Covariance in effective models of quantum black holes

David Brizuela

Department of Physics University of the Basque Country UPV/EHU, Bilbao (Spain)

In collaboration with A. Alonso-Bardaji and R. Vera

Nijmegen, July 2023

<ロト (四) (三) (三)

Motivation

- Loop quantum gravity is formulated in terms of triads and connections.
- The operator associated to the connection A_a^j is not well defined, one quantizes the holonomies $\left(\exp[i(\int \sigma_j \dot{\gamma}^a A_a^j)]\right)$.
- Effective theories are supposed to encode the main quantum effects. Polymerization: $A \to \frac{\sin(\lambda A)}{\lambda}$
- Singularity resolution in homogeneous models.

Objetives

- Construct an effective theory of a spherical quantum black hole in the context of loop quantum gravity.
- Modify the General-Relativity (GR) Hamiltonian constraint, so that the deformed Hamiltonian covariantly defines a spacetime metric.
- Analyze the singularity resolution for black holes with Q and Λ .

(4月) (4日) (4日) 日

Polymerization of homogeneous cosmological models

Let us assume a homogeneous and isotropic cosmology with a scalar matter field ϕ . Two couple of conjugate variables:

$$\{b, v\} = 1, \qquad \{\phi, p_{\phi}\} = 1.$$

• Classical dynamics

The GR Hamiltonian constraint: $\mathcal{H}_{GR} = -vb^2 + \frac{p_{\phi}^2}{v} = 0$ The energy density: $\rho \equiv \frac{p_{\phi}^2}{v^2} = b^2$ The Hubble rate: $\left(\frac{\dot{a}}{a}\right)^2 \propto \left(\frac{\dot{v}}{v}\right)^2 = \rho \Longrightarrow \text{Singularity}$

Polymerized effective theory

The polymerized Hamiltonian constraint: $\mathcal{H} = -v \frac{\sin^2(\lambda b)}{\lambda^2} + \frac{p_{\phi}^2}{v} = 0$ The energy density: $\rho \equiv \frac{p_{\phi}^2}{v^2} = \frac{\sin^2(\lambda b)}{\lambda^2}$ The Hubble rate: $\left(\frac{\dot{a}}{a}\right)^2 \propto \left(\frac{\dot{v}}{v}\right)^2 = \rho \left(1 - \frac{\rho}{\rho_{\max}}\right) \Longrightarrow$ Bounce

Spherical vacuum in General Relativity

Two conjugate couples: $\{E^x(x_1), K_x(x_2)\} = \{E^{\varphi}(x_1), K_{\varphi}(x_2)\} = \delta(x_1, x_2).$

The total Hamiltonian $H_T = H[N] + D[N^x]$ is a sum of constraints,

$$\mathcal{H} = \frac{E^{\varphi}}{2\sqrt{E^x}}(1+K_{\varphi}^2) - 2\sqrt{E^x}K_xK_{\varphi} + \frac{(E^{x\prime})^2}{8\sqrt{E^x}E^{\varphi}} - \frac{\sqrt{E^x}}{2(E^{\varphi})^2}E^{x\prime}E^{\varphi\prime} + \frac{\sqrt{E^x}}{2E^{\varphi}}E^{x\prime\prime},$$
$$\mathcal{D} = -E^{x\prime}K_x + E^{\varphi}K_{\varphi}^{\prime}.$$

The hypersurface deformation algebra:

$$\begin{split} & \left\{ D[f_1], D[f_2] \right\} = D \left[f_1 f_2' - f_1' f_2 \right], \\ & \left\{ D[f_1], H[f_2] \right\} = H \left[f_1 f_2' \right], \\ & \left\{ H[f_1], H[f_2] \right\} = D \left[\frac{1}{q_{xx}} (f_1 f_2' - f_1' f_2) \right]. \end{split}$$

The metric:

$$ds^{2} = -N^{2}dt^{2} + q_{xx}(dx + N^{x}dt)^{2} + r^{2}d\Omega^{2},$$

with $q_{xx} = (E^{\varphi})^2 / E^x$ and $r = \sqrt{E^x}$.

