied 
to a space of N slits, the measure forms 
an N-dimensional integral 

Q = {w ∈ Ω |ai < w(ti) < bi, 0 < t1 < … < tN < 1}

with stiffness, W. Note that the paths are not differentiable!

Infinite dimensional integrals



New definition of the 

Feynman Path integral



Picard-Lefschetz theory
Picard-Lefschetz theory suggests another route for theories with analytic 
actions. One-dimensional case:

• Analytically continue the 
integrand into the complex plane


• Find all saddle points 

• Find the steepest ascent and 
descent contours associated 
with the real part of the exponent


• Deform the integration domain to 
the relevant descent thimbles

I = ∫ℝ
eif(x)dx

J

J

V

V

KV

KV

Vif(x) = h(x) + iH(x)

I = ∑
i

nieiH(xi) ∫𝒥i

eh(x)dx

Absolutely convergent

Thimble is relevant when the ascent contour 
intersects the original integration contour



New proposal for real-time QM
When applying Picard-Lefschetz theory to the real-time path integral, can we 
deform the paths and define the integral using the Brownian bridge measure 
for each relevant instanton?

∫ℝn

ef(x)dx ≡ lim
R→∞ ∫ gR(x)eif(x)dx = lim

R→∞ ∑
i

∫𝒥i
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i
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For a regulator g, that converges to 1 as            , is analytic in the complex 
plane, decays rapidly enough that no contributions from infinity are 
introduced. Extreme paths cancel out and we obtain a unique result:
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phase, reduces to Maslow phase 
in semiclassical limit

Real, positive  
probability measuresum over relevant 

classical solutions
contour in space of complexities paths  
associated with the relevant instanton



New proposal for real-time QM

This formula should also apply to gravity!

m··x = − V′￼(x),  with x(0) = x0,  and x(T) = x1

where the instantons are defined by

The structure of the path integral is completely organized by the classical 
paths. Note that this formula is exact and not the saddle point 
approximation. For more details see arXiv:2207.12798 (JF and Neil Turok)
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New proposal for real-time QM
The structure of the path integral is completely organized by the classical 
paths. Note that this formula is exact and not the saddle point 
approximation. For more details see arXiv:2207.12798 (JF and Neil Turok)

An instanton is relevant if and only if there exists a steepest ascent 
deformation of the saddle point to a real path

G[x1, x0; T] = ∫
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x(0)=x0

eiS[x]/ℏ𝒟x ≡ ∑
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phase, reduces to Maslow phase 
in semiclassical limit
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The propagator in action
G[x1, x0; T] S[x(t)]



Pöschl–Teller potential
Enough formalism! How to study this all in practice?
The harmonic oscillator is fully solvable but too simple! 
The Teller potential is both generic and solvable.

V(x) =
V0

cosh(x)2
Ĥ = −

ℏ2

2m
∂2

∂x2
+ V(x)

G[x1, x0; T] = ∑
0≤n<N

ϕn(x1)ϕ*n (x0)e−iEnT/ℏ + ∫
∞

−∞
ϕk(x1)ϕ*k (x0)e− iℏk2T

2m
ℏ2kdk

m
Θ(T)

with the propagator

ĤϕE(x) = EϕE(x)

with         proportional to the Legendre polynomialsϕE(x)



Caustics in the propagator
The propagator consists of an interference pattern structured by caustics!



Caustics separate regions with distinct numbers of real solutions to the 
boundary value problem

m··x(t) =
2V0 tanh(x(t))

cosh2(x(t))
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Caustics in the propagator



The potential barrier: there are always either 1 or 3 real classical paths

Caustics in the propagator



The potential barrier

Caustics in the propagator



Not only in the propagator but also in the Schrödinger equation

Caustics in the propagator



Relevant classical paths
How about complex 
saddle points? 


The real WKB 
approximation does a 
good job in the triple-
image but fails in the 
single-image region.


We must include 
complex classical paths 
solving the boundary 
value problem



f(v0) = x(x0, v0; T ) g(v0) = S[x(x0, v0; t)]
Complex WKB 
approximation works 
great, till the complex 
saddle point seizes to 
exist!


Relevant classical paths



Complex WKB 
approximation works 
great, till the complex 
saddle point seizes to 
exist!


With analytic 
continuations we can 
move past the pole-
crossing, and complete 
the WKB approximation.


No solution to the 
boundary value problem!

f(v0) = x(x0, v0; T ) g(v0) = S[x(x0, v0; t)]
Relevant classical paths



• Interference is central to our 
understanding of the quantum 
universe 

• We propose a new definition of the 
real-time path integral using Picard-
Lefschetz theory 

• Instantons go beyond complex 
classical paths!


• We hope that this will be useful in 
quantum mechanics, quantum 
field theory, and Lorentzian 
quantum cosmology

Summary





Oscillatory integrals
Oscillatory integrals occur in many places, ranging from classical systems, 
and wave optics, to quantum physics


• Absolutely v.s. conditionally convergent integrals

I = ∫ f(x)dx ∫ | f(x) |dx < ∞

∬ f(x, y) d(x, y) = ∫ [∫ f(x, y) dx] dy = ∫ [∫ f(x, y) dy] dx

• Fubini’s theorem

• Dominated convergence theorem

lim
n→∞ [∫ fn(x)dx] = ∫ [ lim

n→∞
fn(x)] dx | fn(x) | ≤ g(x) ∀n ∫ |g(x) |dx < ∞when with

∫
∞

−∞
eif(x) dx ∫

x(1)=x1

x(0)=x0

eiS[x(t)] 𝒟x(t)or
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∬ | f(x, x) |d(x, y) < ∞when



Feynman-Kac formula

∫ e
i
ℏ ∫ (m ·x2/2−V(x))dt𝒟x → ∫ e− 1

ℏ ∫ (m ·x2/2+V(x))dt𝒟x

When using a Wick rotation: interference -> statistical physics 

The smoothing due to the kinetic term and wildness of the infinite product 
“measure” are beautifully balanced in the Brownian bridge.

∫ e− 1
ℏ ∫ (m ·x2/2+V(x))dt𝒟x

∫ e− 1
ℏ ∫ m ·x2/2dt𝒟x

≡ ∫ e− 1
ℏ ∫ V(x)dtdμB(x)

which is still mathematically ill-defined. However, we can define the set of 
symbols in terms of the Brownian bridge measure



• Fresnel integral

∫
∞

−∞
eix2dx = lim

R→∞ ∫
R

−R
eix2dx = (1 + i)

π
2

• Multi-dimensional extension

∬ℝ2

ei(x2+y2)dxdy = lim
R→∞

2π∫
R

0
r eir2dr = lim

R→∞ [iπ − πeiR2]
• Complex analysis

∫ℝ
eix2 dx =

1 + i

2 ∫ℝ
e−u2 du = (1 + i)

π
2

x =
1 + i

2
u

Picard-Lefschetz theory

∬ℝ2

ei(x2+y2) d(x, y) = i∫ℝ2

e−(u2+v2) d(u, v) = iπ



Single plane lensing
Ψ(μ, ν) = ( ν

π )
N/2

∫ eiνϕ(x,μ)dx
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Single plane lensing

Ψ(μ, ν) = ∫ eiν(x4/4+μ2x2/2+μ1x)dx

Caustics and Stoke’s lines
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Ψ(μ, ν) = ∫ eiν(x5/5+μ3x3/3+μ2x2/2+μ1x)dx

Single plane lensing
Caustics and Stoke’s lines
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