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Quantum physics in de Sitter space
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— dS: cosmic evolution as a whole — Why do we need quantum physics?
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Quantum physics in de Sitter space
— dS: cosmic evolution as a whole — Why do we need quantum physics?

v Inflation: Not only solves the standard cosmological puzzles but also
explains late-time inhomogeneities as originating from quantum vacuum
fluctuations = Rare interplay between microscopic & macroscopic scales!

Photo credit: Blake Sherwin i o]
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Quantum physics in de Sitter space
— dS: cosmic evolution as a whole — Why do we need quantum physics?

v' Inflation: Not only solves the standard cosmological puzzles but also
explains late-time inhomogeneities as originating from quantum vacuum
fluctuations = Rare interplay between microscopic & macroscopic scales!

v The quantum origins of spacetime itself = UV-completion? Emergence
of bulk states from quantum entanglement of dual degrees of freedom in dS?

Credit: Pablo Laguna
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Quantum physics in de Sitter space

— dS: cosmic evolution as a whole — Why do we need quantum physics?

v Inflation: Not only solves the standard cosmological puzzles but also
explains late-time inhomogeneities as originating from quantum vacuum
fluctuations = Rare interplay between microscopic & macroscopic scales!

v' The quantum origins of spacetime itself = UV-completion? Emergence
of bulk states from quantum entanglement of dual degrees of freedom in dS?

— Observations access part of Hilbert space: Dissipation & Decoherence.
Nature of environment special in cosmology = Non-Markovianity.

Suddhasattwa Brahma Quantum Gravity/Quantum Information in dS



Quantum physics in de Sitter space

— dS: cosmic evolution as a whole — Why do we need quantum physics?

v Inflation: Not only solves the standard cosmological puzzles but also
explains late-time inhomogeneities as originating from quantum vacuum
fluctuations = Rare interplay between microscopic & macroscopic scales!

v' The quantum origins of spacetime itself = UV-completion? Emergence
of bulk states from quantum entanglement of dual degrees of freedom in dS?

— Observations access part of Hilbert space: Dissipation & Decoherence.
Nature of environment special in cosmology = Non-Markovianity.

— Complexity as quantitative measure of difficulty of constructing
entangled EPR state in de Sitter holography!
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Quantum physics in de Sitter space

— dS: cosmic evolution as a whole — Why do we need quantum physics?

v Inflation: Not only solves the standard cosmological puzzles but also
explains late-time inhomogeneities as originating from quantum vacuum
fluctuations = Rare interplay between microscopic & macroscopic scales!

v' The quantum origins of spacetime itself = UV-completion? Emergence
of bulk states from quantum entanglement of dual degrees of freedom in dS?
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Quantum physics in de Sitter space
— dS: cosmic evolution as a whole — Why do we need quantum physics?

v Inflation: Not only solves the standard cosmological puzzles but also
explains late-time inhomogeneities as originating from quantum vacuum
fluctuations = Rare interplay between microscopic & macroscopic scales!

v' The quantum origins of spacetime itself = UV-completion? Emergence
of bulk states from quantum entanglement of dual degrees of freedom in dS?

— Observations access part of Hilbert space: Dissipation & Decoherence.
Nature of environment special in cosmology = Non-Markovianity.

— Complexity as quantitative measure of difficulty of constructing
entangled EPR state in de Sitter holography!

e Open EFTs for inflation: Momentum-space EE quantifies non-unitarity

e Cosmic version of R = EPR: Complexity of Bunch-Davies vacuum

Quantum informatic tools, e.¢g. Entanglement and Complexity, provide
unique and deep insights for quantum gravity in de Sitter space.
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Inflation as an open EFT:
Non-unitarity & non-Markovianity
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Inferring early universe physics from observations

— Learn about inflationary physics from higher order correlation functions:
Non-Gaussianities — Constraints on model-space. [Chen, Wang, Baumann, Green,
Arkani-Hamed, Maldacena, Lee, Pimentel, Joyce, Pajer, Sleight, Taronna, Stefanyszyn ...;

S.B., Nelson & Shandera, 2014 (PRD); Bonga, S.B., Deutsch & Shandera, 2016 (JCAP) , ...]
Gaussian universe: uncorrelated modes.
(k)

((ka)
Non-Gaussianity correlates modes.

Photo credit: Andrea Ravenni
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Inferring early universe physics from observations

Pt

< Learn about inflationary physics from higher order correlation functions:
Non-Gaussianities — Constraints on model-space. [Chen, Wang, Baumann, Green,
Arkani-Hamed, Maldacena, Lee, Pimentel, Joyce, Pajer, Sleight, Taronna, Stefanyszyn ...;

S.B., Nelson & Shandera, 2014 (PRD); Bonga, S.B., Deutsch & Shandera, 2016 (JCAP) , ...]

v" We have not observed any NG yet — Need a fresh perspective!

