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Inhomogeneities in the early-Universe
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Temperature anisotropies of the CMB [Planck data 2018].

▶ Primordial inhomogeinities arise from vacuum quantum fluctuations.

▶ Fluctuations “freeze” after being stretched to cosmological scales during inflation.
[Quantum-classical transition]



Quantum-classical transition of fluctuations

▶ Scale factor of expansion : a(t). Hubble radius : H−1 = a/ȧ. During inflation, a(t) ∝ eHt .

▶ Can entanglement help us understand quantum-classical transition of fluctuations?



Scalar field with time-dependent mass

▶ The Hamiltonian of a time-dependent massive scalar field (φ) in (1 + 1)−dimensions is:

H =
1

2

∫
dx
[
π2 + (∇φ)2 +m2

f (t)φ
2
]

(1)

▶ Upon lattice-regularization using φ = jd (UV cutoff) and L = (N + 1)d (IR cutoff):

H =
1

2

∑
j

[
π2
j + Λ(t)φ2

j + (φj − φj+1)
2
]

; Λ(t) = d2m2
f (t) (2)

▶ Fluctuations propagating in time-dependent backgrounds can be reduced to the following
form:

H =
1

2

 N∑
j=1

π2
j +

N∑
i,j=1

Kij(t)φiφj

 (3)



Scalar field with time-dependent mass

▶ The normal modes of the system are as follows:

ω2
k=1,..N(t) =

{
Λ(t) + 4 sin2 kπ

2(N+1) Dirichlet φ(0) = φ(L) = 0

Λ(t) + 4 sin2 (k−1)π
2N Neumann ∂xφ(0) = ∂xφ(L) = 0

(4)

▶ For each normal mode oscillator {yj}, we obtain a form-invariant Gaussian state:

ΨGS({yj}, t) =
∏
j

(
ωj(0)

πb2j (t)

)1/4

exp

{
−

(
ωj(0)

b2j (t)
− i

ḃj(t)

bj(t)

)
y2
j

2
− i

2
ωj(0)

∫
dt

b2j (t)

}
(5)

▶ The wave-function can also be written as:

ΨGS({yj}, t) =
∏
j

ψ(j)(yj , t )̸=
∏
j

ϕ(j)(xj , t) ⇒ entangled in physical coordinates (6)



Stability of scaling parameters

▶ The Ermakov-Pinney equation is highly non-linear:

b̈j(t) + ω2
j (t)bj(t) =

ω2
j (0)

b3j (t)
; j = 1, ...,N (7)

▶ Three distinct stability regimes:

bj(t) ∝


oscillatory ω2

j (t) > 0 (stable)

ωj(0)t ω2
j (t) = 0 (metastable/zero-mode)

exp{|vj |t} ω2
j (t) < 0 (unstable/inverted mode) ; vj = iωj

(8)

▶ During inflation, modes that remain within the Hubble radius are stable/oscillatory and
those that cross the radius get squeezed/inverted.



Loss of “quantumness” via Decoherence

▶ The density matrix can be viewed as an ensemble of states:

ρ̂ =




⟨ψ1| ρ̂ |ψ1⟩ ⟨ψ1| ρ̂ |ψ2⟩ · · ·
⟨ψ2| ρ̂ |ψ1⟩ ⟨ψ2| ρ̂ |ψ2⟩ · · ·

...
...

. . .

 Quantum ensemble


⟨ψ1| ρ̂ |ψ1⟩ 0 · · ·

0 ⟨ψ2| ρ̂ |ψ2⟩ · · ·
...

...
. . .

