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Introduction
pAQFT and QG

On the road to QG: where does QFT come in?

Take a background metric g and perturb with a
symmetric 2-form h. What can go wrong?!

The theory is power-counting non-renormalisable, so
either we treat it as an effective theory [Bjerrum-Bohr,

Donoghue,. . . ], or we look for a non-Gaussian fixed
point (assymptotic safety) [Wetterich, Reuter, Saueressig,

Eichhorn, Reichert, Held, Knorr, Platania. . . ]

But what if spacetime is actually discrete? Can we
do QFT on it? Yes! (e.g. QFT on causal sets) [Sorkin,

Dowker, Surya, Yazdi,. . . ]

Some things to consider: Lorentzian signature,
background independence, gauge invariant
observables, locality vs non-locality.
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Introduction
pAQFT and QG

Algebraic QFT on curved spacetimes

Before we get to QG: QFT on curved spacetimes. Many of its
conceptual problems can be solved in the algebraic approach.
[Hollands, Wald, Brunetti, Fredenhagen, Verch, Fewster, Dappiaggi,

Pinamonti, . . . ].

It generalizes the original algebraic quantum field theory
(AQFT) framework on Minkowski spacetime [Haag, Kastler, Araki].
The main idea is to encode physical information in algebras
A(O) (interpreted as algebras of observables) assigned to open
regions O ⊂ M.

Main advantage

Construction of observables A(O) is independent from the
construction of states. Entanglement and superposition are properties
of states (always non-local) not of observables (often local).
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Introduction
pAQFT and QG

Locality and how to break it

The word locality can have two meanings
in AQFT:

Locality as localization, meaning that
observables should be localized in
bounded regions O ⊂ M.
Locality as causality, meaning that
observables assigned to spacelike
separated regions have to commute.

M

The first type of locality fails already in theories with long-range
interactions like QED and is solved by considering different types of
localization (e.g. string-like or cone-like localization).
The second type fails if observables happen to be all localized in all of
M (as expected in QG).
Good news: some of the methods for constructing AQFT models still
work, even if these two types of locality are broken.
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Perturbative algebraic quantum field theory

Perturbative algebraic quantum field theory (pAQFT) is a
mathematically rigorous framework that allows to build
interacting QFT models on curved spacetimes using formal
power series.

Main contributions:

Free theory obtained by the formal deformation quantization of
Poisson (Peierls) bracket: ?-product ([Dütsch-Fredenhagen 00,
Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, . . . ]).
Interaction introduced in the causal approach to renormalization
due to Epstein and Glaser ([Epstein-Glaser 73]),
Generalization to gauge theories using homological algebra
([Hollands 08, Fredenhagen-KR 11]).

For a review see the book: Perturbative algebraic quantum field
theory. An introduction for mathematicians, KR, Springer 2016.
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pAQFT and QG

Physical input

A globally hyperbolic spacetime M (i.e. has a Cauchy surface),
with metric g.

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).

Typically E(M) is a space of smooth sections of some vector
bundle E π−→ M over M. For the scalar field: E(M) ≡ C∞(M,R).
For perturbative gravity E(M) = Γ((T∗M)⊗2).

The choice of action functional I specifies the dynamics. We use
a modification of the Lagrangian formalism (fully covariant).
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Building models in pAQFT I

We model observables as functionals F(M) on the space E(M)
of all possible (off-shell) field configurations.

On F(M) we introduce first classical dynamics by means of a

Poisson structure (Peierls bracket): {F,G} =

〈
δF
δϕ
,∆

δG
δϕ

〉
,

where ∆ = ∆R−∆A (Green functions for the linearized action).

Use the deformation quantization to construct the
non-commutative algebra A(M) = (F(M)[[~]], ?), such that

F ? G ~=0−−→ FG
1
i~

(F ? G− G ? F)
~=0−−→ {F,G} .
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Building models in pAQFT II

We work all the time on the same vector space of functionals, but
we equip it with different algebraic structures (Poisson bracket,
?-product).

For a quadratic action I0 that induces hyperbolic equations of
motion (e.g. −(2 + m2)ϕ = 0), ? can be constructed directly,
starting from ∆ and choosing a choice of a 2-point function

∆+ =
i
2

∆ + H.

F ?H G .
= m ◦ e~

〈
∆+, δ

δϕ
⊗ δ
δϕ

〉
(F ⊗ G) ,
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Time-ordered products

Take an interaction V ∈ Floc(M) and define the formal S-matrix

S(λV)
.
=

∞∑
n=0

1
n!