Photo credit: Daniel Baumann
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Inferring early universe physics from observations

Pt

< Learn about inflationary physics from higher order correlation functions:
Non-Gaussianities — Constraints on model-space. [Chen, Wang, Baumann, Green,
Arkani-Hamed, Maldacena, Lee, Pimentel, Joyce, Pajer, Sleight, Taronna, Stefanyszyn ...;

S.B., Nelson & Shandera, 2014 (PRD); Bonga, S.B., Deutsch & Shandera, 2016 (JCAP) , ...]

v" We have not observed any NG yet — Need a fresh perspective!

Photo credit: Daniel Baumann

e Cosmological Collider Physics/Cosmological Bootstrap
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Open quantum cosmological system @
— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .
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Open quantum cosmological system
— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .

— Observed statistics depend on our position in the universe, on UV
physics, etc. especially since GR is non-linear.
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Open quantum cosmological system @
— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .

— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.
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Open quantum cosmological system

— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .

— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.
* Non-unitary evolution: p(t) = psys = Trep(t)
* System dof’s can exchange energy & lose information to environment
= Incorporate Dissipation & Decoherence: Both affects observations.
* Evolution ME: dpsys/dt ~ [H, psys] + f (Ln, psys)
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Open quantum cosmological system
— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .
— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.
* Non-unitary evolution: p(t) = psys = Trep(t)

* System dof’s can exchange energy & lose information to environment
= Incorporate Dissipation & Decoherence: Both affects observations.

* Evolution ME: dpsys/dt ~ [H, psys] + f (Ln, psys)

Warm Inf Cold Inf

WI assumes thermal eq while cold models ignore dissipation. [Berera, ...]
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Env is neither stationary nor thermal — doesn’t apply.

Out-of-equilibrium env — Non-Markovian master equation for cosmology!
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Open quantum cosmological system

— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .

— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.

* Non-unitary evolution: p(t) = psys = Trep(t)

* System dof’s can exchange energy & lose information to environment
= Incorporate Dissipation & Decoherence: Both affects observations.

* Evolution ME: dpsys/dt ~ [H, psys] + f (L, psys)

Env is neither stationary nor thermal — doesn’t apply.
Out-of-equilibrium env — Non-Markovian master equation for cosmology!

e Open quantum systems for inflation: [Kaplanek, Burgess, Holman, Martin, Vennin,

Colas, Grain, Shandera, Boyanovsky, Nelson, Hu, Hsiang, McDonald, Prokopec, ...]
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out” subhorizon modes are not excluded by any conservation law.

* Non-unitary evolution: p(t) = psys = Trep(t)

* System dof’s can exchange energy & lose information to environment
= Incorporate Dissipation & Decoherence: Both affects observations.

* Evolution ME: dpsys/dt ~ [H, psys] + f (L, psys)

Env is neither stationary nor thermal — doesn’t apply.
Out-of-equilibrium env — Non-Markovian master equation for cosmology!

e Open quantum systems for inflation: [Kaplanek, Burgess, Holman, Martin, Vennin,

Colas, Grain, Shandera, Boyanovsky, Nelson, Hu, Hsiang, McDonald, Prokopec, ...]

v Late-time growth = Breakdown of SPT in grav systems! No way
to turn—oﬁ gravity. [Kaplanek & Burgess; Burgess, Holman, Leblond & Shandera; ...]
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Open quantum cosmological system

— Observable dofs in the universe is necessarily part of a larger system
with an environment — Modes of interest coupled to unobservable stuff .

— Wilsonian EFT does not apply directly to cosmology — “Integrated
out” subhorizon modes are not excluded by any conservation law.

* Non-unitary evolution: p(t) = psys = Trep(t)
* System dof’s can exchange energy & lose information to environment
= Incorporate Dissipation & Decoherence: Both affects observations.

* Evolution ME: dpsys/dt ~ [H, psys] + f (L, psys)

Env is neither stationary nor thermal — doesn’t apply.
Out-of-equilibrium env — Non-Markovian master equation for cosmology!

e Open quantum systems for inflation: [Kaplanek, Burgess, Holman, Martin, Vennin,

Colas, Grain, Shandera, Boyanovsky, Nelson, Hu, Hsiang, McDonald, Prokopec, ...]

v Late-time growth = Breakdown of SPT in grav systems! No way
to turn—oﬁ gravity. [Kaplanek & Burgess; Burgess, Holman, Leblond & Shandera; ...]

* Open EFT techniques not exclusive to inflation — Fkpyrosis: upper
bound on Epounce. [Brandenberger, S.B. & Wang, 2009.12653 (JCAP)]
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Open EFT: Vanilla slow-roll single clock inflation @

— Consider short wavelength modes of the same curvature perturbation
field to be the environment of the observable long wavelength system modes.

