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Introduction

Motivation

Loop quantum gravity is formulated in terms of triads and connections.

The operator associated to the connection Aja is not well de�ned, one

quantizes the holonomies (exp[i(
∫
σj γ̇

aAja)]).

E�ective theories are supposed to encode the main quantum e�ects.

Polymerization: A→ sin(λA)

λ

Singularity resolution in homogeneous models.

Objetives

Construct an e�ective theory of a spherical quantum black hole in the

context of loop quantum gravity.

Modify the General-Relativity (GR) Hamiltonian constraint, so that the

deformed Hamiltonian covariantly de�nes a spacetime metric.

Analyze the singularity resolution for black holes with Q and Λ.
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Polymerization of homogeneous cosmological models

Let us assume a homogeneous and isotropic cosmology with a scalar matter

�eld φ. Two couple of conjugate variables:

{b, v} = 1, {φ, pφ} = 1.

Classical dynamics

The GR Hamiltonian constraint: HGR = −vb2 +
p2φ

v
= 0

The energy density: ρ ≡
p2φ

v2 = b2

The Hubble rate:
(
ȧ
a

)2 ∝ ( v̇
v

)2
= ρ =⇒ Singularity

Polymerized e�ective theory

The polymerized Hamiltonian constraint: H = −v sin2(λb)

λ2 +
p2φ

v
= 0

The energy density: ρ ≡
p2φ

v2 = sin2(λb)

λ2

The Hubble rate:
(
ȧ
a

)2 ∝ ( v̇
v

)2
= ρ

(
1− ρ

ρmax

)
=⇒ Bounce
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Spherical vacuum in General Relativity

Two conjugate couples: {Ex(x1),Kx(x2)} = {Eϕ(x1),Kϕ(x2)} = δ(x1, x2).

The total Hamiltonian HT = H[N ] +D[Nx] is a sum of constraints,

H =
Eϕ

2
√
Ex

(1 +K2
ϕ)−2

√
ExKxKϕ +

(Ex′)2

8
√
ExEϕ

−
√
Ex

2(Eϕ)2
Ex′Eϕ′ +

√
Ex

2Eϕ
Ex′′,

D = −Ex′Kx + EϕK′ϕ.

The hypersurface deformation algebra:{
D[f1], D[f2]

}
= D

[
f1f
′
2 − f ′1f2

]
,{

D[f1], H[f2]
}

= H
[
f1f
′
2

]
,{

H[f1], H[f2]
}

= D

[
1

qxx
(f1f

′
2 − f ′1f2)

]
.

The metric:
ds2 = −N2dt2 + qxx(dx+Nxdt)2 + r2dΩ2,

with qxx = (Eϕ)2/Ex and r =
√
Ex.
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Polymerized vacuum model with a closed algebra

�Carefully� polymerizing the Hamiltonian

H =
Eϕ

2
√
Ex

(
1 +

sin2(λKϕ)

λ2

)
−
√
ExKx

sin(2λKϕ)

λ
+

(Ex′)2

8
√
ExEϕ

−
√
Ex

2(Eϕ)2
Ex′Eϕ′ +

√
Ex

2Eϕ
Ex′′,

one obtains the closed (anomaly-free) algebra,{
D[f1], D[f2]

}
= D

[
f1f
′
2 − f ′1f2

]
,{

D[f1], H[f2]
}

= H
[
f1f
′
2

]
,{

H[f1], H[f2]
}

= D
[
F (f1f

′
2 − f ′1f2)

]
,

withF = Ex cos(2λKϕ)/(Eϕ)2.However,

1/F does not have the correct transformation properties to be

interpreted as qxx.

No known way to couple matter while keeping a closed algebra.
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Covariance

In phase space, with Hamiltonian HT = H[N ] +D[Nx], the �rst-class

constraints {
D[f1], D[f2]

}
= D

[
f1f

′
2 − f ′1f2

]
,{

D[f1], H[f2]
}

= H
[
f1f

′
2

]
,{

H[f1], H[f2]
}

= D [F (f1f
′
2 − f ′1f2)] ,

are generators of gauge transformations δεΦ = {Φ, H[ε] +D[εx]}.
Under a coordinate transformation in spacetime, the metric gab changes

as Lξgab, with ξµ∂µ = ξt∂t + ξx∂x.