 Classical ensemble

(9)

▶ Degree of quantum decoherence : Purity of a given density matrix

δQD = Tr ρ2 →

{
1 Pure

0 Decohered
(10)



Quantifying instabilities

▶ Entanglement entropy : Measures decoherence of A due to B:

S = −Trρred ln ρred ; ρred = TrA |Ψ⟩⟨Ψ| or TrB |Ψ⟩⟨Ψ|. (11)

▶ Loschmidt echo : Deviation of the state from slightly different H(t) evolutions:

M (t) =
∣∣∣⟨Ψ0|e i

∫
H′dte−i

∫
Hdt |Ψ0⟩

∣∣∣ = |⟨Ψ0|Ψ2⟩| (12)

▶ Quantum Lyapunov exponents: Exponential decay rate of Loschmidt Echo

λ
(k)
L = vk (13)

General behavior of EE for sub-system size n

Sn ∼

 2n∑
j=1

λ
(j)
L

 t

︸ ︷︷ ︸
inverted mode

+ log(t)︸ ︷︷ ︸
zero-mode

+ S0(t)︸ ︷︷ ︸
stable mode



Classicality of EE, Asymptotic convergence

▶ Classicality of EE : When subsystem size n ≥ m
2 where m = dim{λ(j)L }, EE growth

saturates: [L. Hackl et. al. ’18]

Sn ∼ hKS t ; hKS =
m∑
j=1

λ
(j)
L (14)

where hKS is the Kolmogorov-Sinai rate, associated with a classically chaotic system.

▶ Other diagnostic measures : Ground state fidelity F0, Circuit complexity CCM .

▶ Asymptotic convergence : Subsystem measure EE converges with full-system measures:

S inv
n≥m

2
∼ − logF 2

0 ∼ − logM ∼ CCM ∼ hKSt (15)



Thermality of EE : Subsystem scaling & Particle creation
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Thermal signatures of EE for stable modes — (a) Dynamics for various subsystem sizes, and
(b) Area-law to volume-law transition.



Subsystem Scaling : Inverted modes
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Thermal signatures of EE for inverted modes — (a) Dynamics for various subsystem sizes,
and (b) Area-law to volume-law transition.



Squeezing and Classicality Criteria

▶ Classicality parameter : Squeezing of the Wigner fn about classical trajectories

C =
⟨xp⟩

W√
⟨p2⟩

W
⟨x2⟩

W

=

√
1− detΣ

σXXσPP
→

{
0 “Quantum”

1 “Classical”
(16)

[G. Mahajan, T. Padmanabhan ’08]

▶ “Quantum” limit : max. uncertainty =⇒ Wigner function separable in x and p.

▶ Decoherence and squeezing can be measured from the Covariance matrix:

Σ =

[
σXX σXP
σT
XP σPP

]
; (σXX )ij = ⟨{xi , xj}⟩ ; (σXP)ij = ⟨{xi , pj}⟩ ; (σPP)ij = ⟨{pi , pj}⟩ (17)

Classicality criteria for multi-mode Gaussian states

S → ∞ ; LC (t) = − log
√
1− detC 2→ ∞



Fluctuations in (3 + 1)−dimensions

▶ Lattice regularized fluctuations:

Hlm[t] =
1

2

∑
lmj

[
Π2

lmj +
1

a2(t)

(
j +

1

2

)2{
Φlmj

j
− Φlm,j+1

j + 1

}2

+Ω2
lmj(t)Φ

2
lmj

]
; t =

t̃

d̃
,

(18)
where,

Ω2
lmj(t) = Λ +

l(l + 1)

j2a2(t)
− 3

4

(
ȧ(t)

a(t)

)2

− 3ä(t)

2a(t)
(19)



Tanh Evolution
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S → ∞ ✗ ; LC → ∞ ✗



de-Sitter expansion
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S → ∞ ✓ ; LC → ∞ ✓



Conclusions

▶ Classicality criteria is decided simultaneously by decoherence (entanglement entropy) and
squeezing (log classicality).

▶ Inverted modes cause EE to classicalize for sufficiently large subsystem size n ≥ m/2.

▶ For stable/zero modes, EE-scaling oscillates between area-law and volume-law. For
inverted modes, there is a progressive deviation from area-law, asymptotically approaching
extensive behaviour.

▶ In (3 + 1)−dimensions, de-Sitter expansion satisfies the criteria for quantum-classical
transition of fluctuations.

Ongoing & Future Work

▶ Probing area-to-volume law transition in (3 + 1)-dimensions.

▶ Generalization to higher-spins.

▶ Black-hole evaporation : Page curve.
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