Quantum Fluctuations
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Open EFT: Vanilla slow-roll single clock inflation @

— Consider short wavelength modes of the same curvature perturbation
field to be the environment of the observable long wavelength system modes.

— The coupling between long and short modes provided by the leading
order cubic non-linearity arising solely from GR: Hine o< eac (0¢ )2
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Open EFT: Vanilla slow-roll single clock inflation @

— Consider short wavelength modes of the same curvature perturbation
field to be the environment of the observable long wavelength system modes.

— The coupling between long and short modes provided by the leading
order cubic non-linearity arising solely from GR: Hin, o € a¢ (9¢)?

v/ Any additional field will lead to extra couplings & lead to more
entanglement, magnifying our findings. Any specifically stronger
interactions (such as DBI, non-minimal coupling, multi-field etc.) will also
enhance our result.
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Open EFT: Vanilla slow-roll single clock inflation @

— Consider short wavelength modes of the same curvature perturbation
field to be the environment of the observable long wavelength system modes.

— The coupling between long and short modes provided by the leading
order cubic non-linearity arising solely from GR: Hin, o € a¢ (9¢)?

les

(aH)™

comoving sca

Density
Perturbation

a, as Ina
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Open EFT: Vanilla slow-roll single clock inflation

— Consider short wavelength modes of the same curvature perturbation
field to be the environment of the observable long wavelength system modes.

— The coupling between long and short modes provided by the leading
order cubic non-linearity arising solely from GR: Hin, o € a( (9¢)?

* Observable signature of entanglement — Smoking gun signal for quantum
origin of inflation or for alternate paradigms and distinguish between them.
Very hard problem!

Construct bottom up open EFTs for accelerating backgrounds =
Estimate effects of non-unitary evolution (dissipation and dechorence)
on observations.
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Momentum space entanglement entropy @

— Consider bands of momenta as subalgebras to define the subsystem and
partition the full Hilbert space.
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Momentum space entanglement entropy @

— Consider bands of momenta as subalgebras to define the subsystem and
partition the full Hilbert space.

— Perturbative momentum space EE between fluctuation modes of the
system and the environment on cosmological backgrounds — Quantifies the
effect of non-unitary evolution.
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Momentum space entanglement entropy @
— Consider bands of momenta as subalgebras to define the subsystem and
partition the full Hilbert space.

— Perturbative momentum space EE between fluctuation modes of the
system and the environment on cosmological backgrounds — Quantifies the
effect of non-unitary evolution.

[Balasubramanian, McDermott & Raamsdonk, 2011]
— Consider the simplest case of scalar QFT in Minkowski:

V H=Hs®He — H=Hs®I+1® He + AHint

v Some arbitrary scale p defines the partitioning.

L 2
v Result: Scnt = —AQ |og )\2 Z ‘<f7, ,§I|H1nt‘07 0>~‘
mnzo (Eo + Eo — E, — En)?

< |n): n-particle state of the system (in fact, a product state over all
super-Hubble k modes) and similarly for |N).

— Standard perturbation theory used to calculate the matrix element.
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Entanglement entropy of inflationary perturbations @
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]
— Modifications required for quasi-dS spacetime:

v' Time-dependent background acts as a pump to source
zero-momentum correlated pairs = [0,0) = |0)gk>an @ |SQ)s-k<ar
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Entanglement entropy of inflationary perturbations @
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]
— Modifications required for quasi-dS spacetime:

v' Time-dependent background acts as a pump to source
zero-momentum correlated pairs = |0,0) = |0)g:k>at @ |SQ) s:k<ats

v Hubble horizon acts as natural scale demarcating long/short dofs.
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Entanglement entropy of inflationary perturbations @
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]
— Modifications required for quasi-dS spacetime:

v' Time-dependent background acts as a pump to source
zero-momentum correlated pairs = [0,0) = |0)gk>an @ |SQ)s-k<ar

v Hubble horizon acts as natural scale demarcating long/short dofs.

v Cubic action due to GR provides leading order interaction term =-
Need time-dependent perturbation theory (A(t) = +/€/(2v/2aMp))
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Entanglement entropy of inflationary perturbations @
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)] -
— Modifications required for quasi-dS spacetime:
V" Time-dependent background acts as a pump to source
zero-momentum correlated pairs = |0,0) = [0)gk>ar ® |SQ)s:k<ati
v Hubble horizon acts as natural scale demarcating long/short dofs.

v Cubic action due to GR provides leading order interaction term =-
Need time-dependent perturbation theory (A(t) = +/€/(2v/2aMp))

kuv
~—Nkin
v" Dominant contribution from the squeezed configuration. i
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Entanglement entropy of inflationary perturbations
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]
— Modifications required for quasi-dS spacetime:

V" Time-dependent background acts as a pump to source
zero-momentum correlated pairs = |0,0) = [0)gk>an ® |SQ)s:k<ar

v Hubble horizon acts as natural scale demarcating long/short dofs.

v Cubic action due to GR provides leading order interaction term =-
Need time-dependent perturbation theory (A(t) = +/€/(2v/2aMp))

v" Dominant contribution from the squeezed configuration.

