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Jordan-Einstein Frames

« Old paper: Dicke (Phys. Rev. (1962) 125, 6 2163-2167)

Suppose the proton mass is 77y, in mass units 777, anfi, in “natural
units”, we scale the unit of measurement by a factor A~ ~ (length)!

My = A_lmu . In the new unit the proton mass T?Lp = A_lmp.

* Confronting the measurement of the proton mass in the two mass units

(Faraoni and Nadeau 2000)
mp  Atm,  my

~

My A" 1lm, My,



Jordan-Einstein Frames

. L
* Since dS = Ads and ds = (gij dx'dx’ ) 2, then the covariant metric
functions scales as

Juv = )‘29;w

* Invariance under rescaling of unit of measurement implies Weyl (conformal)
invariance of the metric tensor

* The starting frame 1s called “Jordan” frame and the conformal transformed
the “Einstein Frame. One observable can be computed in both frames. Its
measure, obviously different in the two frames, is related by conformal
rescaling according to the observable’s dimensions.(e.g, My = A™ "My, ).



Scalar-Tensor Theory

* In general, one starts from a scalar-tensor theory, with GHY-like boundary term, in the Jordan Frame

n 1 uv _ n—1
s= [ ovg (FOR- PO 0000 - V) +2 [ e VROK

M
* and passes to the Einstein Frame with the transformation

Guv = (167TGf(¢)) %glﬂ/ ;

® therefore, the action becomes

_ n _ ~ 1 »J ~ v . L n—1,/7 1
S = /Md xﬁ< R — A($)§"*8,40,¢ V(gb)) + 25 8Md hK

16mG
1 (M@ n—1(f(9)) U
A9 = T6rc (2f(d>) T2 29) )’V(‘b) = 6mGT (9] =

* Itis assumed that if (gp,y (-T), ¢(33)) is solution of the E.O.M also (g,w (CE, ¢), Qb(fC)) is

solution (True?). This reasoning seems to address that the transformation from the Jordan to the Einstein
trame look like a canonical transformation in the Hamiltonian theory.



Brans-Dicke Theory

* Brans-Dicke, with GHY boundary term, is a particular case of Scalar Tensor theory ( f(¢) = ¢)

w

(bg“”@#cbc‘?ycb -U (c/b)) + 2 /6 BzvVhoK

M

Deruelle, Sendouda, Yousset PRD 80, (2009).
They still claim that the transformations are

sz/ d4x\/—_g(q§4R—
M

* How to perform canonical analysis of this theory?

1 Hamiltonian canonical 3
Garay and Gracia- G.=Pq,, ¢=——log® hy=d¢h, N =N, N=JoN, &= \/:lnqﬁ
Bellido NPB 400 28 | 2
193t N2_@N?, N =N, N P
transformations ’ ‘ ! p 00 P 77 3(¢7T p)
are Hamiltonian {ﬁab’ ﬁCd}J = {hab’ pCd}Ja {95’ 'ﬁ-}J —
canonical.

{(:b’ 7T}J’ {ﬁab’ ﬁ-}J = 09 {ﬁab, (i}] = O, {ﬁab; 'ﬁ-}_] =0
{p*, fi}J =0



Brans-Dicke Theory

* The Hamiltonian Weyl (conformal) transformations from the Jordan to the Einstein frames are

. L~ -~ s
N = N(167Gp)2 ; N; = N;(167G@) ; h;; = (160Gop) h;; ;7™ = ;
%i = —7'("& . ""l:j — 7TZ‘7 1

(167G¢)" "~ 167G = 05Ty = g@m =)

* They are not Hamiltonian canonical

TGN

(N, 74} = Vi e #0,and {N;, 74} = 167GN; # 0

* The Dirac’s constraint analysis of the Hamiltonian theory has to be done, independently, in the Jordan
and Einstein frames. We have studied the Hamiltonian constrained theory in Jordan and Einstein frames

3 3 3
for both cases w # — 5 and, w = — ~ In the case w = — Z—the theory has an extra Weyl(conformal)
symmetry with an associated primary first class constraint Cg



Hamiltonian Analysis of BD for w # —%

in Jordan Frame

in Einstein Frame

constraints

TR0 ~0;H~0;H; ~0;

constraints

T 0w ~0;H~0;H; =0;

constraint algebra
{m,m} =0;{m,H} = 0;{m,H;} = 0; {m;, H} = 0;
{mi, H;} = 0; {H(z), Hi(a")} = —H(2")0;6(z, 2');

{Hi(z), Hj(z)} = Hi(2")0;6(z, z") — H;(x)0; d(z, '
{H(z), H(z)} = H'(2)09;0(x, 2") — H' ()96 (x, 2");

N—"

.

constraint algebra
(7,7} = 0;{F, H} = 0; {F, "} = 0; {Fi, H} = 0;
(7o 1y} = 05 {H(@), Hilw') } = —H(2)0jo(z, 2");
{Hi(z), Hj(z')} = Hi(2");6(z, z') — Hi(2)i'6(z, ')
{H(x), H(z')} = Hi ()00 (z, 2') — H ()0 (x, 2');