Both transformations must coincide if the gauge parameters are the

components of ξµ in the normal-tangential basis: ξµ = ε∂n + εx∂x.

In summary, one can covariantly de�ne the metric

ds2 = −N2dt2 + qxx(dx+Nxdt)2 + r2dΩ2,

with qxx := 1/F , as long as δε(1/F ) = Lξqxx and r is a scalar.
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Set up to construct a deformed covariant Hamiltonian

The classical Hamiltonian:

HGR = − Eϕ

2
√
Ex

(1 +K2
ϕ)−2

√
ExKxKϕ +

(Ex′)2

8
√
ExEϕ

−
√
Ex

2(Eϕ)2
Ex′Eϕ′ +

√
Ex

2Eϕ
Ex′′

Ansatz: the most general Hamiltonian constraint quadratic in derivatives of

Ex and Eϕ:

H = a0 + axx(E
x′)2 + aϕϕ(Eϕ′)2 + axϕE

x′Eϕ′ + a1E
x′′ + a2E

ϕ′′,

with all aI and aij free functions of (Ex,Kx, E
ϕ,Kϕ)

Requirements:

Anomaly freedom: H forms a closed algebra with the di� constraint D.
Spacetime embeddability: δε(1/F ) = Lξqxx.
The classical Hamiltonian HGR is recovered in a continuous limit.

David Brizuela Covariance in e�ectivemodels of quantumblack holes



Defomed covariant Hamiltonian constraint

The deformed covariant Hamiltonian constraint

H = −g

(
Eϕ

2Ex

(
1− Ex V +A

sin2
(
ωKϕ

)
ω2

)
+Kx

(
A

sin
(
2ωKϕ

)
ω

−
(
Ex′

2Eϕ

)2

ω sin
(
2(ωKϕ + φ)

))
+ Eϕ ∂

∂Ex

[
A

sin2
(
ωKϕ

)
ω2

−
(
Ex′

2Eϕ

)2

cos2
(
ωKϕ + φ

)]

− 1

2

(
Ex′′

Eϕ
− Ex′Eϕ′

Eϕ2 +
(Ex′)2

4ExEϕ

)
cos2

(
ωKϕ + φ

))
,

with g, A, ω, φ, and V free functions of the scalar Ex only.

Vacuum GR corresponds to ω → 0, φ→ 0, V → 0, A→ 1, and g→
√
Ex.
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Defomed covariant Hamiltonian constraint: properties

The complexity of the initial ansatz is radically reduced by the

covariance requirement.

Trigonometric functions have not been chosen by hand, rather a

consequence of covariance.

Using the equations of motion, one can show that the function

m :=
√
Ex(1 +A

sin2(ωKϕ)

ω2 −
(
Ex′
2Eϕ

)2

cos2(ωKϕ + φ)) is given on-shell by

m ≈M +

∫
V (Ex)dEx.

In particular, m is a constant of motion if V = 0.

The potential V can reproduce a cosmological-constant and charge.

The associated metric of the deformed theory is given by,

ds2 = −N2dt2 +
1

F
(dx+Nxdt)2 + r2dΩ2,

with F = g2

Eϕ

(
A cos2(φ) + ω2

(
1− 2m√

|Ex|

))
and r = r(Ex).
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Defomed Hamiltonian constraint: spacetime structure

There exists a Killing vector �eld ξ = ξµdx
µ, with µ = 0, 1.

ξµ is everywhere orthogonal to ∇µr, that is, ξµ∇ur = 0

G := ξµξµ, H := ∇µr∇µr. Wherever ∇µr 6= 0, then sign(G) = −sign(H)

as long as .
Four di�erent regions of the spacetime:

G < 0 and H > 0: static nontrapped regions with ∇µr spacelike and ξµ
timelike.
G > 0 and H < 0: trapped homogeneous regions with ∇µr timelike and
ξµ spacelike.
G = 0 and H = 0 (with ∇µr 6= 0): Killing horizons, which separate
trapped and nontrapped regions, where both ∇µr and ξµ are lightlike.
∇µr = 0: critical points. (For φ = 0, ∇µr = 0 ⇐⇒ F = 0).