Entanglement entropy (per unit physical vol) : sent ~ € H? Mg (a/a,-)2 J
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Entanglement entropy of inflationary perturbations
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]
— Modifications required for quasi-dS spacetime:

V" Time-dependent background acts as a pump to source
zero-momentum correlated pairs = |0,0) = [0)gk>an ® |SQ)s:k<ar

v Hubble horizon acts as natural scale demarcating long/short dofs.

v Cubic action due to GR provides leading order interaction term =-
Need time-dependent perturbation theory (A(t) = +/€/(2v/2aMp))

v" Dominant contribution from the squeezed configuration.

Entanglement entropy (per unit physical vol) : sent ~ € H? Mg (a/a,-)2 J

o Similar results for EE of spectator field with ¢* interaction in de Sitter!
[S.B., Calderén, Hassan & Mi, 2302.13894]
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Entanglement entropy of inflationary perturbations
[S.B., Alaryani & Brandenberger, 2005.09688 (PRD)]
— Modifications required for quasi-dS spacetime:

V" Time-dependent background acts as a pump to source
zero-momentum correlated pairs = |0,0) = [0)gk>an ® |SQ)s:k<ar

v Hubble horizon acts as natural scale demarcating long/short dofs.

v Cubic action due to GR provides leading order interaction term =-
Need time-dependent perturbation theory (A(t) = +/€/(2v/2aMp))

v" Dominant contribution from the squeezed configuration.

Entanglement entropy (per unit physical vol) : sent ~ € H? Mg (a/a,-)2 J

o Similar results for EE of spectator field with ¢* interaction in de Sitter!
[S.B., Calderén, Hassan & Mi, 2302.13894]

e Rapid Growth: Perturbative EE ~ reheating entropy/background GH
entropy = Breakdown of perturbation theory around scrambling time of dS
[1/HIn(My1/H)).
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Example: Non-Markovianity & decoupling of modes @

@ Perturbative expansion not trustworthy after scrambling time of dS:
Trans-Planckian problem?
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Example: Non-Markovianity & decoupling of modes @
@ Perturbative expansion not trustworthy after scrambling time of dS:
Trans-Planckian problem?

@ Quantum corrections stay small = EFT applies. Loop corrections do
remain under control. [Senatore & Zaldarriaga; Woodard; Prokopec; . ..]
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Example: Non-Markovianity & decoupling of modes @
@ Perturbative expansion not trustworthy after scrambling time of dS:
Trans-Planckian problem?

@ Quantum corrections stay small = EFT applies. Loop corrections do
remain under control. [Senatore & Zaldarriaga; Woodard; Prokopec; . ..]

@ Does the open EF'T of inflationary perturbations remain valid?
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Example: Non-Markovianity & decoupling of modes @

— Perturbative correction to graviton propagator from tensor loops:

A% ~ ,% (%)4{[2+cos2+Ci 2 —sin2]In </ﬂ,) +(9(1)}

[S.B., Berera & Calderén, 2206.05797 (JHEP)]
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Example: Non-Markovianity & decoupling of modes @

— Perturbative correction to graviton propagator from tensor loops:

A2~ 256 (%)4{[2+cosz+01 2 —sin2]In (/ﬂ) +0(1)}

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

— Exactly matches loop corrections to graviton propagator under
Markovian approximation [Fréb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &
Urakawa, 2013; ...] No spurious In(k/u) term [Adshead, Easther & Lim, 2009; .. .]
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Example: Non-Markovianity & decoupling of modes @

— Perturbative correction to graviton propagator from tensor loops:

A2~ 256 (%)4{[2+cosz+01 2 —sin2]In (/ﬂ) +0(1)}

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

— Exactly matches loop corrections to graviton propagator under
Markovian approximation [Fréb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &
Urakawa, 2013; ...] No spurious In(k/u) term [Adshead, Easther & Lim, 2009; .. .]

— : ‘Fast’ decay of environment correlations
Ki(r,7') <225 5(r — 7'). In this limit, the ME takes the Lindblad form!
graining
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Example: Non-Markovianity & decoupling of modes @

— Perturbative correction to graviton propagator from tensor loops:

A7 ~ 28 (%)4{[24— cos2 + Ci 2 —sin2]In <ﬂ> + O(l)}

1z

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

— Exactly matches loop corrections to graviton propagator under
Markovian approximation [Fréb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &
Urakawa, 2013; ...] No spurious In(k/u) term [Adshead, Easther & Lim, 2009; .. .]