Polymerized vacuum model with a closed algebra

"Carefully" polymerizing the Hamiltonian

$$\mathcal{H} = \frac{E^{\varphi}}{2\sqrt{E^x}} \left(1 + \frac{\sin^2(\lambda K_{\varphi})}{\lambda^2} \right) - \sqrt{E^x} K_x \frac{\sin(2\lambda K_{\varphi})}{\lambda} + \frac{(E^x)^2}{8\sqrt{E^x}E^{\varphi}} - \frac{\sqrt{E^x}}{2(E^{\varphi})^2} E^{x'}E^{\varphi'} + \frac{\sqrt{E^x}}{2E^{\varphi}}E^{x''},$$

one obtains the closed (anomaly-free) algebra,

$$\begin{aligned} & \left\{ D[f_1], D[f_2] \right\} = D \left[f_1 f_2' - f_1' f_2 \right], \\ & \left\{ D[f_1], H[f_2] \right\} = H \left[f_1 f_2' \right], \\ & \left\{ H[f_1], H[f_2] \right\} = D \left[F(f_1 f_2' - f_1' f_2) \right] \end{aligned}$$

with $F = E^x \cos(2\lambda K_{\varphi})/(E^{\varphi})^2$. However,

- 1/F does not have the correct transformation properties to be interpreted as q_{xx} .
- No known way to couple matter while keeping a closed algebra.

• In phase space, with Hamiltonian $H_T = H[N] + D[N^x]$, the first-class constraints

$$\begin{split} & \left\{ D[f_1], D[f_2] \right\} = D\left[f_1 f_2' - f_1' f_2 \right], \\ & \left\{ D[f_1], H[f_2] \right\} = H\left[f_1 f_2' \right], \\ & \left\{ H[f_1], H[f_2] \right\} = D\left[F(f_1 f_2' - f_1' f_2) \right] \end{split}$$

are generators of gauge transformations $\delta_{\epsilon} \Phi = \{\Phi, H[\epsilon] + D[\epsilon^x]\}.$

- Under a coordinate transformation in spacetime, the metric g_{ab} changes as $\mathcal{L}_{\xi}g_{ab}$, with $\xi^{\mu}\partial_{\mu} = \xi^{t}\partial_{t} + \xi^{x}\partial_{x}$.
- Both transformations must coincide if the gauge parameters are the components of ξ^{μ} in the normal-tangential basis: $\xi^{\mu} = \epsilon \partial_n + \epsilon^x \partial_x$.
- In summary, one can covariantly define the metric

$$ds^{2} = -N^{2}dt^{2} + q_{xx}(dx + N^{x}dt)^{2} + r^{2}d\Omega^{2},$$

with $q_{xx} := 1/F$, as long as $\delta_{\epsilon}(1/F) = \mathcal{L}_{\xi}q_{xx}$ and r is a scalar.

David Brizuela

Covariance in effective models of quantum black holes

,

Set up to construct a deformed covariant Hamiltonian

The classical Hamiltonian:

$$\mathcal{H}_{GR} = -\frac{E^{\varphi}}{2\sqrt{E^{x}}}(1+K_{\varphi}^{2}) - 2\sqrt{E^{x}}K_{x}K_{\varphi} + \frac{(E^{x'})^{2}}{8\sqrt{E^{x}}E^{\varphi}} - \frac{\sqrt{E^{x}}}{2(E^{\varphi})^{2}}E^{x'}E^{\varphi'} + \frac{\sqrt{E^{x}}}{2E^{\varphi}}E^{x''}$$

Ansatz: the most general Hamiltonian constraint quadratic in derivatives of E^x and E^{φ} :

$$\mathcal{H} = a_0 + a_{xx} (E^{x'})^2 + a_{\varphi\varphi} (E^{\varphi'})^2 + a_{x\varphi} E^{x'} E^{\varphi'} + a_1 E^{x''} + a_2 E^{\varphi''},$$

with all a_I and a_{ij} free functions of $(E^x, K_x, E^{\varphi}, K_{\varphi})$ Requirements:

- Anomaly freedom: \mathcal{H} forms a closed algebra with the diff constraint \mathcal{D} .
- Spacetime embeddability: $\delta_{\epsilon}(1/F) = \mathcal{L}_{\xi}q_{xx}$.
- The classical Hamiltonian \mathcal{H}_{GR} is recovered in a continuous limit.

