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Introduction

Motivation
o Loop quantum gravity is formulated in terms of triads and connections.
@ The operator associated to the connection A’ is not well defined, one
quantizes the holonomies (exp[i( [ o;4°A47)]).
o Effective theories are supposed to encode the main quantum effects.

Polymerization: A — 2224

@ Singularity resolution in homogeneous models.
Objetives
o Construct an effective theory of a spherical quantum black hole in the
context of loop quantum gravity.

o Modify the General-Relativity (GR) Hamiltonian constraint, so that the
deformed Hamiltonian covariantly defines a spacetime metric.

@ Analyze the singularity resolution for black holes with @ and A.
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Polymerization of homogeneous cosmological models

Let us assume a homogeneous and isotropic cosmology with a scalar matter
field ¢. Two couple of conjugate variables:

{b,’U} = 17 {¢ap¢} =1L

o Classical dynamics
2
The GR Hamiltonian constraint: Hgr = —vb? + %d’ =0

2
The energy density: p = :—42’ = b?
The Hubble rate: (£)” o (2)* = p = Singularity

o Polymerized effective theory

. . . - sin2 2
The polymerized Hamiltonian constraint: H = fvi“"A(gAb) + p7¢ =0
. p2 sin2
The energy density: p= -5 = =2

The Hubble rate: (g)2 x (ﬂ')2 =p (1 — £ ) — Bounce

v Pmax
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Spherical vacuum in General Relativity

Two conjugate couples: {E®(x1), Ku(z2)} = {E¥(21), Kp(22)} = 6 (21, 22).

The total Hamiltonian Hy = H[N] + D[N®] is a sum of constraints,

Be (E*")? VE=* VE*®
14+ K —2VE*K, K. - E*' E¥’ E®"
T WE N/ A ot 8VE=Ee 2(E¥)? * 2B ’

D=-E"K, + E*K,.
The hypersurface deformation algebra:

{D[f1], DIf2]} = D[f1fs — fif2],
{D[fl]aH[fz]} =H| 1fz]
{H[A] Hf]} =D (flfz —fif2)]
The metric:
ds? = —~N2dt* + g (da + N®dt)? + r2dQ?,
with ¢, = (F¥)?/E* and r = VE®=.
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Polymerized vacuum model with a closed algebra

“Carefully” polymerizing the Hamiltonian

. E¥ (1+ sin2(AK¢)>7\/ﬁKz sin(2AK,) N (E")? VE® e VE® e
VB A2 A 8VETEY  2(E¥)? 267

one obtains the closed (anomaly-free) algebra,

{D[f1], Dlfe]} = D[f1fs — fife],

{D[f],H|f2]} = H[f1[2],

{H[], H[f2]} = D[F(fifs = fif2)]
withF = E” cos(20K,,)/(E¥)? . However,

@ 1/F does not have the correct transformation properties to be
interpreted as q,..

o No known way to couple matter while keeping a closed algebra.
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Covariance

o In phase space, with Hamiltonian H; = H[N] + D[N<], the first-class
constraints

{D[f1],D[f2]} = D[flfé - f{f2]7
{D[fl]vH[fQ]} = H[flfﬂ’
{H[fl]vH[f2]} = D[F(flfQ, - f{fQ)]v

are generators of gauge transformations §.® = {®, H[¢] + D[e*]}.

o Under a coordinate transformation in spacetime, the metric g,, changes
as L¢gay, with €10, = £'0, + £°0,.

@ Both transformations must coincide if the gauge parameters are the
components of £ in the normal-tangential basis: ¢* = €9, + €°0,.

@ In summary, one can covariantly define the metric
ds® = —N?dt* + quo(dx + N7dt)* + r>dQ?,

with ¢,. := 1/F, as long as 6.(1/F) = L.q.. and 7 is a scalar.



Set up to construct a deformed covariant Hamiltonian

The classical Hamiltonian:

E¥ (B=")? VE* VE*"
=———(1+K2)-2VE*K,K. - EYE? + —FE*"
HGR 9 /;Ez( + ¢) Xy + 3 /—EZEAP 2(E¢)2 + Yo

Ansatz: the most general Hamiltonian constraint quadratic in derivatives of
E® and E¥:

H = o+ 040 (E*')* + app(E?")? + a0, E* E¥' + a,E*" + a,E¢",

with all a; and a,; free functions of (E*, K,, E*, K,)
Requirements:

@ Anomaly freedom: H forms a closed algebra with the diff constraint D.
@ Spacetime embeddability: §.(1/F) = L¢qu.-

o The classical Hamiltonian H¢r is recovered in a continuous limit.
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Defomed covariant Hamiltonian constraint

The deformed covariant Hamiltonian constraint

E¥ sin® (wK.
H:—g<2E1 (1—E”V+AU(;“"))

. 2 K Ez/ 2

K, (Asm(:j o) (2Ew) wsin (2K, +¢)))
in® (WK B

+E‘Pa§7x Az ffi o) <2Ew> cos” (uke +9)

2

1 (B BYEY (BT,
(EW % +4E$E¥>>COS (WK, +¢) |,

with g, A, w, ¢, and V free functions of the scalar E* only.

