
Impact of matter fields

on quantum geometry

Andrzej Görlich

Institute of Theoretical Physics, Jagiellonian University, Poland

Quantum Gravity 2023
Nijmegen, July 12th, 2023



Introduction to Causal Dynamical Triangulations
What is Causal Dynamical Triangulations?
Causal Dynamical Triangulations is a background-independent
and diffeomorphism-invariant approach to quantum gravity. It
provides a lattice regularization of the formal gravitational path
integral via a sum over causal triangulations.
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discrete∑



Causal Dynamical Triangulations
The partition function and action∫

D[g ]eiSEH [g ] ∑
T

e−SR [T ]

The Regge action SR [T ] is equal to the Einstein-Hilbert action
SEH evaluated on a triangulation T built of four-simplices.
▶ Global time foliation of the spacetime manifold (Causal DT)
▶ Fixed spatial and global topology (M = T 3 × T 1)
▶ Monte Carlo simulations - expectation values of observables
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Dynamical scalar fields

▶ We introduce dynamical (backreacting) scalar fields
ϕσ, σ = x , y , z , t, taking values in a circle of circumference δ and
winding around S1 once in the direction x , y , z , and t, respectively.

▶ The continuous Euclidean action for a massless scalar field:

S[g , φ] = 1
2

∫
d4x

√
g(x) ∂µφ(x)∂µφ(x), φ(x) ∈ S1(δ)

▶ The discrete counterpart of the matter action decomposes into the
quantum and the classical parts:

S[T , φ = φ̄ + η] =
∑
i↔j

(φi − φj − δBij)2 = η⊤Lη + δ2S̃clas[T ]

S̃clas[T ] = φ̃⊤Lφ̃ − 2b⊤φ̃ + ∥B∥2, Lφ̃ = b

L is the discrete Laplacian matrix and B is an antisymmetric
boundary matrix.



Single field winding in time direction
Single dynamical scalar field winding once around a circle of
circumference δ in the time direction. For large δ, the volume
profile is described by a pinched cosine function.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

5 10 15 20

〈n
t〉

t

δ = 1.0
δ = 2.0
δ = 4.0
δ = 8.0
Cosine

Jump in direction t



Minisuperspace model with scalar field
The behavior ⟨nt⟩ ∝ cos

(
2π
τ t

)
, can be explained by assuming

spatial homogeneity and isotropy.
Minisuperspace action (v = v(t) ∝ a3(t), φ = φ(t))

S[v , φ] =
∫

d4x √g
(
#R − Λ + (∂φ)2

)
=

∫ T/2

−T/2
dt v̇2

v + v φ̇2

Constraints

V =
∫

dt v , δ =
∫

dt φ̇ = φ

(T
2

)
− φ

(
−T

2

)
, v(t) ≥ ε

Constant solution for δ ≤ 2π

v(t) = V
T , φ̇(t) = δ

T , S = V
T 2 · δ2

Cosine solution for δ ≥ 2π

v(t) =

c · cos
(

2π
τ t

)
+ c + ε |t| ≤ τ

2

ε τ
2 ≤ |t| ≤ T

2
, φ̇(t) = β

v(t)



Minisuperspace model with scalar field
Classical solutions
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Density maps

▶ The matter action decomposes into quantum and classical parts:

S[T , φ = φ̄ + η] = η⊤Lη + δ2S̃clas[T ]

▶ Quantum fluctuations can be integrated out and are negligible.
▶ The nontrivial classical solution contributes to the classical action

δ2S̃clas[T ] which depends in a crucial way on the triangulation T .
▶ For small δ the geometric part of the action dominates.
▶ For large δ the matter action dominates and the total action is the

lowest for pinched configurations.
▶ To visualize a triangulation and a field configuration, we

reintroduce four classical scalar fields. Each four-simplex is
assigned coordinates (φx , φy , φz , φt) and is visible as a single pixel
on the following images.

▶ Dense fibers correspond to evolving outgrowths.



Scalar fields winding in spatial directions

Dynamical fields
φx , φy , φz .
Projection on
φt − φx .
Circumference
δ = 0.0.
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Scalar fields winding in spatial directions

Dynamical fields
φx , φy , φz .
Projection on
φt − φx .
Circumference
δ = 2.0.
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Scalar fields winding in spatial directions

Dynamical fields
φx , φy , φz .
Projection on
φt − φx .
Circumference
δ = 3.0.
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Scalar fields winding in spatial directions

Dynamical fields
φx , φy , φz .
Projection on
φt − φx .
Circumference
δ = 4.0.
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Scalar fields winding in spatial directions

Dynamical fields
φx , φy , φz .
Projection on
φt − φx .
Circumference
δ = 7.0.
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Scalar fields winding in spatial directions

Dynamical fields
φx , φy , φz .
Projection on
φt − φx .
Circumference
δ = 8.0.
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Scalar fields winding in spatial directions

Dynamical fields
φx , φy , φz .
Projection on
φt − φx .
Circumference
δ = 10.0.
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Volume profile for circumference δ = 7.0
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Topology change

For large enough circumference δ, a scalar field winding in a spatial
direction introduces a pinching , which results in an effective
change of spatial topology.
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Spherical vs toroidal spatial topology

Volume profile
Spherical (S3 × S1) Toroidal (T 3 × S1)
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The difference between spherical and toroidal spatial topology is
visible in the volume profile - as predicted by the minisuperspace
model.



Summary

▶ Causal dynamical triangulations is a model of generic geometry
fluctuations at the Planck scale.

▶ Introduction of dynamical scalar fields with matching topological
boundary conditions has a dramatic effect on the geometries
that dominate the CDT path integral.

▶ Scalar fields induce a new type of phase transition, where the
effective spacetime topology changes from toroidal to a simply
connected one.

▶ This new kind of coupling between the topology of the matter
fields and the topology of spacetime is likely to result in a phase
transition for sufficiently strong coupling.

▶ The simple minisuperspace model predicts a phase transition when
changing the circumference δ.

▶ The classical limit agrees with the minisuperspace model.
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