(
iλ
~

)n

V ·T . . . ·T V ,

where ·T is obtained from

F ·T G .
= m ◦ e~

〈
∆F, δ

δϕ
⊗ δ
δϕ

〉
(F⊗G) , ∆F =

i
2

(∆R + ∆A) + H

after Epstein-Glaser renormalization. Does not require
distinguished time direction, works for effective QG.
We also introduce the time-ordering map T , so that
F ·T G = T (T −1F · T −1G). It formally corresponds to path
integrating with a Gaussian measure:

T F(0) ∼
∫

F(ϕ)dµ(ϕ)

Kasia Rejzner Field Theory on and of Spacetime 10 / 29



Introduction
pAQFT and QG

Time-ordered products

Take an interaction V ∈ Floc(M) and define the formal S-matrix

S(λV)
.
=

∞∑
n=0

1
n!

(
iλ
~

)n

V ·T . . . ·T V ,

where ·T is obtained from

F ·T G .
= m ◦ e~

〈
∆F, δ

δϕ
⊗ δ
δϕ

〉
(F⊗G) , ∆F =

i
2

(∆R + ∆A) + H

after Epstein-Glaser renormalization. Does not require
distinguished time direction, works for effective QG.

We also introduce the time-ordering map T , so that
F ·T G = T (T −1F · T −1G). It formally corresponds to path
integrating with a Gaussian measure:

T F(0) ∼
∫

F(ϕ)dµ(ϕ)

Kasia Rejzner Field Theory on and of Spacetime 10 / 29



Introduction
pAQFT and QG

Time-ordered products

Take an interaction V ∈ Floc(M) and define the formal S-matrix

S(λV)
.
=

∞∑
n=0

1
n!

(
iλ
~

)n

V ·T . . . ·T V ,

where ·T is obtained from

F ·T G .
= m ◦ e~

〈
∆F, δ

δϕ
⊗ δ
δϕ

〉
(F⊗G) , ∆F =

i
2

(∆R + ∆A) + H

after Epstein-Glaser renormalization. Does not require
distinguished time direction, works for effective QG.
We also introduce the time-ordering map T , so that
F ·T G = T (T −1F · T −1G). It formally corresponds to path
integrating with a Gaussian measure:

T F(0) ∼
∫

F(ϕ)dµ(ϕ)

Kasia Rejzner Field Theory on and of Spacetime 10 / 29



Introduction
pAQFT and QG

Interacting fields and states I

Define relative S-matrices by: SλV(F)
.
= S(λV)−1 ? S(λV + F),

where the inverse of S is the ?-inverse.

We define the interacting field corresponding to F by

Fint = −i~
d
dt
SλV(tF)

∣∣
t=0 ≡ RλV(F) ,

In the algebraic approach, states are functionals ω : A(M)→ C
with ω(1) = 1 and ω(A∗A) ≥ 0. (Relation to Hilbert spaces via
GNS theorem).

A natural state on F(M) and hence A(M) is given by evaluation
at a given field configuration. For the scalar field we can take
ω(F) = F(0).
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at a given field configuration. For the scalar field we can take
ω(F) = F(0).

Kasia Rejzner Field Theory on and of Spacetime 11 / 29



Introduction
pAQFT and QG

Interacting fields and states I

Define relative S-matrices by: SλV(F)
.
= S(λV)−1 ? S(λV + F),

where the inverse of S is the ?-inverse.

We define the interacting field corresponding to F by

Fint = −i~
d
dt
SλV(tF)

∣∣
t=0 ≡ RλV(F) ,

In the algebraic approach, states are functionals ω : A(M)→ C
with ω(1) = 1 and ω(A∗A) ≥ 0. (Relation to Hilbert spaces via
GNS theorem).

A natural state on F(M) and hence A(M) is given by evaluation
at a given field configuration. For the scalar field we can take
ω(F) = F(0).

Kasia Rejzner Field Theory on and of Spacetime 11 / 29



Introduction
pAQFT and QG

Interacting fields and states I

Define relative S-matrices by: SλV(F)
.
= S(λV)−1 ? S(λV + F),

where the inverse of S is the ?-inverse.

We define the interacting field corresponding to F by

Fint = −i~
d
dt
SλV(tF)

∣∣
t=0 ≡ RλV(F) ,

In the algebraic approach, states are functionals ω : A(M)→ C
with ω(1) = 1 and ω(A∗A) ≥ 0. (Relation to Hilbert spaces via
GNS theorem).

A natural state on F(M) and hence A(M) is given by evaluation
at a given field configuration. For the scalar field we can take
ω(F) = F(0).

