Quantum geometry and entanglement from corner symmetry:

Laurent Freidel

> April 2023 APS-meeting
L. Ciambelli, W. Donnelly, E. Gesteau, F. Girelli, P. Jai-akson, M. Geiller, F. Moosavian, R. Oliveri, D. Pranzetti, A. Raclariu, S. Speziale, A. Speranza, N. Teh.

Based on 2302. 12799 with M. Geiller and W. Wieland A chapter in "Handbook of Quantum Gravity"

Local Holography

- We want to understand the quantization of QFT and quantum gravity in finite regions
- This requires understanding the nature of quantum entanglement across sub-regions: In holography the emergence of classically connected spacetimes is related to the quantum entanglement of quantum gravity degrees of freedom
- In gravity the subregion entanglement is controlled by a symmetry group called the corner symmetry group, which follows from gauge invariance of the total space.
- At the quantum level finding the group representations amount to quantizing geometry and requires us to define the area as an operator

Corner symmetry = entanglement

Local Holography

- We want to understand the quantization of QFT and quantum gravity in finite regions
- This requires understanding the nature of quantum entanglement across sub-regions: In holography the emergence of classically connected spacetimes is related to the quantum entanglement of quantum gravity degrees of freedom
- In gravity the subregion entanglement is controlled by a symmetry group called the corner symmetry group, which follows from gauge invariance of the total space.
- At the quantum level finding the group representations amount to quantizing geometry and requires us to define the area as an operator

Corner symmetry= entanglement

- This allows us to show in the continuum and from quantization only that quantum geometry carries quanta of area
- Recent works have shown that this naturally connects with S-matrix quantization and soft theorems through celestial holography

Space entanglement

- Given Σ a Cauchy slice. We chose a $2 d$ surface that divide the slice into 2 subregions $\Sigma=\Sigma_{L} \cup \Sigma_{R}$
- S is the entangling surface it defines the codimension 2 corner of the sustaining causal diamond

- We denote \mathscr{A}_{Σ} the algebra of observable associated with the region Σ and \mathscr{H}_{Σ} the corresponding Hilbert space obtained by acting with \mathscr{A}_{Σ} on a vacuum state
- In Quantum mechanics we have double factorizability.

$$
\mathscr{A}_{\Sigma}=\mathscr{A}_{\Sigma_{L}} \vee \mathscr{A}_{\Sigma_{R}} \text { and } \quad \mathscr{H}_{\Sigma}=\mathscr{H}_{\Sigma_{L}} \otimes \mathscr{H}_{\Sigma_{R}}
$$

Space entanglement

- Given Σ a Cauchy slice. We chose a $2 d$ surface that divide the slice into 2 subregions $\Sigma=\Sigma_{L} \cup \Sigma_{R}$
- S is the entangling surface it defines the codimension 2 corner of the sustaining causal diamond

- We denote \mathscr{A}_{Σ} the algebra of observable associated with the region Σ and \mathscr{H}_{Σ} the corresponding Hilbert space obtained by acting with \mathscr{A}_{Σ} on a vacuum state
- In Relativistic QFT we loose factorizability of the Hilbert space
$\mathscr{A}_{\Sigma}=\mathscr{A}_{\Sigma_{L}} \vee \mathscr{A}_{\Sigma_{R}}$ and $\mathscr{H}_{\Sigma} \neq \mathscr{H}_{\Sigma_{L}} \otimes \mathscr{H}_{\Sigma_{R}}$ since $G\left(\mathscr{H}_{\Sigma_{L}}, \mathscr{H}_{\Sigma_{R}}\right) \neq 0$

Space entanglement

- Given Σ a Cauchy slice. We chose a $2 d$ surface that divide the slice into 2 subregions $\Sigma=\Sigma_{L} \cup \Sigma_{R}$
- S is the entangling surface it defines the codimension 2 corner of the sustaining causal diamond

- We denote \mathscr{A}_{Σ} the algebra of observable associated with the region Σ and \mathscr{H}_{Σ} the corresponding Hilbert space obtained by acting with \mathscr{A}_{Σ} on a vacuum state
- In Gravity and Gauge theory we also loose factorizability of observable algebra $\mathscr{A}_{\Sigma} \not \mathscr{A}_{\Sigma_{L}} \vee \mathscr{A}_{\Sigma_{R}}$ and $\mathscr{H}_{\Sigma} \neq \mathscr{H}_{\Sigma_{L}} \otimes \mathscr{H}_{\Sigma_{R}}$
 are non local.

