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Unitarity and general covariance

Unitarity of time evolution is a basic principle of quantum mechanics, closely
tied in with the probability interpretation of the theory.

When we think of quantum gravity, would like unitarity to emerge somewhere.

But for which type of “time evolution”? t is just a label, but relational
clocks (such as matter fields) are physical. Should time evolution with respect to
a well-behaved (“physically reasonable”) matter clock be unitary?

Clash with general covariance of classical relativity. In relativity, can always
find clocks with unusual properties; unitarity with respect to these can lead to
strange “predictions”. Some higher principle seems needed, not clear what it is.

By choosing the right clock, it seems we can always resolve singularities.
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A simple model
Consider a homogeneous, isotropic, spatially flat universe with metric

ds2 = −N(τ)2dτ2 + a(τ)2hijdx
idxj

where h is a flat metric, a(τ) is the scale factor and N(τ) is the lapse function.

Matter: a free massless scalar ϕ(τ) and perfect fluid with energy density ρ(τ)
and equation of state parameter w < 1.

Hamiltonian can be written in the form

H = Ñ
[
− π2

v +
π2
φ

v2
+ λ

]
, {v, πv} = {φ, πφ} = {t, λ} = 1

where v ∝ a
3(1−w)

2 , Ñ = Na−3w, λ is conserved momentum ∝ ρ a3(w+1).
Gauge Ñ = 1 leads to simplest dynamics, dt/dτ = 1. In this gauge t becomes
“time”. Unimodular time for w = −1, conformal time for w = 1

3, . . .
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Unimodular gravity relation

For w = −1, this preferred standard of time is the one coming from the
Henneaux–Teitelboim version of unimodular gravity

S[g,Λ, T ] =

∫
d4x

[√
−g

(
R

2
− Λ

)
+ Λ ∂µT

µ

]
.

This action gives the Einstein equations with “dynamical” Λ plus

√
−g = ∂µT

µ , ∂µΛ = 0 .

“Preferred” global notion of time: four-volume between two boundary
hypersurfaces is ∫

M

d4x
√
−g =

∫
∂M

d3x T 0 .
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Solutions in t time

Classically, the variables t and φ evolve monotonically (if we exclude πφ = 0) so
are always good relational clocks.
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Classical solutions v(t) and φ(t) as functions of the clock t, with πφ = 1 and
λ = 1 (solid), λ = −1 (dashed) and λ = 0 (dotted).

All solutions have a (Big Bang/Big Crunch) singularity with v → 0 and φ→ ∞.
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Solutions in φ time
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Parameters: πφ = 1, λ = 1 (solid), λ = −1 (dashed) and λ = 0 (dotted).

When φ is used as a clock, the Big Bang/Big Crunch singularity is pushed
to φ→ ±∞. For λ > 0 there is a finite value of φ where v and t diverge.

The explicit form of cosmological solutions highly depends on the clock.
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Singularity resolution and recollapse
Quantising these theories in the standard Wheeler–DeWitt fashion and requiring
unitarity with respect to t or φ gives reflecting boundary conditions, leading to
either singularity resolution or recollapse of the Universe:

Colours represent different values of the standard deviation in Gaussian states.
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The role of unitarity

Classical solutions, when expressed in terms of one of the “natural” clock
variables, can terminate at a finite time as measured by the clock.

In t time this reflects the Big Bang/Big Crunch singularity of classical GR.

In φ time and with λ > 0 it reflects the fact that φ → φ0 as the Universe
expands and φ becomes an “infinitely slow” clock asymptotically.

Classically, clocks are not defined beyond the point where the solution terminates.
But what happens quantum mechanically? If we require quantum theory to be
unitary any state must have a globally well-defined time evolutuion.
⇒ Evolution must extend beyond points where classical solution terminates!

Conjecture [Gotay & Demaret 1983]: unitary slow-time quantum dynamics is always
nonsingular, while unitary fast-time quantum dynamics inevitably leads to collapse.
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Perspective of group averaging/Dirac quantisation

Choosing a particular clock with respect to which unitarity is required might
seem ad hoc. Results can be seen from the more systematic perspective of group
averaging/Dirac quantisation, where one defines a physical inner product through

|ψph⟩ = δ(Ĉ)|ψ⟩ ⇒ ⟨ϕph|ψph⟩ := ⟨ϕ|δ(Ĉ)|ψ⟩

where C is our Hamiltonian constraint. Usually Ĉ is required to be self-adjoint
with respect to a particular kinematical inner product.

However, Ĉ can be multiplied from the left by a nontrivial lapse function
(again corresponding to a particular choice of clock or time coordinate). Different
constraint operators will require different types of self-adjoint extension.

Path integral similarly requires different boundary conditions for unitary theory
[Menéndez-Pidal’s talk].
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Extension to black holes
Mostly studied simple cosmological models so far, but arguments more general.
In particular, unimodular formulation of gravity always comes with a preferred
clock with respect to which we might require unitarity.
Interior Schwarzschild–de Sitter spacetime

ds2 = − dr2

Λr2 + 2M
r − 1

+

(
Λr2 +

2M

r
− 1

)
dt2 + r2 dΩ2

can be rewritten in unimodular time as

ds2 = − dT 2

9(ΛT 2 + 2MT − T 4/3)
+

(
ΛT 2/3 +

2M

T 1/3
− 1

)
dt2 + T 2/3 dΩ2

3-volume goes as
√
T for small T ; singularity encountered in finite time. Requiring

unitarity will resolve this singularity.
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Summary

• Quantum theories defined with respect to different clocks inequivalent if we
require unitarity. Non-classical behaviour triggered when classical solutions
terminate in finite “time”, leading to reflecting boundary conditions.

• Non-classical behaviour can be triggered at arbitarily low energies, when
semiclassical arguments should be valid.

• Should we see one choice of clock as more fundamental and only demand
unitarity for that clock? (e.g., the clock measuring proper time N = 1)

• Implications for claims of singularity resolution or other quantum corrections
to classical cosmology?

Steffen Gielen, University of Sheffield 10/10



Thank you!