Defomed covariant Hamiltonian constraint

The deformed covariant Hamiltonian constraint

$$\begin{aligned} \mathcal{H} &= -\mathfrak{g} \Bigg(\frac{E^{\varphi}}{2E^{x}} \Bigg(1 - E^{x} V + A \frac{\sin^{2} (\omega K_{\varphi})}{\omega^{2}} \Bigg) \\ &+ K_{x} \Bigg(A \frac{\sin (2\omega K_{\varphi})}{\omega} - \Bigg(\frac{E^{x'}}{2E^{\varphi}} \Bigg)^{2} \omega \sin \left(2(\omega K_{\varphi} + \phi) \right) \Bigg) \\ &+ E^{\varphi} \frac{\partial}{\partial E^{x}} \Bigg[A \frac{\sin^{2} (\omega K_{\varphi})}{\omega^{2}} - \Bigg(\frac{E^{x'}}{2E^{\varphi}} \Bigg)^{2} \cos^{2} (\omega K_{\varphi} + \phi) \Bigg] \\ &- \frac{1}{2} \Bigg(\frac{E^{x''}}{E^{\varphi}} - \frac{E^{x'} E^{\varphi'}}{E^{\varphi^{2}}} + \frac{(E^{x'})^{2}}{4E^{x} E^{\varphi}} \Bigg) \cos^{2} (\omega K_{\varphi} + \phi) \Bigg), \end{aligned}$$

with \mathfrak{g} , A, ω , ϕ , and V free functions of the scalar E^x only.

Vacuum GR corresponds to $\omega \to 0$, $\phi \to 0$, $V \to 0$, $A \to 1$, and $\mathfrak{g} \to \sqrt{E^x}$.

Defomed covariant Hamiltonian constraint: properties

- The complexity of the initial ansatz is radically reduced by the covariance requirement.
- Trigonometric functions have not been chosen by hand, rather a consequence of covariance.
- Using the equations of motion, one can show that the function $m := \sqrt{E^x} (1 + A \frac{\sin^2(\omega K_\varphi)}{\omega^2} \left(\frac{E^{x\prime}}{2E^\varphi}\right)^2 \cos^2(\omega K_\varphi + \phi)) \text{ is given on-shell by}$ $m \approx M + \int V(E^x) dE^x.$
- In particular, m is a constant of motion if V = 0.
- The potential V can reproduce a cosmological-constant and charge.
- The associated metric of the deformed theory is given by,

$$ds^{2} = -N^{2}dt^{2} + \frac{1}{F}(dx + N^{x}dt)^{2} + r^{2}d\Omega^{2},$$

with
$$F = \frac{\mathfrak{g}^2}{E^{\varphi}} \left(A \cos^2(\phi) + \omega^2 \left(1 - \frac{2m}{\sqrt{|E^x|}} \right) \right)$$
 and $r = r(E^x)$.

David Brizuela

Covariance in effective models of quantum black holes

Defomed Hamiltonian constraint: spacetime structure

- There exists a Killing vector field $\xi = \xi_{\mu} dx^{\mu}$, with $\mu = 0, 1$.
- ξ_{μ} is everywhere orthogonal to $\nabla_{\mu}r$, that is, $\xi^{\mu}\nabla_{u}r = 0$
- $G := \xi^{\mu}\xi_{\mu}, H := \nabla_{\mu}r\nabla^{\mu}r$. Wherever $\nabla_{\mu}r \neq 0$, then $\operatorname{sign}(G) = -\operatorname{sign}(H)$ as long as . Four different regions of the spacetime:
 - G < 0 and H > 0: static nontrapped regions with $\nabla_{\mu} r$ spacelike and ξ_{μ} timelike.
 - G>0 and H<0: trapped homogeneous regions with $\nabla_{\mu}r$ timelike and ξ_{μ} spacelike.
 - G = 0 and H = 0 (with $\nabla_{\mu} r \neq 0$): Killing horizons, which separate trapped and nontrapped regions, where both $\nabla_{\mu} r$ and ξ_{μ} are lightlike.
 - $\nabla_{\mu}r = 0$. critical points. (For $\phi = 0$, $\nabla_{\mu}r = 0 \iff F = 0$).

