Impact of matter fields

CANA ROLLA

on quantum geometry

Andrzej Görlich

Institute of Theoretical Physics, Jagiellonian University, Poland

Quantum Gravity 2023 Nijmegen, July 12th, 2023

Introduction to Causal Dynamical Triangulations

What is Causal Dynamical Triangulations?

Causal Dynamical Triangulations is a background-independent and diffeomorphism-invariant approach to quantum gravity. It provides a lattice regularization of the formal gravitational path integral via a sum over causal triangulations.

Causal Dynamical Triangulations

The partition function and action

$$\int \mathcal{D}[g] e^{iS^{EH}[g]} \longrightarrow \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}$$

The Regge action $S^{R}[T]$ is equal to the Einstein-Hilbert action S^{EH} evaluated on a triangulation T built of *four-simplices*.

- Global time foliation of the spacetime manifold (Causal DT)
- Fixed spatial and global topology ($\mathcal{M} = T^3 \times T^1$)
- Monte Carlo simulations expectation values of observables

Causal Dynamical Triangulations

The partition function and action

$$\int \mathcal{D}[g] e^{iS^{EH}[g]} \longrightarrow \sum_{\mathcal{T}} e^{-S^{R}[\mathcal{T}]}$$

The Regge action $S^{R}[T]$ is equal to the Einstein-Hilbert action S^{EH} evaluated on a triangulation T built of *four-simplices*.

- Global time foliation of the spacetime manifold (Causal DT)
- Fixed spatial and global topology ($\mathcal{M} = T^3 \times T^1$)
- Monte Carlo simulations expectation values of observables

Dynamical scalar fields

- We introduce dynamical (backreacting) scalar fields φ_σ, σ = x, y, z, t, taking values in a circle of circumference δ and winding around S¹ once in the direction x, y, z, and t, respectively.
- The continuous Euclidean action for a massless scalar field:

$$\mathcal{S}[g,arphi] = rac{1}{2}\int \mathrm{d}^4x\,\sqrt{g(x)}\;\partial^\muarphi(x)\partial_\muarphi(x),\quad arphi(x)\in \mathcal{S}^1(\delta)$$

The discrete counterpart of the matter action decomposes into the quantum and the classical parts:

$$\begin{split} S[\mathcal{T}, \varphi &= \bar{\varphi} + \eta] = \sum_{i \leftrightarrow j} (\varphi_i - \varphi_j - \delta \mathbf{B}_{ij})^2 = \eta^\top \mathbf{L} \eta + \delta^2 \tilde{S}^{\text{clas}}[\mathcal{T}] \\ \tilde{S}^{\text{clas}}[\mathcal{T}] &= \tilde{\varphi}^\top \mathbf{L} \tilde{\varphi} - 2b^\top \tilde{\varphi} + \|\mathbf{B}\|^2, \quad L \tilde{\varphi} = b \end{split}$$

L is the discrete Laplacian matrix and B is an antisymmetric *boundary* matrix.

Single field winding in time direction

Single dynamical scalar field winding once around a circle of circumference δ in the time direction. For large δ , the volume profile is described by a *pinched* cosine function.

Minisuperspace model with scalar field

The behavior $\langle n_t \rangle \propto \cos\left(\frac{2\pi}{\tau}t\right)$, can be explained by assuming spatial homogeneity and isotropy.

Minisuperspace action ($v = v(t) \propto a^3(t), \ \varphi = \varphi(t)$)

$$S[v,\varphi] = \int \mathrm{d}^4 x \sqrt{g} \left(\# R - \Lambda + (\partial \varphi)^2 \right) = \int_{-T/2}^{T/2} \mathrm{d}t \, \frac{\dot{v}^2}{v} + v \dot{\varphi}^2$$

Constraints

$$V = \int \mathrm{d}t \, \mathbf{v}, \quad \delta = \int \mathrm{d}t \, \dot{\varphi} = \varphi\left(\frac{T}{2}\right) - \varphi\left(-\frac{T}{2}\right), \quad \mathbf{v}(t) \ge \varepsilon$$

Constant solution for $\delta \leq 2\pi$

$$v(t) = rac{V}{T}, \qquad \dot{\varphi}(t) = rac{\delta}{T}, \qquad S = rac{V}{T^2} \cdot \delta^2$$

