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potentials. In this context the KS-criterion effectively bounds the tensor-to-scalar ratio of cosmic
microwave background fluctuations to be less than 0.08, in line with current observations. We trace
the failure of complex saddles to meet the KS-criterion to the development of a tachyon in their
spectrum of perturbations.
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The quantum state of a spatially closed universe can be described by a wave function which is a
functional on the geometries of compact three-manifolds and on the values of the matter fields on
these manifolds. The wave function obeys the Wheeler-DeWitt second-order functional differential
equation. We put forward a proposal for the wave function of the “ground state” or state of
minimum excitation: the ground-state amplitude for a three-geometry is given by a path integral
over all compact positive-definite four-geometries which have the three-geometry as a boundary.
The requirement that the Hamiltonian be Hermitian then defines the boundary conditions for the
Wheeler-DeWitt equation and the spectrum of possible excited states. To illustrate the above, we
calculate the ground and excited states in a simple minisuperspace model in which the scale factor is
the only gravitational degree of freedom, a conformally invariant scalar field is the only matter de-
gree of freedom and A >0. The ground state corresponds to de Sitter space in the classical limit.
There are excited states which represent universes which expand from zero volume, reach a max-
imum size, and then recollapse but which have a finite (though very small) probability of tunneling
through a potential barrier to a de Sitter-type state of continual expansion. The path-integral ap-
proach allows us to handle situations in which the topology of the three-manifold changes. We esti-
mate the probability that the ground state in our minisuperspace model contains more than one con-
nected component of the spacelike surface.



A Quantum Universe

If the universe is a
quantum mechanical
system it has a
quantum state.

What is it?

That is the problem of
Quantum Cosmology.

© Hartle



A theory of the
quantum state
of the universe
is as much a part of a
final theory
as a theory of dynamics.

© Hartle
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No-Boundary Proposal

U[Pg, é,] = / 5950 exp (—I[g, 6)/h)
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No-Boundary Prior

[Submitted on 27 May 2013 (v1), last revised 10 Feb 2014 (this version, v3)]

Predicting a Prior for Planck

Thomas Hertog

The guantum state of the universe combined with the structure of the landscape potential implies a prior that specifies
predictions for observations. We compute the prior for CMB related observables given by the no-boundary wave function
(NBWF) in a landscape model that includes a range of inflationary patches representative of relatively simple single-field
models. In this landscape the NBWF predicts our classical cosmological background emerges from a region of eternal
inflation associated with a plateau-like potential. The spectra of primordial fluctuations on observable scales are
characteristic of concave potentials, in excellent agreement with the Planck data. By contrast, alternative theories of initial
conditions that strongly favor inflation at high values of the potential are disfavored by observations in this landscape.
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Predictions for observations involve conditional probabilities P(O|D,W¥)
[Hartle, Hawking, TH, 2009 — 2011]

Thenatureofthe microscopic degrees of freedom
behind the wave function/path integral remains obscure.

Can the no-boundary theory be refined -> its predictions strengthened?
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Saddle selection

Kontsevich- Segal: consider only those (complex) saddle

backgrounds on which an arbitrary QFT can be defined
[2105.10161]

Re (/g gt - gH?"?Epy oy Fuy)) > 0

Witten: elevate this criterion to a selection principle of saddle
geometries in gravitational path integrals [2111.06514]

Some evidence: the criterion eliminates pathological wormholes
but it allows for the complexified Kerr solution



Saddle selection

Kontsevich- Segal: consider only those (complex) saddle

backgrounds on which an arbitrary QFT can be defined
[2105.10161]

Re (\/g g™t -+ """ Fpyy o o) >0

Witten: elevate this criterion to a selection principle of saddle
geometries in gravitational path integrals [2111.06514]

Some evidence: the criterion eliminates pathological wormholes
but it allows for the complexified Kerr solution

Do all no-boundary saddles satisfy the KSW criterion?



Saddle selection

What can go wrong?
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Saddle selection

What can go wrong?

RLUETS Laggs:

- The KSW-criterion selects those no-boundary saddles
In which the universe emerges on a concave patch of the
scalar slow-roll potential.
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Microscopics of de Sitter entropy
from precision holography
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de Sitter saddle
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de Sitter entropy [Hartle, TH’11; Harlow, Stanford ‘11]
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de Sitter entropy

ds® = [dr® + L* cos®(7/L) dS23 >T = —nL/2+ir
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de Sitter entropy

I?fjert — _IE)eEdS T Ict =+ O(e_rb/L)
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de Sitter entropy
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de Sitter entropy: microscopics
SdS = —1gqs = QIreEdS

* AdS/CFT EAdS,x S7 : —Iéefds +---=log ZCFT

* Conj :
onjecture SdS _ —210g ZCFT




de Sitter entropy: microscopics

* AdS/CFT EAdS,x 57

SdS — _[EdS — 2]re§ds = 210g ZABJM

* Leading term matches !

* Q: What about quantum corrections?
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de Sitter entropy: microscopics

* AdS/CFT EAdS,x 57

SdS — _[EdS — 2]re§ds = 210g ZABJM

* Leading term matches !

* Q: What about quantum corrections?

/ 2
SdS _ 2'7'(' 2]{' N3/2 B W(k —|_8)

3 12/ 2k

1
N2 4 > log N + O(N?)
Quid bulk?

* Compute one-loop determinantsin 11d Euclidean SUGRA on —S4 X 57/Zk

[Bhattacharyya, Grassi, Marino, Sen '12; Bobev, TH, Hong, Karlssopn, Reys ‘23]

* Leading correction and logarithmic correction match !
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So.. what does S count?

 The microscopic de Sitter entropy does not quite count microstates,
since there is no time, and thus no Hamiltonian.

. In effect, exp (S4) not an integer for low (N, k)

. But, being given by a (QFT) path integral, the entropy does represent
some sort of measure of degrees of freedom.
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