— : ‘Fast’ decay of environment correlations
Ki(r,7') 225 5(7 — 7). In this limit, the ME takes the Lindblad form!
graining

v Dissipation Kernel is sharply-peaked but not delta-function peaked:

iediltr=")/7 [3k(‘r — ') cos(k(T — 7)) + (K3(r — 7")% — 3)sin(k(T — T’))]

7\.2;(5(7 _ 7’)6

Ki(m,7') =~ —
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Example: Non-Markovianity & decoupling of modes

— Perturbative correction to graviton propagator from tensor loops:

A2~ 256 (%)4{[2+cos2+Ci 2-sin2)in (%) +O(1)}

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

— Exactly matches loop corrections to graviton propagator under
Markovian approximation [Fréb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &
Urakawa, 2013; ...] No spurious In(k/u) term [Adshead, Easther & Lim, 2009; .. .]

— : ‘Fast’ decay of environment correlations
Ki(r,7') <225 5(r — 7'). In this limit, the ME takes the Lindblad form!
graining

v Dissipation Kernel is sharply-peaked but not delta-function peaked.

v Novel phenomenon such as recoherence due to non-Markovian memory
kernel! [Colas, Grain & Vennin, 2022] [S.B., Calderén, Colas, Grain & Vennin]
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Example: Non-Markovianity & decoupling of modes

— Perturbative correction to graviton propagator from tensor loops:

A2~ 256 (%)4{[2+cos2+Ci 2-sin2)in (%) +O(1)}

[S.B., Berera & Calderén, 2206.05797 (JHEP)]

— Exactly matches loop corrections to graviton propagator under
Markovian approximation [Frsb, Roura & Verdaguer, 2012; Tan, 2020; Tanaka &
Urakawa, 2013; ...] No spurious In(k/u) term [Adshead, Easther & Lim, 2009; .. .]

— : ‘Fast’ decay of environment correlations
Ki(r,7') <225 5(r — 7'). In this limit, the ME takes the Lindblad form!
graining

v Dissipation Kernel is sharply-peaked but not delta-function peaked.

v Novel phenomenon such as recoherence due to non-Markovian memory
kernel! [Colas, Grain & Vennin, 2022] [S.B., Calderén, Colas, Grain & Vennin]

Markovian environments difficult in cosmology— Important to check
non-Markovian effects: Does decoupling of UV modes still work?
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Complexity and the dS vacuum as
a thermofield double state
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Entanglement & Emergence of spacetime @

— ER=EPR: Pair of entangled BHs have their interior connected by a
non-traversable wormhole. |TFD) ~ 3=, e P51/ |E), |Ei)g

[Maldacena; Raamsdonk; Maldacena & Susskind]
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Entanglement & Emergence of spacetime

< ER=EPR: Pair of entangled BHs have their interior connected by a
non-traversable wormhole. |TFD) ~ 3, e #5/2 |E)), |Ei)r
[Maldacena; Raamsdonk; Maldacena & Susskind]

A B
A B
= [§]+[q]
Wormhole Entanglement
A B
A B
No Wormhole No Entanglement

®
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Entanglement & Emergence of spacetime

— ER=EPR: Pair of entangled BHs have their interior connected by a
non-traversable wormhole. |TFD) ~ 3=, e P5/2 |E), |Ei)r

[Maldacena; Raamsdonk; Maldacena & Susskind]

e~ 75 0% =
i
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Complexity of the Euclidean vacuum @
— Need to go beyond Entanglement: Quantum states continue to evolve
after thermalization. [Susskind, ...]
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Complexity of the Euclidean vacuum @
— Need to go beyond Entanglement: Quantum states continue to evolve

after thermalization. [Susskind, ...]

— Computational Complexity: Quantifies the difficulty (min. no. of
operations) to construct a quantum state starting from another one.
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Complexity of the Euclidean vacuum
— Computational Complexity: Quantifies the difficulty (min. no. of
operations) to construct a quantum state starting from another one.
e dS in hyperbolic slicing: ds®> = H™? (—dt2 + sinh? t (dr2 + sinh? r dQQ)) in

both (L7 R) [Maldacena & Pimentel, 2012; Parikh, van der Schaar et al, 2015; ...]
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Complexity of the Euclidean vacuum @
— Computational Complexity: Quantifies the difficulty (min. no. of
operations) to construct a quantum state starting from another one.

e dS in hyperbolic slicing: ds®> = H™?2 (—dt2 +sinh? t (dr2 + sinh? rsz)) in
both (L7 R) [Maldacena & Pimentel, 2012; Parikh, van der Schaar et al, 2015; ...]

v Factorized reference state: |V,) = |L) ® |R)
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Complexity of the Euclidean vacuum @
— Computational Complexity: Quantifies the difficulty (min. no. of
operations) to construct a quantum state starting from another one.