Vacuum GR correspondsto w -0, ¢ -0,V —0, A— 1, and g — VE=.
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Defomed covariant Hamiltonian constraint: properties

@ The complexity of the initial ansatz is radically reduced by the
covariance requirement.

@ Trigonometric functions have not been chosen by hand, rather a
consequence of covariance.

@ Using the equations of motion, one can show that the function
in2 (w zr\ 2 . .
m:=vVE*(1+ A% — (fEﬁ) cos?’(wK, + ¢)) is given on-shell by

m~ M + / V(E*)dE*".

@ In particular, m is a constant of motion if V = 0.
@ The potential V' can reproduce a cosmological-constant and charge.
o The associated metric of the deformed theory is given by,

1
ds* = =N?dt* + - (dw + N"dt)? +r*dQ?,

: _ 2 2 _ _2m _ b
with F = £ <Acos (¢) +w <1 \/IE7>> and r = r(E").



Defomed Hamiltonian constraint: spacetime structure

o There exists a Killing vector field ¢ = ¢, dx*, with =0, 1.
e ¢, is everywhere orthogonal to V,r, that is, £#V,r =0

o G:=¢r¢,, H:=V,rV*r. Wherever V,r # 0, then sign(G) = —sign(H)
as long as .
Four different regions of the spacetime:
o G < 0and H > 0: static nontrapped regions with V,r spacelike and &,
timelike.
o G > 0and H < 0: trapped homogeneous regions with V,r timelike and
&, spacelike.
o G=0and H=0 (with V,r # 0): Killing horizons, which separate
trapped and nontrapped regions, where both V,r and &, are lightlike.
o V,r = 0: critical points. (For $ =0, V,r =0 <= F =0).
Other specific properties of the spacetime under consideration depend on the
chosen free functions.
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Particular case

@ Let us consider a constant value for w = X and the GR values for ¢ = 0,

A=1, and g = VE".
o E <1+ sin? (Afg,)) VB S, <1+ ()\E”>2>

N A2 A 2E%
cos? (A\K,) [ E -\ - (E*\' L=, N
+— <2E¢(\/E)+\/E (EW>>+2\/EEV(E)

o The potential V(E*) will be chosen below to describe A and Q.
@ This Hamiltonian can be obtained from a canonical transformation plus
a linear combination of the GR constraints:

E¢ sin(AK,,)
x — T (GR) _ ® — (GR) _ ®
Efpn = B, K| Koo Bion = oniy 55 el
BB
<7-[GR + Asin(AKQ%D) cos(AK,) =H

o This motivates the choice V(E*) = (A + (%)2) and r = VE".



Particular case: the structure and the mass functions

@ The structure function in {H[f,], H[f2]} = D[F(f1f; — fif.)] reads
7o cos*(\K,) (1 N ()\EI/)2> E*® >0

1+ A2 2B% ) ) (E%)?

. 2
o In terms of the mass function m(r) = M — & + 4¢°

2
F:(l—m(r)>r>0:>2?\m(r)<r,
r

W|th A= 1+A2 € [0 ].]

o For vacuum (with @ =0=A), m = M constant and r,:=2AM <ris a
minimum for 7. If M > 0 this will lead to the singularity resolution.

o For nonvacuum 2Xm < r applies, but the possible ranges of definition of
r depends on the specific values of the parameters (M, Q, A).
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Particular case: metric and curvature

@ By solving the equations of motion
Ew = {Ew7H}7 Kz = {Km,%L E‘P = {E*P’H}, K&p = {KgaaH}

in certain gauge, we obtain the metric in diagonal form
—1
ds® = — (1 = 2"?@) dt* + (1 = 2’"74(’”)) da® + 12d?,
valid for r # 2m(r) = and with r = r(z) defined by

() < - Brte)

o Here appears again the condition 2Xm(r) <

r.
@ The norm of the Killing £#¢, = (1 — 2m(r)/r) = same horizon structure
as the corresponding GR solution.
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Particular case: covering domain U

@ Another gauge choice leads to

ds? = — <1 — 27n(r(z)))d7_2 +2 Mdrdz +d2* +r(2)%dQ3,
r(z) r(z)
where (¢,z) have been renamed as (7, 2).