Space entanglement

- Given Σ a Cauchy slice. We chose a $2 d$ surface that divide the slice into 2 subregions $\Sigma=\Sigma_{L} \cup \Sigma_{R}$
- S is the entangling surface it defines the codimension 2 corner of the sustaining causal diamond

- We denote \mathscr{A}_{Σ} the algebra of observable associated with the region Σ and \mathscr{H}_{Σ} the corresponding Hilbert space obtained by acting with \mathscr{A}_{Σ} on a vacuum state
- In Quantum mechanics we have double factorizability.

$$
\mathscr{A}_{\Sigma}=\mathscr{A}_{\Sigma_{L}} \vee \mathscr{A}_{\Sigma_{R}} \text { and } \quad \mathscr{H}_{\Sigma}=\mathscr{H}_{\Sigma_{L}} \otimes \mathscr{H}_{\Sigma_{R}}
$$

- In Relativistic QFT we loose factorizability of the Hilbert space

$$
\mathscr{A}_{\Sigma}=\mathscr{A}_{\Sigma_{L}} \vee \mathscr{A}_{\Sigma_{R}} \text { and } \mathscr{H}_{\Sigma} \neq \mathscr{H}_{\Sigma_{L}} \otimes \mathscr{H}_{\Sigma_{R}} \text { since } G\left(\mathscr{H}_{\Sigma_{L}}, \mathscr{H}_{\Sigma_{R}}\right) \neq 0
$$

- In Gravity and gauge theory we also loose factorizability of observable algebra

$$
\mathscr{A}_{\Sigma} \not \mathscr{A}_{\Sigma_{L}} \vee \mathscr{A}_{\Sigma_{R}} \text { and } \mathscr{H}_{\Sigma}^{\prime} \neq \mathscr{H}_{\Sigma_{L}} \otimes \mathscr{H}_{\Sigma_{R}}
$$

Gauge symmetry resolves entanglement

- In gauge theory and gravity, when no boundary exists the time evolution generator is a constraints $C_{\xi} \hat{=} 0$.
- The situation changes in the presence of a spacetime boundary or a spacetime corner

- In the presence of a spacetime boundary or a spacetime corner the time evolution operator is entirely supported on codimension 2 corners. E. Noether 1918

$$
Q_{\xi}\left(\Sigma_{L}\right) \hat{=} \int_{\partial \Sigma_{L}} q_{\xi}
$$

- Corners unlike boundaries do not need the specification of boundary conditions

Gauge symmetry resolves entanglement

- In gauge theory and gravity, when no boundary exists the time evolution generator is a constraints $C_{\xi} \hat{=} 0$.
- The situation changes in the presence of a spacetime boundary or a spacetime corner

- In the presence of a spacetime boundary or a spacetime corner the time evolution operator is entirely supported on codimension 2 corners. E. Noether 1918

$$
Q_{\xi}\left(\Sigma_{L}\right) \hat{=} \int_{\partial \Sigma_{L}} q_{\xi}
$$

- Corners unlike boundaries do not need the specification of boundary conditions
- This property is the fundamental expression of gravitational holography D. Marolf 2008

Gauge symmetry resolves entanglement

- In gauge theory and gravity, when no boundary exists the time evolution generator is a constraints $C_{\xi} \hat{=} 0$.
- The situation changes in the presence of a spacetime boundary or a spacetime corner

- In the presence of a spacetime boundary or a spacetime corner the time evolution operator is entirely supported on codimension 2 corners. E. Noether 1918

$$
Q_{\xi}\left(\Sigma_{L}\right) \hat{=} \int_{\partial \Sigma_{L}} q_{\xi} \mid
$$

- Corners unlike boundaries do not need the specification of boundary conditions
- This property is the fundamental expression of local holography W. Donnelly, LF 2016