Other specific properties of the spacetime under consideration depend on the chosen free functions.

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ● ● ●

Particular case

• Let us consider a constant value for $\omega = \lambda$ and the GR values for $\phi = 0$, A = 1, and $\mathfrak{g} = \sqrt{E^x}$.

$$\mathcal{H} = -\frac{E^{\varphi}}{2\sqrt{E^{x}}} \left(1 + \frac{\sin^{2}\left(\lambda K_{\varphi}\right)}{\lambda^{2}} \right) - \sqrt{E^{x}} K_{x} \frac{\sin\left(2\lambda K_{\varphi}\right)}{\lambda} \left(1 + \left(\frac{\lambda E^{x'}}{2E^{\varphi}}\right)^{2} \right) + \frac{\cos^{2}\left(\lambda K_{\varphi}\right)}{2} \left(\frac{E^{x'}}{2E^{\varphi}} \left(\sqrt{E^{x}}\right)' + \sqrt{E^{x}} \left(\frac{E^{x'}}{E^{\varphi}}\right)' \right) + \frac{1}{2} \sqrt{E^{x}} E^{\varphi} V(E^{x})$$

- The potential $V(E^x)$ will be chosen below to describe Λ and Q.
- This Hamiltonian can be obtained from a canonical transformation plus a linear combination of the GR constraints:

$$E_{(GR)}^x = E^x$$
, $K_x^{(GR)} = K_x$, $E_{(GR)}^{\varphi} = \frac{E^{\varphi}}{\cos(\lambda K_{\varphi})}$, $K_{\varphi}^{(GR)} = \frac{\sin(\lambda K_{\varphi})}{\lambda}$

$$\left(\mathcal{H}_{GR} + \lambda \sin(\lambda K_{\varphi}) \frac{\sqrt{E^{x} E^{x'}}}{2E^{\varphi^{2}}} \mathcal{D}\right) \cos(\lambda K_{\varphi}) = \mathcal{H}$$

• This motivates the choice $V(E^x) = \left(\Lambda + \left(rac{Q}{E^x}
ight)^2
ight)$ and $r = \sqrt{E^x}$.

David Brizuela

Covariance in effective models of quantum black holes

Particular case: the structure and the mass functions

• The structure function in $\{H[f_1], H[f_2]\} = D[F(f_1f'_2 - f'_1f_2)]$ reads

$$F = \frac{\cos^2(\lambda K_{\varphi})}{1+\lambda^2} \left(1 + \left(\frac{\lambda E^{x'}}{2E^{\varphi}}\right)^2\right) \frac{E^x}{(E^{\varphi})^2} \ge 0$$

• In terms of the mass function $m(r) = M - \frac{Q^2}{2r} + \frac{\Lambda}{6}r^3$,

$$F = \left(1 - \frac{2\lambda m(r)}{r}\right) \frac{r^2}{(E^{\varphi})^2} \ge 0 \Longrightarrow 2\lambda m(r) \le r,$$

with $\lambda:=\frac{\lambda^2}{1+\lambda^2}\in[0,1]$.

- For vacuum (with Q = 0 = Λ), m = M constant and r₀ := 2λM ≤ r is a minimum for r. If M > 0 this will lead to the singularity resolution.
- For nonvacuum 2λm ≤ r applies, but the possible ranges of definition of r depends on the specific values of the parameters (M, Q, Λ).

