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Horizon entropy as a probe of QG

* Bekenstein-Hawking entropy provides a low-energy window into
guantum gravity

A = horizon area

Ac’
4hG

S =kp

* BH entropy is a universal formula: applies not only to black hole
horizon, but also to cosmological and acceleration horizons.



“Entropy = area” for any volume of space

* |t is expected that gravitational entropy is not only associated to
the area of black hole or de Sitter horizon, but to
the area of any boundary separating a region of space.

Banks-Fischler, Bousso, Bianchi-Myers, Jacobson-Parentani, ...

How to justify this?



Gibbons-Hawking partition function

* Gibbons and Hawking (1977) derived the entropy of black hole
and de Sitter horizons from a Euclidean saddle approximation
of the gravitational partition function.

Can the entropy of a volume of space be derived

from a saddle approximation to a partition function?

See also Banks-Draper-Farkas ’20
and our recent statistical interpretation (Jacobson-MV ’22)
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Gibbons-Hawking partition function

* Gibbons and Hawking (1977) derived the entropy of black hole
and de Sitter horizons from a Euclidean saddle approximation
of the gravitational partition function.

Can the entropy of a volume of space be derived

from a saddle approximation to a partition function?

Yes! Using the method of constrained instantons

5



Gibbons-Hawking partition function
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One can evaluate the action for a gravitational field on a section of the complexified spacetime which avoids
the singularities. In this manner we obtain finite, purely imaginary values for the actions of the Kerr-Newman
solutions and de Sitter space. One interpretation of these values is that they give the probabilities for finding
such metrics in the vacuum state. Another interpretation is that they give the contribution of that metric to
the partition function for a grand canonical ensemble at a certain temperature, angular momentum, and
charge. We use this approach to evaluate the entropy of these metrics and find that it is always equal to one
quarter the area of the event horizon in fundamental units. This agrees with previous derivations by
completely different methods. In the case of a stationary system such as a star with no event horizon, the
gravitational field has no entropy.

GH represented the canonical partition function in gravity as a
Euclidean path integral over metrics



Entropy from the partition function

* |n a saddle approximation the path integral can be estimated as:

aN exp ( Saddle/h)

* |f the saddle geometry is Euclidean de Sitter space
(a round sphere with radius equal to the dS curvature scale L),

then

A(L)
saddle .
Jh=="ng = s




Gibbons-Hawking partition function

* Since the energy vanishes for Euclidean de Sitter space, the
partition function counts the dimension of the quantum gravity
Hiloert space Banks, Fischler

7 =Tre PH & H=0

Jacobson, Banihashemi ‘22

—— | Z = Tyl =

= dimension of Hilbert space
of states surrounded by a horizon,
.e. states of a ball




Partition function for a volume of space

Should not “area = entropy” apply to any volume of space (topological ball)?
To specify a region of space, one must somehow fix its size.

We fix the spatial volume, by adding a constraint in the path integral
_ 1
Introduce a Lagrange multiplier to impose the constraint

Z[V] _ /D)\Dg 6—%1E[9]+%>\(C[9]—V)



Euclidean sphere geometry

 What are the topologies that we integrate over in the path integral?

 (Consider a spatial topological (D-1)-ball whose boundary has
topology S© 2.

* The Euclidean manifold generated by rotating the ball through a
complete circle about the ball boundary is a topological D-sphere

e.qg. D=2 version:




Constrained sphere partition function

Method of constrained instantons Affleck, Cotler-Jensen

1

Z|V, A = /DADQ exp [167#1(; /deE\/E(R—M) + %/dm(cb) (/lex\/f_y—VH

. Foliate S by (D-1)-balls at constant ¢ with induced metric Yab = gab — N>.a®
N = (gab(b,a,(b,b)_l/Q

 The saddle point equations are the Einstein equations sourced by an effective
perfect fluid with vanishing energy density,

. A
Gap + Agap = 8TGT,,  with Top = ~ b = Pyap
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Static, spherically symmetric saddle

« A = 0 static, spherically symmetric solution:

1
IRY

ds? (R:, — r%)?de? + dr® + r2dQ3,_,

horizon radius Ry = [(D — 1)V/Qp_s]/ P~

* FEuclidean constrained instanton has topology SD, is conformally flat, and has a
curvature singularity at the horizon.
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Euclidean action

Even though the saddle has a 1/(r-Rv) curvature singularity at the horizon,
the action is finite.

For A = 0 the on-shell Euclidean action is

1 A
Lsaadie = 167TG/dD$\/§R: _é

Hence, in the zero-loop saddle-point approximation:

Z|V] ~ exp(Ay /4hG)

This generalizes the Gibbons-Hawking partition function to a finite volume of space!
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Conclusions

e FPartition function of a volume of space = dimension of the quantum gravity
Hilbert space of a topological ball with fixed proper volume.

* The Hilbert space dimension matches with the semiclassical BH entropy
attributed to spatial regions

ZV] =dimH ~ exp(Ay /4hG)

Future direction:

 Determine whether higher curvature corrections regularise the curvature
singularity at the horizon.
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Euclidean saddle

 Comparison between diamond saddle and spherical dS saddle
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A > () saddle

* The saddle solution with positive cosmological constant is similar, BUT:
1) If V = Vs (static patch spatial volume), then the saddle is dS, which is smooth

2) It Vis larger than the dS spatial hemisphere, the entropy decreases as volume
Increases

2) There is no saddle if Vis larger than the full de Sitter spatial sphere.

3) The integral over all Vis dominated by the de Sitter saddle.
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Regulation of the saddle singularity in EFT?

Suppose the singularity is regulated by higher derivative terms in the action,
governed by a UV length ¢

1
I = — dP R+ /°R*+ ...
167TG/ vl + )22 p=r—Ry
The field R2 term contributes to the field equation ~ 5283}2 ~ —2R
P
1
which is of the same order as the Einstein term when p ~ ¢, at which point R ~ Tl
v

If the curvature saturates at this value, then EFT remains effective, and the higher curvature
. 4 .
corrections to the entropy are of order /*R ~ o < 1 relative to the BH entropy.
1%

We conjecture that this is what happens . . .
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