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Inhomogeneities in the early-Universe

—
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Temperature anisotropies of the CMB [Planck data 2018].

» Primordial inhomogeinities arise from vacuum quantum fluctuations.

» Fluctuations “freeze” after being stretched to cosmological scales during inflation.
[Quantum-classical transition]



Quantum-classical transition of fluctuations

—

» Scale factor of expansion :

» Can entanglement help us understand quantum-classical transition of fluctuations?
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Scalar field with time-dependent mass

—

» The Hamiltonian of a time-dependent massive scalar field (¢) in (1 + 1)—dimensions is:
1
= 5 / dx [7r2 + (V) + m2(t) cpz] (1)
» Upon lattice-regularization using ¢ = jd (UV cutoff) and L = (N + 1)d (IR cutoff):

A = %Z [77 + M) + (05 —9i1)’] + A(t) = d®mi(t) @

» Fluctuations propagating in time-dependent backgrounds can be reduced to the following
form:
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Scalar field with time-dependent mass

—

» The normal modes of the system are as follows:

2 kmw
WPy o(t) = A(t) + 4sin 2£N_{1) Dirichlet o(
o A(t) + 4sin? ¢ N) Neumann dxp(0) = dxp(L) =0
» For each normal mode oscillator {y;}, we obtain a form-invariant Gaussian state:
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Vaes({y} t) = H ( b2(())> eXP{_ (bfit; B 'bjg%) y? ) (0)/1712(2)} ©

» The wave-function can also be written as:

Vas({y} t) = Hw(j)(yj, t)#£ qu(j)(xj, t) = entangled in physical coordinates  (6)
J J




Stability of scaling parameters

—

» The Ermakov-Pinney equation is highly non-linear:

. ) w?(0)
bi(t) +wi(0)bi(t) = 55 &+ J=1,.,N (7)
b;(t)
» Three distinct stability regimes:
oscillatory ~ w?(t) > 0 (stable)
bj(t) o< § w;(0)t w?(t) = 0 (metastable/zero-mode) (8)
exp{|vj|t} w?(t) <O (unstable/inverted mode) ; v; = iw

» During inflation, modes that remain within the Hubble radius are stable/oscillatory and
those that cross the radius get squeezed/inverted.



Loss of “quantumness” via Decoherence

—

» The density matrix can be viewed as an ensemble of states:

[l plyn)  (en] plwa) -]
(Y| plab1) (ol Plb2) -~ Quantum ensemble
p=9 j (9)
(1] P [h1) 0
0 (| pltpa) - Classical ensemble

» Degree of quantum decoherence : Purity of a given density matrix

1 Pure

(10)
0 Decohered
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Quantifying instabilities

__

» Entanglement entropy : Measures decoherence of A due to B:
S=—TrpredINpred i prea = Tra|V){(W| or Trg |W)(V|. (11)
» Loschmidt echo : Deviation of the state from slightly different H(t) evolutions:
M (t) = |(Wole' S H'dte™ T H | wg) | = [(Wo| W) (12)
» Quantum Lyapunov exponents: Exponential decay rate of Loschmidt Echo

AR =y, (13)

General behavior of EE for sub-system size n

2n
S, ~ Z/\(LJ) t+ log(t) + So(t)
Jj=1 zero-mode stable mode

inverted mode



Classicality of EE, Asymptotic convergence

—

» Classicality of EE : When subsystem size n > 7' where m = dim{)\g)}, EE growth
saturates: [L. Hackl et. al. '18]

m
Sn~ hgst ; hks = Z N (14)
=

where hks is the Kolmogorov-Sinai rate, associated with a classically chaotic system.

» Other diagnostic measures : Ground state fidelity %, Circuit complexity Cepm.

» Asymptotic convergence : Subsystem measure EE converges with full-system measures:

,11112\,% ~ 7|Og¢g‘\02 ~ —log.# ~ Coy ~ hkst (15)



Thermality of EE : Subsystem scaling & Particle creation
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Thermal signatures of EE for stable modes — (a) Dynamics for various subsystem sizes, and
(b) Area-law to volume-law transition.



Subsystem Scaling : Inverted modes

—
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Thermal signatures of EE for inverted modes — (a) Dynamics for various subsystem sizes,
and (b) Area-law to volume-law transition.




Squeezing and Classicality Criteria

—

» Classicality parameter : Squeezing of the Wigner fn about classical trajectories

(xp) 1 detX™ _>{0 “Quantum”

N VAP W (X2 - TXXOTPP 1 “Classical”

¢ (16)

[G. Mahajan, T. Padmanabhan '08]

» “Quantum” limit : max. uncertainty =—> Wigner function separable in x and p.

» Decoherence and squeezing can be measured from the Covariance matrix:

Y= {Z?X ZXP] s (oxx)ij = ({xi, x1) 5 (oxe)ij = ({xi, pi}) s (opp)i = ({pis pi})  (17)
XP PP

Classicality criteria for multi-mode Gaussian states

S—>o00 ; LC(t)=—-logV1—det??—



Fluctuations in (3 + 1)—dimensions

—

» |attice regularized fluctuations:

1 > 1 (1N [Py Py oo > _
(18)
where, ,
I(1+1) 3 /[a(t) 35(t)
2 — —_—— — —
Qni(t) =N+ 22y ~ 2 (a(t) 2a(t) (19)



Tanh Evolution
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de-Sitter expansion
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Conclusions

» Classicality criteria is decided simultaneously by decoherence (entanglement entropy) and
squeezing (log classicality).

» Inverted modes cause EE to classicalize for sufficiently large subsystem size n > m/2.

» For stable/zero modes, EE-scaling oscillates between area-law and volume-law. For
inverted modes, there is a progressive deviation from area-law, asymptotically approaching
extensive behaviour.

» In (3 + 1)—dimensions, de-Sitter expansion satisfies the criteria for quantum-classical
transition of fluctuations.

Ongoing & Future Work

» Probing area-to-volume law transition in (3 4 1)-dimensions.
» Generalization to higher-spins.

» Black-hole evaporation : Page curve.
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