Particular case: metric and curvature

• By solving the equations of motion

$$\dot{E}^x = \{E^x, \mathcal{H}\}, \quad \dot{K}_x = \{K_x, \mathcal{H}\}, \quad \dot{E}^\varphi = \{E^\varphi, \mathcal{H}\}, \quad \dot{K}_\varphi = \{K_\varphi, \mathcal{H}\}$$

in certain gauge, we obtain the metric in diagonal form

$$ds^{2} = -\left(1 - \frac{2m(r)}{r}\right)dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1}dx^{2} + r^{2}d\Omega^{2},$$

valid for $r \neq 2m(r) = and$ with r = r(x) defined by

$$\left(\frac{dr(x)}{dx}\right)^2 = 1 - \frac{2\lambda m(r(x))}{r(x)}$$

- Here appears again the condition $2\lambda m(r) \leq r$.
- The norm of the Killing $\xi^{\mu}\xi_{\mu} = (1 2m(r)/r) \Longrightarrow$ same horizon structure as the corresponding GR solution.

• Another gauge choice leads to

$$ds^{2} = -\left(1 - \frac{2m(r(z))}{r(z)}\right)d\tau^{2} + 2\sqrt{\frac{2m(r(z))}{r(z)}}d\tau dz + dz^{2} + r(z)^{2}d\Omega^{2},$$

where (t, x) have been renamed as (τ, z) .

- (τ, z) are horizon-crossing coordinates and their domain of definition is named \mathcal{U} (covering domain).
- $\tau \in (-\infty, \infty)$ and z restricted by $m(r(z)) \ge 0$.
- By transforming to null coordinates in different regions, and extending then the domains, one can construct the conformal diagram and obtain the maximal analytic extension of the spacetime \mathcal{M} .

arXiv:2205.02098[gr-qc]

Conformal diagram for vacuum $(Q = 0 = \Lambda)$ with M > 0

- Same horizon as in GR: $r = r_H \equiv 2M.$
- The critical surface

 $r = r_0 \equiv 2\lambda M$ replaces the classical singularity and separates a trapped and antitrapped region.

- A perfectly regular and geodesically-complete spacetime.
- However, for M < 0 the singularity is not resolved and the conformal diagram coincides with the classical one.

- There are a lot of possible different cases depending on the specific values of $M,~Q,~\Lambda,$
- Not all the singularities are resolved.
- The Ricci scalar diverges at r = 0 (except for $M = Q = \Lambda = 0$) and at $r \to \infty$ (for $\Lambda \neq 0$):

$$\mathcal{R} = 4\Lambda \left(1 + \frac{\lambda}{2}\right) + 2\lambda \left(\frac{3M^2}{r^4} + \frac{Q^2}{r^4} \left(1 - \frac{4M}{r} + \frac{Q^2}{r^2}\right) - \Lambda \left(\frac{4M}{r} + \Lambda r^2\right) + \frac{4\Lambda Q^2}{3r^2}\right)$$

Nonvacuum cases $(Q \neq 0 \text{ or } \Lambda \neq 0)$

- The range for r is defined by $r \ge 2\lambda m = 2\lambda \left(M \frac{Q^2}{2r} + \frac{\Lambda}{6}r^3\right)$.
- The saturation of the above condition $r_{\rm crit} = 2\lambda \left(M \frac{Q^2}{2r_{\rm crit}} + \frac{\Lambda}{6}r_{\rm crit}^3\right)$ is equivalent to a fourth-order polynomial equation and it defines at most three possible positive critical values $r_{\rm crit} = R, r_0, r_{\infty}$.
- The location of the horizons is defined by $G \equiv \xi^{\mu}\xi_{\mu} = 0 \iff r = 2m$. There are at most three: $r_{hor} = r_I, r_H, r_C$.
- Schematically:

$$\chi \neq 0 \quad \underbrace{ \begin{array}{c} 0 \\ \hline \end{array}_{\substack{G > 0 \\ \hline \end{array}} \begin{array}{c} \text{Static} \\ \hline \end{array}_{\substack{G > 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \hline \end{array}_{\substack{G < 0 \\ \hline \end{array}} \begin{array}{c} \text{Hom.} \\ \end{array} \end{array}$$

We have classified all the possible singularity-free solutions of the theory:

