

Introduction to Causal Dynamical Triangulations

What is Causal Dynamical Triangulations?

Causal Dynamical Triangulations is a background-independent and diffeomorphism-invariant approach to quantum gravity. It provides a lattice regularization of the formal gravitational path integral via a sum over causal triangulations.

Causal Dynamical Triangulations

The partition function and action

$$
\int \mathcal{D}[g] e^{i S^{E H}[g]} \longrightarrow \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

The Regge action $S^{R}[\mathcal{T}]$ is equal to the Einstein-Hilbert action $S^{E H}$ evaluated on a triangulation T built of four-simplices.

- Global time foliation of the spacetime manifold (Causal DT)
- Fixed spatial and global topology $\left(\mathcal{M}=T^{3} \times T^{1}\right)$
- Monte Carlo simulations - expectation values of observables

Causal Dynamical Triangulations

The partition function and action

$$
\int \mathcal{D}[g] e^{i S^{E H}[g]} \longrightarrow \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}
$$

The Regge action $S^{R}[\mathcal{T}]$ is equal to the Einstein-Hilbert action $S^{E H}$ evaluated on a triangulation T built of four-simplices.

- Global time foliation of the spacetime manifold (Causal DT)
- Fixed spatial and global topology $\left(\mathcal{M}=T^{3} \times T^{1}\right)$
- Monte Carlo simulations - expectation values of observables

Dynamical scalar fields

- We introduce dynamical (backreacting) scalar fields
$\phi_{\sigma}, \sigma=x, y, z, t$, taking values in a circle of circumference δ and winding around S^{1} once in the direction x, y, z, and t, respectively.
- The continuous Euclidean action for a massless scalar field:

$$
S[g, \varphi]=\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{g(x)} \partial^{\mu} \varphi(x) \partial_{\mu} \varphi(x), \quad \varphi(x) \in S^{1}(\delta)
$$

- The discrete counterpart of the matter action decomposes into the quantum and the classical parts:

$$
\begin{aligned}
& S[\mathcal{T}, \varphi=\bar{\varphi}+\eta]=\sum_{i \leftrightarrow j}\left(\varphi_{i}-\varphi_{j}-\delta \mathbf{B}_{i j}\right)^{2}=\eta^{\top} \mathbf{L} \eta+\delta^{2} \tilde{S}^{\text {clas }}[\mathcal{T}] \\
& \tilde{S}^{\text {clas }}[\mathcal{T}]=\tilde{\varphi}^{\top} \mathbf{L} \tilde{\varphi}-2 b^{\top} \tilde{\varphi}+\|\mathbf{B}\|^{2}, \quad L \tilde{\varphi}=b
\end{aligned}
$$

\mathbf{L} is the discrete Laplacian matrix and \mathbf{B} is an antisymmetric boundary matrix.

Single field winding in time direction

Single dynamical scalar field winding once around a circle of circumference δ in the time direction. For large δ, the volume profile is described by a pinched cosine function.

Minisuperspace model with scalar field

The behavior $\left\langle n_{t}\right\rangle \propto \cos \left(\frac{2 \pi}{\tau} t\right)$, can be explained by assuming spatial homogeneity and isotropy.
Minisuperspace action $\left(v=v(t) \propto a^{3}(t), \varphi=\varphi(t)\right)$

$$
S[v, \varphi]=\int \mathrm{d}^{4} x \sqrt{g}\left(\# R-\Lambda+(\partial \varphi)^{2}\right)=\int_{-T / 2}^{T / 2} \mathrm{~d} t \frac{\dot{v}^{2}}{v}+v \dot{\varphi}^{2}
$$

Constraints

$$
V=\int \mathrm{d} t v, \quad \delta=\int \mathrm{d} t \dot{\varphi}=\varphi\left(\frac{T}{2}\right)-\varphi\left(-\frac{T}{2}\right), \quad v(t) \geq \varepsilon
$$

Constant solution for $\delta \leq 2 \pi$

$$
v(t)=\frac{V}{T}, \quad \dot{\varphi}(t)=\frac{\delta}{T}, \quad S=\frac{V}{T^{2}} \cdot \delta^{2}
$$

Cosine solution for $\delta \geq 2 \pi$

$$
v(t)=\left\{\begin{array}{ll}
c \cdot \cos \left(\frac{2 \pi}{\tau} t\right)+c+\varepsilon & |t| \leq \frac{\tau}{2} \\
\varepsilon & \frac{\tau}{2} \leq|t| \leq \frac{\tau}{2}
\end{array}, \quad \dot{\varphi}(t)=\frac{\beta}{v(t)}\right.
$$

