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Motivation

From black holes, AdS/CFT, celestial holography, corner symmetries =⇒
Holographic correspondences encode parts of gravity

Goal: Understand quasi-local holography, entanglement and information
transport in entanglement graph context for Quantum gravity

Study restricted class of quantum gravity states using random tensor
network techniques:
Fix graph structure and intertwiner data, randomise the rest.
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Concrete example: Spin networks as entanglement graphs

Describe a network Γ of loosely glued polyhedra (on vertices), with
geometric data, glued along faces (as links).

Typical data:

Parallel transports of frames Areas, volumes (1)

g ∈ G = SO(3), SU(2), SL(2;C) ↔ j ∈ N
2 , ι ∈ InvSU(2)(Vj) (2)

Simple states with combinatorial structure play role in QG approaches like
LQG,SFM,GFT.
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Spin networks as tensor networks

Glueing ≡ Entanglement

Individual vertex states, apply projection onto maximally entangled link
state

=⇒ Dependence on single group element on glued edge.

Ψ(g1,g2) =
∫
dhψ1(g1h)ψ2(g2h) = Ψ(g1(g2)−1, e) (3)

Spin network basis states are naturally tensor network states, with
individual tensors: Ψx ∈ L2(Gv/GDiag)
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Context and previous work

Strategy: Use random tensor network techniques for typicality statements.
(Han, Hung ’17)[1610.02134]: Similar method, with focus on boundary
entropy.
(Colafranceschi, Oriti, Chirco ’21,’22)[2105.06454 , 2012.12622 , 2110.15166]:
Isometry degree of maps from intertwiners to boundary edges, with fixed
edge spins. −→ Goffredo’s talk tomorrow

Study entropy and isometry questions through Ising model on graph.
=⇒ Holographic maps only with inhomogeneous local areas of faces.
=⇒ Ryu-Takayanagi formula for bulk entropy.

Colafranceschi, Oriti, Chirco - 2105.06454 , 2012.12622 , 2110.15166, Han - 1610.02134Simon Langenscheidt Holographic mappings from quantum geometry entanglement graph 4
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Methods

Extend this to superpositions of different link data. Same method - work
in tensor network (PEPS) class of spin network superpositions and
randomise over vertex wavefunctions. (Harlow, Yang, Hayden, Qi, ...)
[1601.01694 , 1503.06237 , 1510.03784, JHEP08(2017)060]

Main technical step: Calculate entropies of states

|ϕ⟩ = ⟨ζ|I
⊗
e∈E

⟨e|
⊗
x∈V

|Ψx⟩ , where |Ψx⟩ = Ux |Ψ0⟩ random (4)

▶ Renyi 2-Entropy of reduced state ρA maximal↔ isometry.
▶ Replica trick, introduction of Z2 spin to account for swaps
=⇒ Equal to partition sum(s) of random/weighted Ising model.

⟨e−S2⟩=̂Z =
∑
J,K
P(J, K)ZJ,K (5)
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Notions of holographic transport

Would like bulk→ boundary operator maps as holography.
Issue: No natural bulk or boundary Hilbert spaces!

HΓ =
⊕
j∂

Ij∂ ⊗ Vj∂ (6)

Resolution: Define holography as isometry of an operator map

Tρ : AI → AO (7)

in Hilbert-Schmidt norm. Use the Choi map of state ρ of entanglement
graph

Tρ(X) = K Tr[(X⊗ IO)ρtI ] (8)

Choice of algebras (and centers Z = AI ∩ AO) matter!

Holographic mappings in the presence of centers
Can define ’proper’ notion of holography via operator map.
If ρ is pure, ρI max entropy ≡ Tρ isometric.
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Results

Condition for isometry:
▶ Restrictions on input/output dimensions per-sector
▶ weights related to product of areas pn ∼

DIn
DI

For high spins, P(m,n) = pmpn. Then needed:

pn ≈
dim(HI,n)

dim(HI)
=

∏
e∈I djn,e∑

m
∏

e∈I djm,e

(9)
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Results

A quantum geometry application: Area operator (from canonical
quantisation of GR)

Â =
∑
j

jIj (10)

Calculate EV of area of a boundary region: In a holographic state, given by
simple combination of individual values. For many similar geometries:

⟨⟨AC⟩ρ⟩U ≈ 4
3AC ⟨⟨(∆AC)2⟩ρ⟩U ≈ 2

9AC
2 (11)

(∆AC)2
(AC)2

≈ 1
6 =⇒ nonvanishing relative uncertainty (12)
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Summary
▶ Bounded regions of quantum space as entanglement graphs.
▶ Holography as operator mapping, characterised by entropic properties
via random tensor networks.

▶ Typical large-spin superpositions of spin networks feature
boundary/boundary isometry under simple conditions.
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Outlook

Work in progress
▶ Give explicit characterisation of local conditions on labels for isometry
▶ Relate isometry condition to geometric scaling laws
▶ Numerical Monte-Carlo studies?

Possible applications
▶ Spin network states as channels between boundary models of
punctures

▶ With Dynamics: Causal characterisation of entanglement shadow
▶ AdS/CFT or semiclassical superpositions with spin networks?

Thank you for your attention!
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