Gauge symmetry resolves entanglement

- In gauge theory and gravity, when no boundary exists the time evolution generator is a constraints $C_{\xi} \hat{=} 0$.
- The situation changes in the presence of a spacetime boundary or a spacetime corner
- In the presence of a spacetime boundary or a spacetime corner the time evolution operator is entirely supported on codimension 2 corners. E. Noether 1918

- Corners unlike boundaries do not need the specification of boundary conditions
- This property is the fundamental expression of local holography W. Donnelly, LF 2016
- Entangling corners carries the representation of a fundamental group of symmetry the corner symmetry group G_{S}. The modular group which contains boost hinging along S is a distinguished subgroup of G_{S}
- Noether theorem tells us that the charges represents elements of the spacetime

$$
\left[Q_{\xi}, Q_{\chi}\right]=i Q_{[\xi, \chi]}
$$ geometry \longrightarrow Non-commutativity of the corner metric components

- Finding the quantum representation of G_{S} is equivalent to quantizing geometry

Symmetries and Gravity

- Given a region R with slice Σ the symmetry charges are supported on codimension 2 corners $S=$ entangling sphere
- The extended corner symmetry group G_{S} is the subgroup of Diff(M) which and possesses non zero Noether charges in the presence of S, its with kinematical subgroup $G_{S} \subset E_{S}$ preserves the region R .
- In metric gravity

$$
E_{S}=\left(\operatorname{Diff}(S) \ltimes \operatorname{SL}(2, \mathbb{R})^{S}\right) \ltimes \mathbb{R}^{2 S}
$$

Group $=$ Kinematical + dynamical

Symmetries and Gravity

- Given a region R with slice Σ the symmetry charges are supported on codimension 2 corners $S=$ entangling sphere
- The extended corner symmetry group G_{S} is the subgroup of $\operatorname{Diff}(\mathrm{M})$ which and possesses non zero Noether charges in the presence of S, its with kinematical subgroup $G_{S} \subset E_{S}$ preserves the region R .
- In metric gravity

$$
E_{S}=\left(\operatorname{Diff}(S) \ltimes \operatorname{SL}(2, \mathbb{R})^{S}\right) \ltimes \mathbb{R}^{2 S}
$$

$$
\text { Group }=\text { Kinematical + dynamical }
$$

- Double Universality of E_{S}, for metric gravity!
-Same group for infinitesimal diamond or very large ones
-Same group for Einstein gravity or any other higher derivative formulation of gravity no matter how many extra derivative
- What changes is either the choice of representation or the canonical representation of the symmetry generators

Symmetry on null surfaces

- Local gravitational symmetries are attached to codimension 2 corner: In metric gravity this group is the extended corner symmetry group (Universal)

$$
E_{S}=\left(\operatorname{Diff}(S) \ltimes \operatorname{SL}(2, \mathbb{R})^{S}\right) \ltimes \mathbb{R}^{2 S}
$$

- When we study Horizon, asymptotic infinity or the nature of quantum radiation one focuses our attention onto a specific null surface. In that case the subgroup preserving the preserving the null structure (Thermal Carrollian structure) is

$$
\begin{array}{r}
\mathrm{BMSW}=(\operatorname{Diff}(S) \ltimes \text { Weyl }) \ltimes \mathbb{R}^{S} \\
\xi=T \partial_{u}+Y^{A} \partial_{A}+W\left(u \partial_{u}-r \partial_{r}\right)
\end{array}
$$

Barnich-Trossaert'l0,
Chandrasekar, Flanagan, Prabhu'I8
LF, Oliveri, Pranzetti Speziale ‘2I

- At infinity, same group, conservation law are associated with GBMS

$$
W=\frac{1}{2} D_{A} Y^{A}
$$

Quantum Corner symmetry

$$
G_{S}=\operatorname{Diff}(S) \ltimes \operatorname{SL}(2, \mathbb{R})^{S}
$$

Donnelly, Moosavian, Speranza, LF'

- What are the reps? what are the Casimirs?
- The little group is the group that preserves
- The subgroup generated by the $\operatorname{SL}(2, \mathbb{R})$ Casimir

$$
C_{\mathrm{SL}(2, \mathbb{R})_{\perp}}=\operatorname{det}(q)>0
$$

- Representations are classified by representations of the area preserving Diffeomorphism subgroup with generator $\Omega=$ Vorticity of the fluid