- There exists a minimum value of $r = r_0$, so that r = 0 is not contained in the domain.
- If $\Lambda \neq 0$, there exists a maximum value of $r = r_{\infty}$, so that $r \to \infty$ is not contained in the domain.
- In a nutshell, the spacetime to be singularity-free it must have
 - $M \ge 0$,
 - $\Lambda \geq 0$, and
 - Q is bounded.

arXiv:2302.10619 [gr-qc]

More specifically, one gets the singularity-free

- Reissner-Nordström-de Sitter $C_1 := \{\Lambda > 0, Q \neq 0, M > 0, 8Q^2 < 9\lambda M^2, \text{ and } \Lambda \in (\Lambda)\}$
 - $C_1:=\Big\{\Lambda>0,\;Q\neq0,\;M>0,\;8Q^2<9\lambda M^2\text{, and }\Lambda\in(\Lambda_-,\Lambda_+)\cap(0,\Lambda_+)\Big\},$
- Schwarzschild-de Sitter, $C_{1} := \{ \Lambda > 0, O = 0 \text{ and } \Lambda \}$
 - $C_2 := \left\{ \Lambda > 0, \ Q = 0, \text{ and } \Lambda \in \left(0, \frac{1}{9\chi^3 M^2}\right) \right\},$
- Reissner-Nordström,

$$C_3 := \left\{ \Lambda = 0 \text{ and } |Q| < \sqrt{\lambda}M
ight\},$$

with
$$\Lambda_{\pm} := \frac{3}{32\lambda^4 Q^6} \left[36\lambda^3 M^2 Q^2 - 27\lambda^4 M^4 - 8\lambda^2 Q^4 \pm \sqrt{\lambda^5 M^2 \left(9\lambda M^2 - 8Q^2\right)^3} \right]$$

There are also the *degenerate* cases D_1 and D_3 .

General properties of the conformal diagrams:

- Critical points r_0 and r_∞ always appear in homogeneous regions.
- Cases with Q = 0 and $Q \neq 0$ have the same conformal diagram. In particular no Cauchy horizon.
- r_0 replaces the classical singularity at r=0 and, if exist, r_∞ replaces the $r\to\infty$ surface.
- $r = r_0$ is a spacelike (reachable) surfaces in "regular" cases C_1 , C_2 , and C_3 ; while it defines \mathcal{J}^{\pm} in the degenerate cases D_1 and D_3 .
- Cases C_1 , C_2 , and D_1 are subdivided in
 - Black-hole solution (if they present 2 horizons).
 - Extremal solution (if they present 1 degenerate horizon).
 - Cosmological solution (if they present no horizons).

Conformal diagram for the black holes C_1 and C_2 $(\Lambda > 0)$

Covariance in effective models of quantum black holes

Conformal diagram for extremal C_1 and C_2 $(\Lambda > 0)$

Covariance in effective models of quantum black holes

Conformal diagram for the cosmology C_1 and C_2 $(\Lambda > 0)$

Covariance in effective models of quantum black holes

(日)

Conformal diagram for the black hole D_1 $(\Lambda > 0)$

Covariance in effective models of quantum black holes

Conformal diagram for the extremal D_1 ($\Lambda > 0$)

David Brizuela

Covariance in effective models of quantum black holes

Conformal diagram for the cosmology D_1 ($\Lambda > 0$)

Covariance in effective models of quantum black holes

Conformal diagram for the cosmology $C_3~(\Lambda=0)$

David Brizuela

Covariance in effective models of quantum black holes

Conformal diagram for the cosmology $D_3~(\Lambda=0)$

David Brizuela

Covariance in effective models of quantum black holes

• The most general Hamiltonian constraint under the restrictions

- Same derivative structure as GR.
- Anomaly-free algebra.
- Spacetime embedability.
- Contains GR as a continuous limit.
- Analyzed in detail a ("minimally deformed") particular case.
 - Singularity resolution is not generic.
 - Singularity-free spacetimes
 - $M \ge 0$, $\Lambda \ge 0$, and bounded Q.
 - $r = r_0$ replaces the classical singularity at r = 0.
 - If $\Lambda \neq 0, \ r=r_\infty$ replaces the $r \rightarrow \infty.$