e dS in hyperbolic slicing: ds®> = H™?2 (—dt2 +sinh? t (dr2 + sinh? rsz)) in
both (L7 R) [Maldacena & Pimentel, 2012; Parikh, van der Schaar et al, 2015; ...]

v Factorized reference state: |V,) = |L) ® |R)

plTpT
v BD as an entangled state: |Wgp) ~ 2 Zij-r.L Mib] b] |L)|R)
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Complexity of the Euclidean vacuum @
— Computational Complexity: Quantifies the difficulty (min. no. of
operations) to construct a quantum state starting from another one.

e dS in hyperbolic slicing: ds® = H~2 (—dt2 + sinh? ¢ (dr2 +sinh? r dQ2)) in

both (L7 R) [Maldacena & Pimentel, 2012; Parikh, van der Schaar et al, 2015; ...]

v Factorized reference state: |V,) = |L) ® |R)

bl pT
v BD as an entangled state: [Wgp) ~ e? Tij=r.L Mt b] |L)|R)

mi

i0 V2e=PT ( cos TV isinhpﬂ')

\/cosh27mp + cos2mv \ isinhpr  cosmv
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Complexity of the Euclidean vacuum

— Computational Complexity: Quantifies the difficulty (min. no. of
operations) to construct a quantum state starting from another one.
o dS in hyperbolic slicing: ds® = H~? (—dt2 +sinh? t (dr2 + sinh? r dQZ)) in
both (L7 R) [Maldacena & Pimentel, 2012; Parikh, van der Schaar et al, 2015; ...]

v Factorized reference state: |V,) = |L) ® |R)
L pTpt
v BD as an entangled state: |Wgp) ~ 2 Zij-r.L Mib] b] |L)|R)

v Geometric Approach: Complexity as the min geodesic on the space of
Gaussian unitary operators: Covariance matrix of states sufficient. Metric
characterized by cost function: F? = Z:,(Y’)2 [Nielson, 2005; Chapman, Heller,

Marrochio, Pastawski, 2017; Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers, 2018]
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SV,

Complexity of the Euclidean vacuum @

— Computational Complexity: Quantifies the difficulty (min. no. of
operations) to construct a quantum state starting from another one.

e dS in hyperbolic slicing: ds®> = H™?2 (—dt2 +sinh? ¢ (dr2 + sinh? r sz)) in
both (L7 R) [Maldacena & Pimentel, 2012; Parikh, van der Schaar et al, 2015; ...]

v Factorized reference state: |V,) = |L) ® |R)

1y b7 b7
v BD as an entangled state: |Wpp) ~ e2 Zii=rR.L M85 || R)
v Geometric Approach: Complexity as the min geodesic on the space of
Gaussian unitary operators: Covariance matrix of states sufficient. Metric
characterized by cost function: F? = Z:,(Y’)2 [Nielson, 2005; Chapman, Heller,

Marrochio, Pastawski, 2017; Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers, 2018]

e Complexity of formation of BD vacuum from the (R, L) vacua:
C(G:, G) = & Tr[log?(G:G, )] Diagonalizing the covariance matrices:

¢~ Vi / %10;);2 {tanh (%)] dp
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SV,

Complexity of the Euclidean vacuum

< Computational Complexity: Quantifies the difficulty (min. no. of
operations) to construct a quantum state starting from another one.

e dS in hynnrhr\]in clicino: dAe?2 — H™2 (_At2 1 cinh2 + (Ar2 1 cinh? rdQ2)) in

Integrand

both (L, k 2

.0.0030
v Factori: P, -

Integrand = — log [tanh _— ]

0.0025 2"2 2
v BD as :

0.0020
v' Geomet >ace of
Gaussian ggos . Metric
characteri |, Heller,
Marrochio, [0-0010 Myers, 2018]

e Complen.oos
C (G, G) ices:

P

4
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Wi,

dS complexity: Implications @

Complexity of dS vacuum is finite both in the IR and the UV J

[S.B., Hackl, Hassan & Luo, forthcoming]
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SV,

dS complexity: Implications

Complexity of dS vacuum is finite both in the IR and the UV J

[S.B., Hackl, Hassan & Luo, forthcoming)

@ Contrast with the complexity of TFD or Minkowski vacuum state from
an ultralocal vacuum (product state of lattice sites). The BD vacuum
can thus be ‘built’ by long-range interactions between the two causally
disconnected regions. It can be constructed with finite complexity
= It lives in the H; ® Hr Hilbert space. [Jefferson & Myers, 2017
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SV,

dS complexity: Implications

Complexity of dS vacuum is finite both in the IR and the UV J

[S.B., Hackl, Hassan & Luo, forthcoming)