Kasia Rejzner Field Theory on and of Spacetime 11 / 29



Introduction
pAQFT and QG

Interacting fields and states II

Wightman n-point functions of the free theory are

Wn(f1, . . . , fn) = (Φ(f1) ? · · · ? Φ(fn))(0) ,

where Φ(f )(ϕ) =

∫
ϕ(x)f (x)dµ(x).

Interacting correlation functions are obtained as:

(Φint(f1) ? · · · ? Φint(fn))(0) ,

similarly for other observables in the theory.
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What about gravity?

All these structures exist (perturbatively) also for non-local
functionals with local derivatives (e.g. relational observables in
gravity for appropriate choice of Xµ).

One needs to make the split g = g0 + λh and expand the action S
around an on-shell background g0 (i.e. I = I0 + λV). The
algebraic structure is (perturbatively) independent of the splitting
[Brunetti, Fredenhagen, KR CMP 2016].
In fact, one can introduce the interacting product ?int defined
through

(F ?int G)int = Fint ? Gint .

Formally (in terms of formal power series and on regular
functionals), this product depends only on S, not on the splitting
[Hawkins, KR LMP 2020]. Some obstructions could appear when
renormalization is performed.
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Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

The (p)AQFT perspective on quantum observables

The main message of this section
Perturbative algebraic QFT (pAQFT) is a machinery to turn
functionals of classical field configurations (classical observables)
into quantum observables.

It allows one to study some aspects of observables in QG that are
accessible to QFT methods and to learn more about the algebraic
structure they define.

The ultimate goal is to break away from the classical picture and
have an intrinsically quantum formulation.
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Relational observables I

Consider classical theory of gravity coupled to matter fields,
collectively denoted by ϕ. The variables are Γ = (g, ϕ), where g
is the metric.

Consider four scalars XµΓ, µ = 0, . . . , 3 which will parametrize
points of spacetime. The fields XµΓ should transform under
diffeomorphisms χ as

Xµχ∗Γ = XµΓ ◦ χ ,

One can think of the choice of Xµ as the choice of observer (or
reference frame), similar to [Donnelly, Freidel JHEP 2016 ].
Fix a background Γ0 such that the map

XΓ0 : x 7→ (X0
Γ0
, . . . ,X3

Γ0
)

is injective.
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Relational observables II

Take Γ = Γ0 + γ sufficiently near to Γ0 and set

αΓ = X−1
Γ ◦ XΓ0 .

αΓ transforms under (formal) diffeomorphisms as

αχ∗Γ = χ−1 ◦ αΓ .

Take another local field AΓ(x) (e.g. a metric scalar). Then

AΓ := AΓ ◦ αΓ

is invariant under diffeomorphisms.
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Relational observables III

Physical interpretation

Fields XµΓ are configuration-dependent coordinates such that
[AΓ ◦ X−1

Γ ](Y) corresponds to the value of the quantity AΓ provided
that the quantity XΓ has the value XΓ = Y .

Thus AΓ ◦ X−1
Γ is a partial or relational observable [Dittrich, Giesel,

Rovelli, Thieman,...].
By considering AΓ = AΓ ◦ X−1

Γ ◦ XΓ0 we obtain a functional

FA(Γ) =

∫
AΓ(x)f (x) =

∫
AΓ(X−1

Γ (Y))f (X−1
Γ0

(Y)) ,

for a test density f . This functional depends on the choice of
observable A and “observer” X.
If XµΓ and AΓ are all local fields themselves, then FA is non-local
with local derivatives, hence amenable to EG renormalization.

Kasia Rejzner Field Theory on and of Spacetime 18 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

Relational observables III

Physical interpretation

Fields XµΓ are configuration-dependent coordinates such that
[AΓ ◦ X−1

Γ ](Y) corresponds to the value of the quantity AΓ provided
that the quantity XΓ has the value XΓ = Y .

Thus AΓ ◦ X−1
Γ is a partial or relational observable [Dittrich, Giesel,

Rovelli, Thieman,...].

By considering AΓ = AΓ ◦ X−1
Γ ◦ XΓ0 we obtain a functional

FA(Γ) =

∫
AΓ(x)f (x) =

∫
AΓ(X−1

Γ (Y))f (X−1
Γ0

(Y)) ,

for a test density f . This functional depends on the choice of
observable A and “observer” X.
If XµΓ and AΓ are all local fields themselves, then FA is non-local
with local derivatives, hence amenable to EG renormalization.

Kasia Rejzner Field Theory on and of Spacetime 18 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

Relational observables III

Physical interpretation

Fields XµΓ are configuration-dependent coordinates such that
[AΓ ◦ X−1

Γ ](Y) corresponds to the value of the quantity AΓ provided
that the quantity XΓ has the value XΓ = Y .