Quantum Corner symmetry

$$
G_{S}=\operatorname{Diff}(S) \ltimes \operatorname{SL}(2, \mathbb{R})^{S}
$$

Donnelly, Moosavian, Speranza, LF'

- What are the reps? what are the Casimirs?
- The little group is the group that preserves
- The subgroup generated by the $\operatorname{SL}(2, \mathbb{R})$ Casimir

$$
C_{\mathrm{SL}(2, \mathbb{R})_{\perp}}=\operatorname{det}(q)>0
$$

$\frac{\sqrt{q}}{4 G}$ is the local affine boost group

Boost along the null plane

- Representations are classified by representations of the area preserving Diffeomorphism subgroup with generator $\Omega=$ Vorticity of the fluid
- Denoting P_{A} the diff generator and N^{a} the $S L(2, \mathbb{R})$ one $\Omega=\epsilon^{A B}\left[\partial_{A} P_{B}-\frac{1}{2} \epsilon_{a b c} \partial_{A} N^{a} \partial_{B} N^{b} N^{c}\right]$
- The Casimirs are then given by

$$
C_{n}=\int_{S} \sqrt{q} \Omega^{n} \rightarrow \text { Complete classification of rep where } \sqrt{q}>0
$$

Edge modes and Quantum space-time

- In order to define Gravity in finite region we need a field that tells us where the corner is situated $X: S \rightarrow \Sigma$
- This field, called the embedding field or edge mode field is part of the gravitational phase space: $\left[U(\sigma), V(\sigma), X^{A}(\sigma)\right] \rightarrow\left[\hat{U}(\sigma), \hat{V}(\sigma), \hat{X}^{A}(\sigma)\right]$

The location of the quantum corner is determined by the quantum state

- Edge modes allows the possibility to define gauge invariant observables through the dressing of observables. They render super-translation Hamiltonian
- This defines an extended algebra of observables $\mathscr{A}_{\Sigma_{L}}^{\text {ext }}=\mathscr{A}_{\Sigma_{L}}^{\text {ext }} \vee \mathscr{A}_{S}$
- The extended algebra of observable is a cross product algebra
- One of the corner symmetry group Casimir is the modular hamiltonian!

$$
\begin{aligned}
& \text { Quantum geometry } \\
& \frac{\hat{A}}{4 G}=\frac{1}{4 G} \int_{S} \sqrt{g} \quad=\quad \hat{K}=-\frac{\hbar}{2 \pi} \log \rho_{\Sigma}
\end{aligned}
$$

Leigh, 2023
LF, E Gesteau 2023 TA

- This simple fact implies a reduction of UV divergences Type III \rightarrow Type II

Quantum fluid

G_{S} is isomorphic to the symmetry groups of 2d hydrodynamics
W. Donnelly, A. Speranza, F.M Moosavian, L.F 2020

- Analogy: the area density \sqrt{q} plays the role of the fluid density ρ The outer curvature Ω plays the role of the fluid vorticity w
- The quantum representations are classified by a choice of area and vorticity densities (ρ, w) on S .

Arnold'66; Marsden, Ratiu'95 Khesin'l7

- (ρ, w) can be related to labels of the coadjoint orbits (hence representation) of the 'fluid group' H_{S}
- Classical fluid corresponds to a choice of density density measure $\rho>0$ which is absolutely continuous with respect to the Lebesgue measure
- Quantum fluid corresponds to a choice where both ρ and w are counting measures.