Other speci�c properties of the spacetime under consideration depend on the

chosen free functions.
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Particular case

Let us consider a constant value for ω = λ and the GR values for φ = 0,

A = 1, and g =
√
Ex.

H = − Eϕ

2
√
Ex

(
1 +

sin2 (λKϕ)

λ2

)
−
√
ExKx

sin (2λKϕ)

λ

(
1 +

(
λEx′

2Eϕ

)2
)

+
cos2 (λKϕ)

2

(
Ex′

2Eϕ

(√
Ex

)′
+
√
Ex

(
Ex′

Eϕ

)′)
+

1

2

√
ExEϕV (Ex)

The potential V (Ex) will be chosen below to describe Λ and Q.

This Hamiltonian can be obtained from a canonical transformation plus

a linear combination of the GR constraints:

Ex
(GR) = Ex , K(GR)

x = Kx , Eϕ
(GR) =

Eϕ

cos(λKϕ)
, K(GR)

ϕ =
sin(λKϕ)

λ
.

(
HGR + λ sin(λKϕ)

√
ExEx′

2Eϕ2 D

)
cos(λKϕ) = H

This motivates the choice V (Ex) =
(

Λ +
(
Q

Ex

)2)
and r =

√
Ex.
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Particular case: the structure and the mass functions

The structure function in {H[f1], H[f2]} = D[F (f1f
′
2 − f ′1f2)] reads

F =
cos2(λKϕ)

1 + λ2

(
1 +

(λEx′

2Eϕ

)2
)

Ex

(Eϕ)2
≥ 0

In terms of the mass function m(r) = M − Q2

2r
+ Λ

6
r3,

F =

(
1− 2λ−m(r)

r

)
r2

(Eϕ)2
≥ 0 =⇒ 2λ−m(r) ≤ r,

with λ− := λ2

1+λ2 ∈ [0, 1].

For vacuum (with Q = 0 = Λ), m = M constant and r0 := 2λ−M ≤ r is a
minimum for r. If M > 0 this will lead to the singularity resolution.

For nonvacuum 2λ−m ≤ r applies, but the possible ranges of de�nition of

r depends on the speci�c values of the parameters (M,Q,Λ).
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Particular case: metric and curvature

By solving the equations of motion

Ėx = {Ex,H}, K̇x = {Kx,H}, Ėϕ = {Eϕ,H}, K̇ϕ = {Kϕ,H}

in certain gauge, we obtain the metric in diagonal form

ds2 = −
(

1− 2m(r)

r

)
dt2 +

(
1− 2m(r)

r

)−1

dx2 + r2dΩ2,

valid for r 6= 2m(r) = and with r = r(x) de�ned by(
dr(x)

dx

)2

= 1− 2λ−m(r(x))

r(x)

Here appears again the condition 2λ−m(r) ≤ r.
The norm of the Killing ξµξµ = (1− 2m(r)/r) =⇒ same horizon structure

as the corresponding GR solution.
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Particular case: covering domain U

Another gauge choice leads to

ds2 = −
(

1−
2m
(
r(z)

)
r(z)

)
dτ 2 + 2

√
2m
(
r(z)

)
r(z)

dτdz + dz2 + r(z)2dΩ2,

where (t, x) have been renamed as (τ, z).

(τ, z) are horizon-crossing coordinates and their domain of de�nition is

named U (covering domain).

τ ∈ (−∞,∞) and z restricted by m(r(z)) ≥ 0.

By transforming to null coordinates in di�erent regions, and extending

then the domains, one can construct the conformal diagram and obtain

the maximal analytic extension of the spacetime M.

arXiv:2205.02098[gr-qc]
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Conformal diagram for vacuum (Q = 0 = Λ) with M > 0

Same horizon as in GR:

r = rH ≡ 2M .

The critical surface

r = r0 ≡ 2λ−M replaces the

classical singularity and

separates a trapped and

antitrapped region.

A perfectly regular and

geodesically-complete

spacetime.

However, for M < 0 the

singularity is not resolved

and the conformal diagram

coincides with the classical

one.
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Nonvacuum cases (Q 6= 0 or Λ 6= 0)

There are a lot of possible di�erent cases depending on the speci�c

values of M , Q, Λ,

Not all the singularities are resolved.