Thus AΓ ◦ X−1
Γ is a partial or relational observable [Dittrich, Giesel,

Rovelli, Thieman,...].
By considering AΓ = AΓ ◦ X−1

Γ ◦ XΓ0 we obtain a functional

FA(Γ) =

∫
AΓ(x)f (x) =

∫
AΓ(X−1

Γ (Y))f (X−1
Γ0

(Y)) ,

for a test density f . This functional depends on the choice of
observable A and “observer” X.

If XµΓ and AΓ are all local fields themselves, then FA is non-local
with local derivatives, hence amenable to EG renormalization.

Kasia Rejzner Field Theory on and of Spacetime 18 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

Relational observables III

Physical interpretation

Fields XµΓ are configuration-dependent coordinates such that
[AΓ ◦ X−1

Γ ](Y) corresponds to the value of the quantity AΓ provided
that the quantity XΓ has the value XΓ = Y .

Thus AΓ ◦ X−1
Γ is a partial or relational observable [Dittrich, Giesel,

Rovelli, Thieman,...].
By considering AΓ = AΓ ◦ X−1

Γ ◦ XΓ0 we obtain a functional

FA(Γ) =

∫
AΓ(x)f (x) =

∫
AΓ(X−1

Γ (Y))f (X−1
Γ0

(Y)) ,

for a test density f . This functional depends on the choice of
observable A and “observer” X.
If XµΓ and AΓ are all local fields themselves, then FA is non-local
with local derivatives, hence amenable to EG renormalization.

Kasia Rejzner Field Theory on and of Spacetime 18 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

Examples:

On generic backgrounds g0, without matter, one can use traces of
the powers of the Ricci operator:

Xa
g := Tr(Ra), a ∈ {1, 2, 3, 4}

More examples: [Bergmann 61, Bergmann-Komar 60].

When matter fields are present in the model, also these can serve
as coordinates, e.g. the dust fields in the Brown-Kuchař model
[Brown-Kuchař 95]; 4 scalar fields coupled to the metric.

For an explicit construction on a cosmological background see
my work with R. Brunetti, K. Fredenhagen, T.-P. Hack and
N. Pinnamonti: Cosmological perturbation theory and quantum
gravity, [JHEP 2016].

See also papers by Fröb et. al. [JCAP 2017, CQG 2018].
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Algebraic QFT on causal sets

One can replace the smooth manifold with a discrete set of
points equipped with the causal order relation and the main ideas
of pAQFT carry over.

This has been done in our recent work: Algebraic Classical and
Quantum Field Theory on Causal Sets, Edmund Dable-Heath,
Christopher J. Fewster, KR, Nick Woods, Phys. Rev. D 2020.
Let (C,�) be a discrete set of points C with a relation �:

x � y � z =⇒ x � z, transitivity

x � y and y � x =⇒ x = y, acyclicity

|I(x, y)| <∞, local finiteness

where
I(x, y) = {z ∈ C | x � z � y}

and we write x ≺ y if x � y and x 6= y.
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Physical input

A fixed causal set (C,�).

Scalar field configuration space E : choice of objects we want to
study in our theory, E consists of maps φ : C → R,

For a finite causal set of cardinality N, E = RN .

Observables: F = C∞(E ,C), i.e. functionals on the
configuration space.

Free dynamics: a discretized retarded Green function ∆R

(ideally coming from a discretization of some normally
hyperbolic operator).
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Some results from pAQFT

Using pAQFT methods, we have achieved the following:

Construction of interacting correlation functions on causal sets
for polynomial interactions [Edmund Dable-Heath, Christopher

J. Fewster, KR, Nick Woods, Phys. Rev. D 2020]

New proposal for discretized d’Alembertian and Green funtions,
results on properties of diamonds [Christopher J. Fewster, Eli Hawkins,

Christoph Minz, KR Phys. Rev. D 2021]

Further investigation of interacting correlation functions (work in
progress).

Kasia Rejzner Field Theory on and of Spacetime 22 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

Some results from pAQFT

Using pAQFT methods, we have achieved the following:

Construction of interacting correlation functions on causal sets
for polynomial interactions [Edmund Dable-Heath, Christopher

J. Fewster, KR, Nick Woods, Phys. Rev. D 2020]

New proposal for discretized d’Alembertian and Green funtions,
results on properties of diamonds [Christopher J. Fewster, Eli Hawkins,

Christoph Minz, KR Phys. Rev. D 2021]

Further investigation of interacting correlation functions (work in
progress).