Minisuperspace model with scalar field

Classical solutions

Phase transition at $\delta=\frac{2 \pi}{\sqrt{G}}$

Density maps

- The matter action decomposes into quantum and classical parts:

$$
S[\mathcal{T}, \varphi=\bar{\varphi}+\eta]=\eta^{\top} \mathbf{L} \eta+\delta^{2} \tilde{S}^{\text {clas }}[\mathcal{T}]
$$

- Quantum fluctuations can be integrated out and are negligible.
- The nontrivial classical solution contributes to the classical action $\delta^{2} \tilde{S}^{\text {clas }}[\mathcal{T}]$ which depends in a crucial way on the triangulation \mathcal{T}.
- For small δ the geometric part of the action dominates.
- For large δ the matter action dominates and the total action is the lowest for pinched configurations.
- To visualize a triangulation and a field configuration, we reintroduce four classical scalar fields. Each four-simplex is assigned coordinates $\left(\varphi_{x}, \varphi_{y}, \varphi_{z}, \varphi_{t}\right)$ and is visible as a single pixel on the following images.
- Dense fibers correspond to evolving outgrowths.

Scalar fields winding in spatial directions

Dynamical fields

 $\varphi^{x}, \varphi^{y}, \varphi^{z}$.Projection on

$$
\varphi^{t}-\varphi^{x}
$$

Circumference

$$
\delta=0.0
$$

Scalar fields winding in spatial directions

Dynamical fields

$$
\varphi^{x}, \varphi^{y}, \varphi^{z}
$$

Projection on

$$
\varphi^{t}-\varphi^{x}
$$

Circumference $\delta=2.0$.

Scalar fields winding in spatial directions

Scalar fields winding in spatial directions

Dynamical fields
$\varphi^{x}, \varphi^{y}, \varphi^{z}$.
Projection on

$$
\varphi^{t}-\varphi^{x}
$$

Circumference $\delta=4.0$.

Scalar fields winding in spatial directions

Dynamical fields
$\varphi^{x}, \varphi^{y}, \varphi^{z}$.
Projection on $\varphi^{t}-\varphi^{x}$.
Circumference $\delta=7.0$.

Scalar fields winding in spatial directions

Dynamical fields
$\varphi^{x}, \varphi^{y}, \varphi^{z}$.
Projection on $\varphi^{t}-\varphi^{x}$.
Circumference $\delta=8.0$.

Scalar fields winding in spatial directions

Volume profile for circumference $\delta=7.0$

Topology change

For large enough circumference δ, a scalar field winding in a spatial direction introduces a pinching, which results in an effective change of spatial topology.

Topology change

For large enough circumference δ, a scalar field winding in a spatial direction introduces a pinching, which results in an effective change of spatial topology.

Topology change

For large enough circumference δ, a scalar field winding in a spatial direction introduces a pinching, which results in an effective change of spatial topology.

Topology change

For large enough circumference δ, a scalar field winding in a spatial direction introduces a pinching, which results in an effective change of spatial topology.

Spherical vs toroidal spatial topology

Volume profile

Spherical $\left(S^{3} \times S^{1}\right)$

$$
\begin{gathered}
L[v]=\frac{1}{\Gamma} \frac{\dot{v}^{2}}{v}+\mu v^{1 / 3}-\lambda v \\
v(t)=a+b \cdot \cos ^{3}(t / \tau)
\end{gathered}
$$

Toroidal $\left(T^{3} \times S^{1}\right)$

$$
\begin{gathered}
L[v]=\frac{1}{\Gamma} \frac{\dot{v}^{2}}{v}+\mu v^{-3 / 2}-\lambda v \\
v(t)=\text { const. }
\end{gathered}
$$

The difference between spherical and toroidal spatial topology is visible in the volume profile - as predicted by the minisuperspace model.

Summary

- Causal dynamical triangulations is a model of generic geometry fluctuations at the Planck scale.
- Introduction of dynamical scalar fields with matching topological boundary conditions has a dramatic effect on the geometries that dominate the CDT path integral.
- Scalar fields induce a new type of phase transition, where the effective spacetime topology changes from toroidal to a simply connected one.
- This new kind of coupling between the topology of the matter fields and the topology of spacetime is likely to result in a phase transition for sufficiently strong coupling.
- The simple minisuperspace model predicts a phase transition when changing the circumference δ.
- The classical limit agrees with the minisuperspace model.

Thank You!

In collaboration with

Jan Ambjørn Jerzy Jurkiewicz
Jakub Gizbert-Studnicki Dániel Németh