Cosine solution for $\delta \geq 2\pi$

$$egin{aligned} \mathsf{v}(t) = egin{cases} c \cdot \cos\left(rac{2\pi}{ au}t
ight) + c + arepsilon & |t| \leq rac{ au}{2} \ arepsilon & rac{ au}{2} \leq |t| \leq rac{ au}{2} \ , & \dot{arphi}(t) = rac{eta}{ extsf{v}(t)} \end{aligned}$$

Minisuperspace model with scalar field

Classical solutions

Phase transition at $\delta = \frac{2\pi}{\sqrt{G}}$

Density maps

▶ The matter action decomposes into quantum and classical parts:

$$S[\mathcal{T}, \varphi = \bar{\varphi} + \eta] = \eta^{\mathsf{T}} \mathbf{L} \eta + \delta^2 \tilde{S}^{\mathrm{clas}}[\mathcal{T}]$$

- Quantum fluctuations can be integrated out and are negligible.
- The nontrivial classical solution contributes to the classical action δ² Š^{clas}[T] which depends in a crucial way on the triangulation T.
- For small δ the geometric part of the action dominates.
- For large δ the matter action dominates and the total action is the lowest for *pinched* configurations.
- To visualize a triangulation and a field configuration, we reintroduce four classical scalar fields. Each four-simplex is assigned coordinates (φ_x, φ_y, φ_z, φ_t) and is visible as a single pixel on the following images.
- Dense fibers correspond to evolving outgrowths.

Dynamical fields $\varphi^{\mathbf{x}}, \varphi^{\mathbf{y}}, \varphi^{\mathbf{z}}.$ Projection on $\varphi^t - \varphi^x$. Circumference $\delta = 0.0.$

Dynamical fields $\varphi^{\mathbf{x}}, \varphi^{\mathbf{y}}, \varphi^{\mathbf{z}}.$ Projection on $\varphi^t - \varphi^x$. Circumference $\delta = 3.0.$ 3000

Dynamical fields $\varphi^{\mathbf{x}}, \varphi^{\mathbf{y}}, \varphi^{\mathbf{z}}.$ Projection on $\varphi^t - \varphi^x$. Circumference $\delta = 4.0.$ 2000 200000 250000 200000 150000 100000

Dynamical fields $\varphi^{\mathbf{x}}, \varphi^{\mathbf{y}}, \varphi^{\mathbf{z}}.$ Projection on $\varphi^t - \varphi^x$. Circumference $\delta = 7.0.$ mus in directions x, u, z $\langle n_l \rangle =$ 40000 30000 2000 1000 40000 200000 200000 100000

Dynamical fields $\varphi^{\mathbf{x}}, \varphi^{\mathbf{y}}, \varphi^{\mathbf{z}}.$ Projection on $\varphi^t - \varphi^x$. Circumference $\delta = 8.0.$ Jumps in directions x, u, z $\langle n_l \rangle =$ 40000 30000 400000 200000

200000

Dynamical fields $\varphi^{\mathbf{x}}, \varphi^{\mathbf{y}}, \varphi^{\mathbf{z}}.$ Projection on $\varphi^t - \varphi^x$. Circumference $\delta = 10.0.$ Jumps in directions z. u. z 1,400.00 12000 100000 80000 60000 40000 20000 400000 300000

200000

Volume profile for circumference $\delta = 7.0$

Spherical vs toroidal spatial topology

The difference between **spherical** and **toroidal spatial topology** is visible in the volume profile - as predicted by the minisuperspace model.

Summary

- Causal dynamical triangulations is a model of generic geometry fluctuations at the Planck scale.
- Introduction of dynamical scalar fields with matching topological boundary conditions has a dramatic effect on the geometries that dominate the CDT path integral.
- Scalar fields induce a new type of phase transition, where the effective spacetime topology changes from toroidal to a simply connected one.
- This new kind of coupling between the topology of the matter fields and the topology of spacetime is likely to result in a **phase transition** for sufficiently strong coupling.
- The simple minisuperspace model predicts a *phase transition* when changing the circumference δ .
- ► The classical limit agrees with *the minisuperspace model*.

In collaboration with

Jan Ambjørn Jerzy Jurkiewicz Jakub Gizbert-Studnicki Dániel Németh