@ Contrast with the complexity of TFD or Minkowski vacuum state from
an ultralocal vacuum (product state of lattice sites). The BD vacuum
can thus be ‘built’ by long-range interactions between the two causally
disconnected regions. It can be constructed with finite complexity
= It lives in the H; ® Hr Hilbert space. [Jefferson & Myers, 2017

@ Explicit field theory computation (for free scalar) reproduces
expectations from holographic conjectures. It was conjectured that
the time-dependence in this case is fully fixed by dS symmetries
(~ 1/n®) and goes as proper volume of the spacelike slice (unlike for
entanglement in dS: ~ 1/5° + log i + indep of 1)) [Reynolds & Ross, 2017]
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SV,

dS complexity: Implications

Complexity of dS vacuum is finite both in the IR and the UV J

[S.B., Hackl, Hassan & Luo, forthcoming)

@ Contrast with the complexity of TFD or Minkowski vacuum state from
an ultralocal vacuum (product state of lattice sites). The BD vacuum
can thus be ‘built’ by long-range interactions between the two causally
disconnected regions. It can be constructed with finite complexity
= It lives in the H; ® Hr Hilbert space. [Jefferson & Myers, 2017

@ Explicit field theory computation (for free scalar) reproduces
expectations from holographic conjectures. It was conjectured that
the time-dependence in this case is fully fixed by dS symmetries
(~ 1/n®) and goes as proper volume of the spacelike slice (unlike for
entanglement in dS: ~ 1/5° + log i + indep of 1)) [Reynolds & Ross, 2017]

@ For our choice of reference state, the complexity is a universal
quantity and independent of the parameters in the Lagrangian
(mass of the field) and depends only on the geometry of spacetime.
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Finite complexity as evidence for Cosmic ER=FEPR @
— Cosmic ER=EPR: Global dS geometry emerges from quantum
entanglement between two copies of the (dual) CFT at future infinity Z*.
[Cotler & Strominger, 2023] Caveat: Our results for complexity do not hold for
other forms of dS/CFT such as static patch holography.

[S.B., Hackl, Hassan & Luo, forthcoming]
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Finite complexity as evidence for Cosmic ER=FEPR @

— Cosmic ER=EPR: Global dS geometry emerges from quantum
entanglement between two copies of the (dual) CFT at future infinity Z*.
[Cotler & Strominger, 2023] Caveat: Our results for complexity do not hold for
other forms of dS/CFT such as static patch holography.

e Analog of QNM basis for global dS <> Hyperbolic dS in (L, R) basis.
Following Cotler-Storminger:
v Identify |L) and |R) with the vacua of the two boundary CFTs.
v Both |L) and |R) do not have dS isometries but [Wgp) does!

v In the dual picture, the bulk |Wgp) emerges as a TFD state between
the two boundary CFT states.

V" The reduced density matrix when traced over, say, the R region, can
be interpreted as a thermal one. [Maldacena & Pimentel, 2012]

[S.B., Hackl, Hassan & Luo, forthcoming]
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Finite complexity as evidence for Cosmic ER=EPR @

— Cosmic ER=EPR: Global dS geometry emerges from quantum
entanglement between two copies of the (dual) CFT at future infinity Z*.
[Cotler & Strominger, 2023] Caveat: Our results for complexity do not hold for
other forms of dS/CFT such as static patch holography.

e Analog of QNM basis for global dS <> Hyperbolic dS in (L, R) basis.
Following Cotler-Storminger:
v Identify |L) and |R) with the vacua of the two boundary CFTs.
v Both |L) and |R) do not have dS isometries but [Wgp) does!

v In the dual picture, the bulk |Wgp) emerges as a TFD state between
the two boundary CFT states.

V" The reduced density matrix when traced over, say, the R region, can
be interpreted as a thermal one. [Maldacena & Pimentel, 2012]

Finite complexity of bulk states is evidence for Cosmic FR=FEPR:
Has = Herr, @ Herr,

[S.B., Hackl, Hassan & Luo, forthcoming]
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Discussion
e Conclusions:

v" Open EFTs are a novel perspective on QFTs in curved space.
Non-Markovian open EFTs unveil dissipation and decoherence which
always modify observables (only question is if this is detectable).

v Backreaction of IR modes — Goes beyond standard perturbation
theory for resumming late-time effects. Implications for EI?

v" Central role of ‘complexity’ in cosmic ER=EPR for dS/CFT.
Emergence of spacetime in matrix models [S.B., Brandenberger & Laliberte]
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Discussion

e Conclusions:

v

Open EFTs are a novel perspective on QFTs in curved space.
Non-Markovian open EFTs unveil dissipation and decoherence which
always modify observables (only question is if this is detectable).
Backreaction of IR modes — Goes beyond standard perturbation
theory for resumming late-time effects. Implications for EI?

