Alleviation of anomalies from the non-oscillatory vacuum in Loop Quantum Cosmology

Rita Neves

Mercedes Martín-Benito, Javier Olmedo

arXiv:2305.09599

Quantum Gravity 2023, Nijmegen, July 12th 2023

UNIVERSIDAD COMPLUTENSE DE MADRID SFRH/BD/143525/2019

FCI Fundação para a Ciência e a Tecnologia

Cosmological perturbations in Loop Quantum Cosmology

Loop Quantum Cosmology

- Based on Loop Quantum Gravity,
- Big-bang singularity \longrightarrow quantum bounce,

Well defined pre-inflationary dynamics \longrightarrow excite perturbations

Cosmological perturbations

Loop Quantum Cosmology:

 Different background affects dynamics of perturbations,

Cosmological perturbations

Loop Quantum Cosmology:

- Different background affects dynamics of perturbations,
- + corrections to equations of motion,

$$u_k^{\prime\prime} + \omega_k^2(t)u_k = 0.$$

Cosmological perturbations

Loop Quantum Cosmology:

- Different background affects dynamics of perturbations,
- + corrections to equations of motion,

$$u_k^{\prime\prime} + \omega_k^2(t)u_k = 0.$$

 Affects primordial power spectrum.

Primordial power spectrum of LQC

- Shape depends on vacuum
- Departs from near-scale invariance for $k \leq k_{LQC}$
- LQC affects *infrared* spectrum

Primordial power spectrum of LQC

- Shape depends on vacuum
- Departs from near-scale invariance for k ≤ k_{LQC}
- LQC affects *infrared* spectrum
- Effects in observable window? More inflation \longrightarrow lower k_{LQC}

Too much inflation \Rightarrow no visible effects

Vacuum choice

Non-Oscillatory (NO) vacuum

- Minimize oscillations in time,
- Motivation: oscillations spoil effects of the bounce,
- Most PPS from LQC have power suppression in IR.

Non-Oscillatory (NO) vacuum

- Minimize oscillations in time,
- Motivation: oscillations spoil effects of the bounce,
- Most PPS from LQC have power suppression in IR.

Parametrize:

- Fixed slope of suppression and amplitude of oscillations.
- $k_c \leftrightarrow \text{e-folds}$

Bayesian Analysis

Posterior of $\ln(k_c)$

Posterior of $\ln(k_c)$

Posterior of $\ln(k_c)$

Posterior of $\ln(k_c)$

Data prefers some observable effects.

Posterior of $\ln(k_c)$

Data prefers some observable effects.

Alleviation of Anomalies

$\Lambda \mathsf{CDM}$

- Phenomenological parameter A_L: CMB is more/less lensed.
- Consistency check: $\Lambda \text{CDM} + A_L$
- $A_L>1$ at $\sim 2\sigma$,

ΛCDM

- Phenomenological parameter A_L: CMB is more/less lensed.
- Consistency check: $\Lambda CDM + A_L$
- $A_L>1$ at $\sim 2\sigma$,
- $\label{eq:alpha} \begin{array}{l} \bullet & A_L \text{ consistent with 1 if } \Omega_k < 0 \\ & \longrightarrow \text{ inconsistencies with BAO,} \end{array}$
 - \rightarrow crisis in cosmology?

[Di Valentino et al. Nat Astron 4, 196-203 (2020)]

- Some alleviation is possible,
- Better for higher k_c ,

- Some alleviation is possible,
- Better for higher k_c ,

- Some alleviation is possible,
- Better for higher k_c ,
- Constraints on $\tau_{\rm reio}$ will constrain LQC.

 $C(\boldsymbol{\theta})$ is remarkably consistent with 0 for large angles.

$$S_{1/2} = \int_{-1/2}^1 C^2(\theta) d(\cos \theta)$$

 $\Lambda {\rm CDM}{:}~S_{1/2} \sim 35000$ Data: $S_{1/2} \sim 1200$

 $C(\boldsymbol{\theta})$ is remarkably consistent with 0 for large angles.

$$S_{1/2} = \int_{-1/2}^1 C^2(\theta) d(\cos \theta)$$

 $\label{eq:constraint} \begin{array}{l} \Lambda \text{CDM: } S_{1/2} \sim 35000 \\ \\ \text{Data: } S_{1/2} \sim 1200 \\ \\ \hookrightarrow \text{ Unlikely realizations of } \Lambda \text{CDM} \\ \\ \text{Universe.} \end{array}$

How unlikely?

Consider $S_{1/2} \mbox{ distribution due to cosmic variance.}$

 $\mbox{p-value} = \mbox{fraction}$ of realizations with $S_{1/2} \leq \mbox{observed}.$

Consider $S_{1/2} \mbox{ distribution due to cosmic variance.}$

p-value = fraction of realizations with $S_{1/2} \leq$ observed.

Consider $S_{1/2} \mbox{ distribution due to cosmic variance.}$

 $\mbox{p-value} = \mbox{fraction}$ of realizations with $S_{1/2} \leq \mbox{observed}.$

$$k_c = {\rm peak} ~~\sim 2\%$$

$$k_c = \max \sim 5\%$$

 $R^{TT} < 1$: more power in odd ℓ up to ℓ_{max}

 $R^{TT} < 1$: more power in odd ℓ up to ℓ_{max}

 $R^{TT} < 1$: more power in odd ℓ up to ℓ_{max}

Conclusions

- LQC can have observable effects in the *infrared* power spectra,
- The data hints at a preference for IR power suppression to be in the observable window,
- When observable, this alleviates the lensing and power suppression anomalies.
- Parity anomaly: other vacua, PPS with enhacement.

- LQC can have observable effects in the *infrared* power spectra,
- The data hints at a preference for IR power suppression to be in the observable window,
- When observable, this alleviates the lensing and power suppression anomalies.
- Parity anomaly: other vacua, PPS with enhacement.

Thank you for your attention