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Introduction to Causal Dynamical Triangulations

What is Causal Dynamical Triangulations?

Causal Dynamical Triangulations is a background-independent
and diffeomorphism-invariant approach to quantum gravity. It
provides a lattice regularization of the formal gravitational path
integral via a sum over causal triangulations.
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Causal Dynamical Triangulations
The partition function and action

T

The Regge action SR[T] is equal to the Einstein-Hilbert action
SEH evaluated on a triangulation T built of four-simplices.

» Global time foliation of the spacetime manifold (Causal DT)
» Fixed spatial and global topology (M = T3 x T1)

» Monte Carlo simulations - expectation values of observables
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Dynamical scalar fields

» We introduce dynamical (backreacting) scalar fields
¢s, 0 = X,Vy,2z,t, taking values in a circle of circumference § and
winding around S! once in the direction x, y, z, and t, respectively.

» The continuous Euclidean action for a massless scalar field:

Sle. ) = 5 [ 4% gx) 96(x)0u0lx). () € 1)

» The discrete counterpart of the matter action decomposes into the
quantum and the classical parts:

S[T.p=¢+n] = Z(SOi — ;= 6Bj)? = n' Ly + 6259 [T]
i>j
SH(TI = Lp—2bTG + |BI?, Lp=b

L is the discrete Laplacian matrix and B is an antisymmetric
boundary matrix.



Single field winding in time direction

Single dynamical scalar field winding once around a circle of
circumference ¢ in the time direction. For large §, the volume
profile is described by a pinched cosine function.
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Minisuperspace model with scalar field
The behavior (n;) o cos (%’rt) can be explained by assuming
spatial homogeneity and isotropy.
Minisuperspace action (v = v(t) « a3(t), ¢ = (t))

)
v 2

Slv,¢] = /d4x\/§ (#R - N+ (&p)z> = /_:_//22 dt — 4+ ve

v

Constraints

V:/dtv7 6—/dtgb—g0<;_>—<p(—;>, v(t) > e

Constant solution for § < 27

Vv . ) |2
v(t) 7 @(t)—7> S==10
Cosine solution for § > 27
27 T
c-cos(“t)+c+e |t|<7F ) B
v(t) = (T ) 2 ()= —=
- r<lt<I v(1)



Minisuperspace model with scalar field

Classical solutions

v(t) = c- cos (27”1‘) +ct+e
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v(t) = -V
v(t) = const. = %

Phase transition at § = 7c
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Density maps

» The matter action decomposes into quantum and classical parts:
S[T, o=@ +n]=n'Ly+ 6250 [T]

» Quantum fluctuations can be integrated out and are negligible.

» The nontrivial classical solution contributes to the classical action
6255 T] which depends in a crucial way on the triangulation 7.

» For small § the geometric part of the action dominates.

» For large ¢ the matter action dominates and the total action is the
lowest for pinched configurations.

» To visualize a triangulation and a field configuration, we
reintroduce four classical scalar fields. Each four-simplex is

assigned coordinates (¢x, ¢y, ¢z, ¢¢) and is visible as a single pixel
on the following images.

» Dense fibers correspond to evolving outgrowths.



Scalar fields
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Scalar fields winding in spatial directions
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Scalar fields winding in spatial directions
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Dynamical fields
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Scalar fields win
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Scalar fields winding in spatial directions

Dynamical fields
oY 0.
Projection on
(Pt _ SOX-
Circumference
6 = 10.0.

unps i dicctions 5, &

1600
oo
120000
o000

000

00

500000

00000

0 [F T TR 0



Volume profile for circumference 6 = 7.0
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Topology change

For large enough circumference 4, a scalar field winding in a spatial
direction introduces a pinching, which results in an effective
change of spatial topology.

v(t) =c-cos (27"1‘) +c+e

7 \

u(t) = const. = ¥
v(t) = const. = 5
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Spherical vs toroidal spatial topology

Volume profile

Spherical (S3 x S1) Toroidal (T3 x St)
9000 9000
oH) (ne)
8000 F 8000 ny
7000 7000
6000 F 6000
5000 F 5000
4000 F 4000
3000 F 3000
2000 F 2000 L=l HTJ‘WJ—‘ e
1000 F 1000
U74ll —30 —20 -10 0 l‘[P 20 30 40 ! 0 l‘(i 2“] f;l] J‘U 5‘1) ﬁ‘(l 7‘[’ X‘U
t t
_ 12 1/3 _ 12
Llv] = g% + pv 3—/\v Livl] =% + — v
v(t)=a+ b-cos’(t/7) v(t) = const.

The difference between spherical and toroidal spatial topology is
visible in the volume profile - as predicted by the minisuperspace
model.



Summary
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Causal dynamical triangulations is a model of generic geometry
fluctuations at the Planck scale.

Introduction of dynamical scalar fields with matching topological
boundary conditions has a dramatic effect on the geometries
that dominate the CDT path integral.

Scalar fields induce a new type of phase transition, where the
effective spacetime topology changes from toroidal to a simply
connected one.

This new kind of coupling between the topology of the matter
fields and the topology of spacetime is likely to result in a phase
transition for sufficiently strong coupling.

The simple minisuperspace model predicts a phase transition when
changing the circumference 6.

The classical limit agrees with the minisuperspace model.
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