The Ricci scalar diverges at r = 0 (except for M = Q = Λ = 0) and at

r →∞ (for Λ 6= 0):

R = 4Λ

(
1 +

λ−

2

)
+ 2λ−

(
3M2

r4
+
Q2

r4

(
1− 4M

r
+
Q2

r2

)
− Λ

(
4M

r
+ Λr2

)
+

4ΛQ2

3r2

)
,
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Nonvacuum cases (Q 6= 0 or Λ 6= 0)

The range for r is de�ned by r ≥ 2λ−m = 2λ−
(
M − Q2

2r
+ Λ

6
r3
)
.

The saturation of the above condition rcrit = 2λ−
(
M − Q2

2rcrit
+ Λ

6
r3

crit

)
is

equivalent to a fourth-order polynomial equation and it de�nes at most

three possible positive critical values rcrit = R, r0, r∞.

The location of the horizons is de�ned by G ≡ ξµξµ = 0⇐⇒ r = 2m.

There are at most three: rhor = rI , rH , rC .

Schematically:
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Nonvacuum cases (Q 6= 0 or Λ 6= 0)

We have classi�ed all the possible singularity-free solutions of the theory:

There exists a minimum value of r = r0, so that r = 0 is not contained in

the domain.

If Λ 6= 0, there exists a maximum value of r = r∞, so that r →∞ is not

contained in the domain.

In a nutshell, the spacetime to be singularity-free it must have

M ≥ 0,

Λ ≥ 0, and

Q is bounded.

arXiv:2302.10619 [gr-qc]
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Nonvacuum cases (Q 6= 0 or Λ 6= 0)

More speci�cally, one gets the singularity-free

Reissner-Nordström-de Sitter

C1 :=
{

Λ > 0, Q 6= 0, M > 0, 8Q2 < 9λ−M2, and Λ ∈ (Λ−,Λ+) ∩ (0,Λ+)
}
,

Schwarzschild-de Sitter,

C2 :=
{

Λ > 0, Q = 0, and Λ ∈
(

0, 1

9λ−3M2

)}
,

Reissner-Nordström,

C3 :=
{

Λ = 0 and |Q| <
√
λ−M

}
,

with Λ± := 3

32λ−4Q6

[
36λ−3M2Q2 − 27λ−4M4 − 8λ−2Q4 ±

√
λ−5M2

(
9λ−M2 − 8Q2

)3]
.

There are also the degenerate cases D1 and D3.
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Nonvacuum cases (Q 6= 0 or Λ 6= 0)

General properties of the conformal diagrams:

Critical points r0 and r∞ always appear in homogeneous regions.

Cases with Q = 0 and Q 6= 0 have the same conformal diagram. In

particular no Cauchy horizon.

r0 replaces the classical singularity at r = 0 and, if exist, r∞ replaces the

r →∞ surface.

r = r0 is a spacelike (reachable) surfaces in �regular� cases C1, C2, and

C3; while it de�nes J ± in the degenerate cases D1 and D3.

Cases C1, C2, and D1 are subdivided in

Black-hole solution (if they present 2 horizons).
Extremal solution (if they present 1 degenerate horizon).
Cosmological solution (if they present no horizons).
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Conformal diagram for the black holes C1 and C2 (Λ > 0)
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Conformal diagram for extremal C1 and C2 (Λ > 0)
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Conformal diagram for the cosmology C1 and C2 (Λ > 0)
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Conformal diagram for the black hole D1 (Λ > 0)
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Conformal diagram for the extremal D1 (Λ > 0)
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Conformal diagram for the cosmology D1 (Λ > 0)
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Conformal diagram for the cosmology C3 (Λ = 0)
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Conformal diagram for the cosmology D3 (Λ = 0)
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Conclusions

The most general Hamiltonian constraint under the restrictions

Same derivative structure as GR.
Anomaly-free algebra.
Spacetime embedability.
Contains GR as a continuous limit.

Analyzed in detail a (�minimally deformed�) particular case.

Singularity resolution is not generic.
Singularity-free spacetimes

M ≥ 0, Λ ≥ 0, and bounded Q.

r = r0 replaces the classical singularity at r = 0.
If Λ 6= 0, r = r∞ replaces the r →∞.
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