S




Hamiltonian Analysis of BD for w = 3

in Jordan Frame

2
in Einstein Frame

constraints
N ~ 07t 0;Cy ~ 0;H T3 O;H§_3/2) ~ 0;

constraints
TN~ 0,7~ 0;Cy = —d7g ~ 0; HT3/2) 0 HE_B/Q) ~ 0;

constraint algebra
{rn,mi} = {mn, HOD} = {an, HT¥ D) = 0;
{mi, HOD} = {mi, 157} = 0;
{Co@), HTP (@)} = ~0l8(2,5')Cs (')
{Col@), HD (@)} = FHED) (@)3 (2, 2');
{H(—3/2)(x), 7‘[5_3/2)(%/)} — —H(_3/2) (:c’)aéé(x, {Bl);
(M @), 1 @) ) = 1P (2)0;8(z, 2')
—H T ()i 8(x, 2');
{H 2 (2), H 2 (@)} =
HTD (2)0'0(x,27) — HTYP (2)0 6 (z, ')+
[D* (log ¢(2))] Cy(2):6(z, 2')
— [D*(log ¢(2"))] Cs(2')0;6(2, 2");

constraint algebra
{Fn, 7} = {Fn, HO¥P} = 0, {7n, HY P} = 05
{%i,ﬁ(_B/z)} = {%i,ﬁg_?)/z)} = 0;
Co(x), 1P (@)} = 0;
5¢(w),’ﬁ‘3/2)(w’)% = 0;

{ﬁ(—:’,/z) (x),ﬁ§_3/2)(x’)} = 32 (5006, 2);
{H{2 (2), 7y (2')} = H{TV P (2)0;6(x, o)
—H{ P (2)0)/8(z, 2');

{ﬁ(—3/2) (x),ﬁ(—3/2) (z')} =
H D (2)0'8(x,2') — HT? (2) 056 (, ')




FLLAT FLRW Brans-Dicke theory

T JF - >EF ~
2 2 2 2 3 1 '
ds? = —N2(t)dt? + a2 ()dx
6aa? 6a’a . wa’ .
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N ¢ N ¢ N¢ (¢) (¢) €.0.m JF < . EF €.0.m
- Y N? (M ma
N /\N;} 0 g;  (167Gg)E 2022w +3) ( @ 2"5> | "
™ =-—1=U, . N7 Ty Ta
Py p— (md + 7T—¢’> (3) T 2a2(2wN+ 3) (7 - %) ’ @
2a(2w +3) \ 3¢ a )’ ' N <W7Ta . )
ar— 2, (3)
. N wrZ  2m, Ty 3¢7T35 ) 202w +3) \ 3¢ a
fla ™ " 2a2(2w + 3) ( 6¢ LR ) —3Na'U(9), () N N Wi | 2MaTy 3¢m3 B )
v ) Ta & 2022w +3) \ 66 + . e 3Na*U(9), (4)
(&% 22(2—3 (_ﬂ'a + ﬂ) 5 (5) . N 2¢ﬂ'¢
a?(2w + 3) a PN <—7ra+—>, (5)
9 9 2022w + 3) a
o~ = : (Wa ! E) N (6) N wr? U H



CANONICAL EQUIVALENCE OF JF AND EJ VIA GAUGE
FIXING

* We have performed the following gauge fixing in the Jordan Frame and in the Finstein Frame

~

~0,N; —c;(1671G¢p) =0

* The secondary first class constraints T = 0 and ; ® 0 become second class constraints

N[

Jordan Frame N =~ ¢, N; ~ ¢; — Einstein Frame N — c(16wGo)

* Itis possible to define Dirac’s brackets and solve the second class constraints

{,}pB={, }—{,gpa}C’;ﬂl{wg, } Cap ={va, pp} being ¢q, g second class contraints

* The transformations from the Jordan to the Einstein frames result to be Hamiltonian canonical

transformations. Remember: now the phase space is a reduced one, where we have gauge-fixed the lapse
function N and the shift functions Nj .

* Does it mean that the two frames are physically equivalent?



CANONICAL EQUIVALENCE AND PHYSICAL
EQUIVALENCE

Harmonic Oscillator (Goldstein )

Canonical transformations (not symmetry of the system...)

| 2P
q= %sz’nQ .0 = V2mwPcos@Q

Therefore the Hamiltonian becomes

H =wP

and then,

P =

E . OH 2FE |
o Q—a—P—w, Q=wt+a, q(t)= mw2sm(wt+a)

Notice that the harmonic oscillator is mapped into a free particle



CANONICAL EQUIVALENCE AND PHYSICAL

Anti-Newtonian transformations E Q U IVALE N C E

AT * A~ _ CATE Nt T A A S .

N =N,7TN*—7TN,NZ-*—N¢,7T =T ,hij—(16ﬂ'G¢)hiJ‘,
iJ

~kij _ m

~ . 1 B .
W7¢ ¢77T¢—¢(¢7T¢ Th) ;

intwo dim.  ds? = —dt? + N2dz?; )\ > 1

JF is canonical equivalent, via gauge-fixing of Lapse N and shifts N; ,
to EF (structure of light cone preserved by JF-EF transformations).
JF 1s canonical equivalent to Anti-Gravity frame (light cone structure modified

by JF- Anti-Gravity transformations). Gauge fixing can always be implemented

in this case (to confront and contrast with JF-EF case).

of e.o.m.

These are Hamiltonian canonical: JF is canonical equivalent to Anti-Newtonian “Frame”

Post-Newtonian i
M. Niedermaier 2019 L

. Minkowski
Carrolian R
Gravity,

G- oo,c =0

Anti-Newtonian

JF cannot be equivalent to two physical inequivalent frames. Therefore, Hamiltonioan canonical transformations

represent, in our opinion, a mathematical equivalence. These transformatlons map solutions of e.o.m into solutions



CONCLUSIONS

* The transformations from the Jordan to the Einstein frames, in the
extended phase space, are not Hamiltonian canonical transformations.

* A JF-EF gauge-tfixed Hamiltonian canonical transtormations do exist.

* This very fact does not mean, necessarily, that the two frames are
“physically” equivalent.

* The equivalence of the physical observables in JF and EF remains still to
be studied.