Central role of ‘complexity’ in cosmic ER=EPR for dS/CFT.
Emergence of spacetime in matrix models [S.B., Brandenberger & Laliberte]

e Looking ahead:

*

Apply to phenomenologically interesting models — QSF inflation!

[S.B., Caderén, Colas, Grain & Vennin]

Construct bottom up open EFTs for accelerating backgrounds.

* Complexity of fermions in dS. [S.B., Hackl, Hassan, & Luo]

Complexity of Minkowski vacuum as a TFD state over Rindler vacua
also finite — Robustness: Complexity corresponding to long-range
entanglement between regions separated by Killing horizons.
Universality: Complexity is independent of parameters in the
Lagrangian and depends only on the geometry of spacetime itself (for
natural choice of reference state). [s.B., Hassan, & Luo]
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Euclidean vacuum as TFD state @

We have L . P
[Wep) = [det(I — )] e Zmne 205! Ry 1)

The density matrix after tracing out R patch is:
pu= (1= 1wl) D= 1" Im; ptm)m; pm|
n=0

Thus the Euclidean vacuum can also be written as:
[Wap) = /1= %2> |7l"

where we need to identify |v,|" = exp(—BE./2).
We identify the |L) and |R) with the vacua of the two boundary CFTs.

n; pfm)

n; pfmygr
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Open EFTs in inflation: Dissipative effects

[with Shandera; with Brandenberger; with Calderén, Colas, Grain & Vennin]

v" Quantum correction to scalar power spectrum — Non-perturbative
2
resummation of IR effects & analytic: A2(qr) = 267/‘1/112:.1 (%) e—ol?
a = eH?/(96m°M3,) ~ 0.00211086 e¢H?/(2M3,) (matches numerical
correction ~ 0.00211886!) [s.B., Berera & Calderén, 2107.06910 (CQG)]
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Open EFTs in inflation: Dissipative effects

[with Shandera; with Brandenberger; with Calderén, Colas, Grain & Vennin]
v" Quantum correction to scalar power spectrum — Non-perturbative
j g 2 1 H)? N2
resummation of IR effects & analytic: A2(qr) = —» (5= ) e ol
e 2eMg, 2

a = eH?/(96m°M3,) ~ 0.00211086 e¢H?/(2M3,) (matches numerical
correction ~ 0.00211886!) [s.B., Berera & Calderén, 2107.06910 (CQG)]

e This effect missed in loop corrections. [Woodard; Senatore & Zaldarriaga; ... ]
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Open EFTs in inflation: Dissipative effects @

[with Shandera; with Brandenberger; with Calderén, Colas, Grain & Vennin]
v" Quantum correction to scalar power spectrum — Non-perturbative

2
resummation of IR effects & analytic: A2(qr) = 267/‘1/112:.1 (%) e—ol?

a = eH?/(96m°M3,) ~ 0.00211086 e¢H?/(2M3,) (matches numerical
correction ~ 0.00211886!) [s.B., Berera & Calderén, 2107.06910 (CQG)]

e This effect missed in loop corrections. [Woodard; Senatore & Zaldarriaga; ... ]

v Important to understand the effect of IR modes in cosmology.
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Open EFTs in inflation: Dissipative effects @

[with Shandera; with Brandenberger; with Calderén, Colas, Grain & Vennin]
v" Quantum correction to scalar power spectrum — Non-perturbative

2 2
H —ahl
27r> € ‘

resummation of IR effects & analytic: A%(qr) = W (
Pl

a = eH?/(96m°M3,) ~ 0.00211086 e¢H?/(2M3,) (matches numerical
correction ~ 0.00211886!) [s.B., Berera & Calderén, 2107.06910 (CQG)]

e This effect missed in loop corrections. [Woodard; Senatore & Zaldarriaga; ... ]
v Important to understand the effect of IR modes in cosmology.

v Effects of : ME is not time-local! Interaction memory
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Open EFTs in inflation: Dissipative effects

[with Shandera; with Brandenberger; with Calderén, Colas, Grain & Vennin]
v" Quantum correction to scalar power spectrum — Non-perturbative
g g 2 1 A% N2
resummation of IR effects & analytic: A2(qr) = —» (5= ) e ol
¢ 2eMg, 2

o = eH?/(967° M2,) ~ 0.00211086 ¢H?/(2M2,) (matches numerical
correction ~ 0.00211886!) [s.B., Berera & Calderén, 2107.06910 (CQG)]

e This effect missed in loop corrections. [Woodard; Senatore & Zaldarriaga; ... ]
v Important to understand the effect of IR modes in cosmology.
v Effects of : ME is not time-local! Interaction memory

* Observable signature of entanglement — Smoking gun signal for quantum
origin of inflation or for alternate paradigms and distinguish between them.

Construct bottom up open EFTs for accelerating backgrounds =
estimate effects of non-unitary evolution on observations.
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