Kasia Rejzner Field Theory on and of Spacetime 22 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

Some results from pAQFT

Using pAQFT methods, we have achieved the following:

Construction of interacting correlation functions on causal sets
for polynomial interactions [Edmund Dable-Heath, Christopher

J. Fewster, KR, Nick Woods, Phys. Rev. D 2020]

New proposal for discretized d’Alembertian and Green funtions,
results on properties of diamonds [Christopher J. Fewster, Eli Hawkins,

Christoph Minz, KR Phys. Rev. D 2021]

Further investigation of interacting correlation functions (work in
progress).

Kasia Rejzner Field Theory on and of Spacetime 22 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

What’s new?

Have a look at: Wetterich equation on Lorentzian manifolds,
Edoardo D’Angelo, Nicolò Drago, Nicola Pinamonti, KR
[arXiv:2202.07580]

And maybe also: Lorentzian Wetterich equation for gauge
theories, Edoardo D’Angelo, KR [arXiv:2303.01479]

We propose new flow equations that can be realized on arbitrary
globally hyperbolic manifolds in any Hadamard state (examples:
deSitter, thermal states).
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Generating functions

For an arbitrary but fixed Hadamard state ω, define:

Z(j) := ω(SV(J)) = ω[S(V)−1 ? S(V + J)] = ω[RVS(J)] .

It is a generating function for time-ordered interacting
correlators:

δnZ
inδj(x1)...δj(xn)

∣∣
j=0 = ω ◦ RV (χ(x1) ·T ... ·T χ(xn))

= ωV(χ(x1) ·T · · · ·T χ(xn)) = ω ◦ RV(χ(x1) ·T · · · ·T χ(xn)) ,

where ωV
.
= ω ◦ RV is the interacting state.
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Effective action

Let W(j) be the functional defined by

Z(j) = eiW(j) .

The effective action Γ̃ is Γ̃(φ) = W(jφ)− Jφ(φ), where
jφ ∈ C∞c (M) is the current defined by

δW
δj

∣∣∣∣
j=jφ

= φ ,

for φ ∈ E .
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Choice of the regulator

We use a local regulator

Qk = −1
2

∫
dx qk(x)χ(x)2 ,

and chose qk(x) = k2f (x), where f is a compactly supported
smooth function (to be taken to 1). Compare: Spectral functions
of gauge theories with Banks-Zaks fixed points, Yannick Kluth,
Daniel F. Litim, Manuel Reichert, Phys.Rev.D 2023.

Modify the free theory: I0k = I0 + Qk. The regularised
generating functional Zk is

Zk(j) := ω(S(V)−1 ? S(V + J + Qk)) ,

We also have Wk(j) = −i log Zk(j), Γ̃k(φ) = Wk(j‘φ)− Jφ(φ)
and finally we can translate Γ̃k to get the average effective action,

Γk(φ) = Γ̃k(φ)− Qk(φ) .
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Flow equations I

By definition:

∂kWk(j) = −1
2

∫
dx∂kqk(x)

1
Zk(j)

ω(S(V)−1?[S(V+J+Qk)·T T χ2(x)]) .

After a short computation:

∂kΓk(φ)

= −1
2

∫
dx∂kqk(x)

[
1

Zk(jφ)
ω
(
RV(S(Jφ+Qk)·T T χ2(x))

)
−φ2(x)

]
= lim

y→x

i
2

∫
dx∂kqk(x)

[
δ2Wk(j)
δj(x)δj(y)

− iH̃F(x, y)

]
,

where we use an appropriate distribution H̃F. This corresponds
to a choice of normal ordering. Hence...

Kasia Rejzner Field Theory on and of Spacetime 27 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

Flow equations I

By definition:

∂kWk(j) = −1
2

∫
dx∂kqk(x)

1
Zk(j)

ω(S(V)−1?[S(V+J+Qk)·T T χ2(x)]) .

After a short computation:

∂kΓk(φ)

= −1
2

∫
dx∂kqk(x)

[
1

Zk(jφ)
ω
(
RV(S(Jφ+Qk)·T T χ2(x))

)
−φ2(x)

]
= lim

y→x

i
2

∫
dx∂kqk(x)

[
δ2Wk(j)
δj(x)δj(y)

− iH̃F(x, y)

]
,

where we use an appropriate distribution H̃F. This corresponds
to a choice of normal ordering. Hence...

Kasia Rejzner Field Theory on and of Spacetime 27 / 29



Introduction
pAQFT and QG

Gauge-invariant observables
QFT on causal sets
fRG and pAQFT

Flow equations II

Wetterich-form equation

∂kΓk = − i
2

∫
dx∂kqk(x) :

[
Γ

(2)
k − qk

]−1
:H̃F

(x) ,
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Thank you very much for your attention!
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