@ (1,z) are horizon-crossing coordinates and their domain of definition is
named U (covering domain).

@ 7€ (—00,00) and z restricted by m(r(z)) > 0.

o By transforming to null coordinates in different regions, and extending
then the domains, one can construct the conformal diagram and obtain
the maximal analytic extension of the spacetime M.

arXiv:2205.02098[gr-qcl
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Conformal diagram for vacuum (Q = 0 = A) with M > 0

@ Same horizon as in GR:
r=rg=2M.

@ The critical surface
r =1y = 2AM replaces the
classical singularity and
separates a trapped and
antitrapped region.

o A perfectly regular and
geodesically-complete
spacetime.

o However, for M < 0 the
singularity is not resolved
and the conformal diagram
coincides with the classical
one.
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Nonvacuum cases (@ # 0 or A # 0)

@ There are a lot of possible different cases depending on the specific
values of M, Q, A,

o Not all the singularities are resolved.

o The Ricci scalar diverges at r = 0 (except for M = Q = A =0) and at
r — oo (for A # 0):

2 2 2 2
moan (1) e 204 (1L ) (B4 29

4 r2 3r?
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Nonvacuum cases (@ # 0 or A # 0)

@ The range for r is defined by r > 2dm = 2A (M — %f + %7"3).

o The saturation of the above condition 7. = 2 (M - % + %rfm) is
equivalent to a fourth-order polynomial equation and it defines at most

three possible positive critical values 7., = R, 70, oo

o The location of the horizons is defined by G = ¢¢, = 0 <= r = 2m.
There are at most three: .o, = 77,75, 7c.

o Schematically:

0 Static Hom. Static Hom. 00
i_>0 G >0 v G <0 . G >0 y G <0 r
rr TH rc
() Static Hom. Hom. Static  Hom.
A#0 : | | - - | r
G >0 G <0 G <0 G >0 G <0
rr Rro rg ro Too
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Nonvacuum cases (@ # 0 or A # 0)

We have classified all the possible singularity-free solutions of the theory:

o There exists a minimum value of » = r,, so that » = 0 is not contained in
the domain.

o If A #0, there exists a maximum value of r = r_, so that r — oo is not
contained in the domain.

In a nutshell, the spacetime to be singularity-free it must have
o M >0,
e A>0, and
@ @ is bounded.

arXiv:2302.10619 [gr-qcl
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Nonvacuum cases (@ # 0 or A # 0)

More specifically, one gets the singularity-free
o Reissner-Nordstrom-de Sitter
O, = {A >0,Q#0, M >0, 80> <9AM? and A€ (A_,A,)N (0,A+)},
@ Schwarzschild-de Sitter,
Cyi={A>0,Q=0,and A€ (0,2) |,

o Reissner-Nordstrom,

Oy = {A —0and Q| < \/%M},

with Ay = 7\4 - [36?\3M2Q2 2TNMA — 8AQQ4i\/A5M2 (9AM? — 8Q2)°

There are also the degenerate cases D, and Ds.
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Nonvacuum cases (@ # 0 or A # 0)

General properties of the conformal diagrams:

o Critical points r, and r., always appear in homogeneous regions.

o Cases with Q = 0 and Q # 0 have the same conformal diagram. In
particular no Cauchy horizon.

@ 7, replaces the classical singularity at » = 0 and, if exist, r., replaces the
r — oo surface.

@ r =1, is a spacelike (reachable) surfaces in “regular” cases C;, Cs, and
Cs; while it defines 7% in the degenerate cases D; and Ds.

o Cases C;, C,, and D; are subdivided in

o Black-hole solution (if they present 2 horizons).
o Extremal solution (if they present 1 degenerate horizon).
o Cosmological solution (if they present no horizons).
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Conformal diagram for the black holes Cy and C5 (A > 0)
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Conformal diagram for extremal Cy and C5 (A > 0)
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Conformal diagram for the cosmology C; and C5 (A > 0)

P = Tas
r=7nry
P = g
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Conformal diagram for the black hole D; (A > 0)
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Conformal diagram for the cosmology D; (A > 0)
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Conformal diagram
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r the cosmology D3 (A

Conformal diagram
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Conclusions

@ The most general Hamiltonian constraint under the restrictions
o Same derivative structure as GR.
o Anomaly-free algebra.
o Spacetime embedability.
o Contains GR as a continuous limit.
@ Analyzed in detail a (“minimally deformed”) particular case.
o Singularity resolution is not generic.
o Singularity-free spacetimes

o M >0,A >0, and bounded Q.
o r =rg replaces the classical singularity at » = 0.
o If A#0, r =rs replaces the r — oc.
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