This gives a constituent picture to the fluid

Quantum fluid

H_{S} is isomorphic to the symmetry groups of 2d hydrodynamics

- Analogy: the area density \sqrt{q} plays the role of the fluid density ρ

The outer curvature plays the role of the fluid vorticity w

- This provides a constituent picture where
M. Geiller, D. Pranzetti, L.F 2021

Ciambelli, Leigh, L.FTA

Fluid atomization = Area constituent Vortex quantization $=$ momenta quantization

$$
\rho=\sum_{i} \rho_{i} \delta^{(2)}\left(\sigma, \sigma_{i}\right)
$$

- Each constituent carries a density, weight and $\operatorname{spin}\left(\rho_{i}, \Delta_{i}, s_{i}\right)$

$$
P_{A}=\sum_{i} \delta^{(2)}\left(\sigma, \sigma_{i}\right) D_{A}+\left(\Delta_{i} \delta_{A}^{B}+s_{i} \epsilon_{A}^{B}\right) \partial_{B} \delta^{(2)}\left(\sigma, \sigma_{i}\right) \quad \begin{gathered}
\text { Geiller,Wieland, } \\
\text { L.F } 2022
\end{gathered}
$$

- Area constituent in the continuum from quantization!
- Einstein Cartan gravity with an Immirzi parameter implies that $\rho_{i}=\gamma \sqrt{j_{i}\left(j_{i}+1\right)}$. Wieland '19 Area gap in the continuum!

Quantum fluid

H_{S} is isomorphic to the symmetry groups of 2d hydrodynamics

- Analogy: the area density \sqrt{q} plays the role of the fluid density ρ

The outer curvature plays the role of the fluid vorticity w

- This provides a constituent picture where
M. Geiller, D. Pranzetti, L.F 2021

Ciambelli, Leigh, L.FTA

Fluid atomization = Area constituent Vortex quantization $=$ momenta quantization

$$
\rho=\sum_{i} \rho_{i} \delta^{(2)}\left(\sigma, \sigma_{i}\right)
$$

- Each constituent carries a density, weight and $\operatorname{spin}\left(\rho_{i}, \Delta_{i}, s_{i}\right)$

$$
P_{A}=\sum_{i} \delta^{(2)}\left(\sigma, \sigma_{i}\right) D_{A}+\left(\Delta_{i} \delta_{A}^{B}+s_{i} \epsilon_{A}^{B}\right) \partial_{B} \delta^{(2)}\left(\sigma, \sigma_{i}\right)
$$

- Area constituent in the continuum from quantization!
- The area preserving diffeomorphisms arises as the large N limit of $\mathrm{SU}(\mathrm{N})$ \longrightarrow Matrix model deformation of Gravity and its symmetry.

Dynamics along null surfaces

- The gravitational evolution along null surfaces can be entirely formulated as conservation laws for the corner charges \rightarrow Quantization of the Einstein equation
Three main results for dynamics along causal Horizons:

Carollian structure ($\ell^{a}, q_{a b}$) such that $\ell^{a} q_{a b}=0$

- The Gravitational dynamics projected on \mathcal{N} can be recast as a set of Null $\begin{array}{cc}\text { conservation Laws } D_{b} T_{a}^{b}=0 \\ \text { Carrollian connection } & \substack{\text { Carrollian energy- } \\ \text { momentum tensor }}\end{array} T_{a}^{b}=\tau_{a} \ell^{b}+\tau_{a}^{b}$
- This dynamics can be understood as the conservation of charges for a universal null surface symmetry group BMSW
- The dynamics can be understood in terms of a canonical structure associated with

$$
\Theta^{\mathrm{can}}=\frac{1}{8 \pi G} \int_{\mathcal{N}}\left(\frac{1}{2} \tau^{a b} \delta q_{a b}-\tau_{a} \delta \ell^{a}\right) \epsilon_{\mathcal{N}}
$$

Summary:

- The profound consequences of Noether theorem for gravitational theories leads to a new picture of quantum geometry as a state of representation of the corner symmetry group which capture the essence of subregions entanglement.
- It encodes the non-commutativity of geometrical observables associated with subregions representing the quantization of geometry.
- It leads discretization of space from the representation of continuous non-commutative infinite dimensional algebras represented as quantum fluid.
- This discretization is two-fold: It allows the possibility of corner constituents through atomizisation of the density and the usual area gap from the presence of the immirzi parameter
- Edge modes allows the possibility to define quasi-localised gauge invariant observables and finite density matrix attached to subregions
- It gives a fundamental reason behind the type III \rightarrow type II cross product reduction
- Dynamics along null surfaces is encoded into Carrolian conservation laws for the symmetry charges and activated at the quantum level by the representation of the dynamical charges. This dynamics is now open to quantization.

