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Local Holography

* We want to understand the quantization of QFT and quantum gravity in finite
regions

* This requires understanding the nature of quantum entanglement across sub-regions:
In holography the emergence of classically connected spacetimes is related to the
quantum entanglement of quantum gravity degrees of freedom

* |In gravity the subregion entanglement is controlled by a symmetry group called the
corner symmetry group, which follows from gauge invariance of the total space.

* At the quantum level finding the group representations amount to quantizing
geometry and requires us to define the area as an operator

Corner symmetry = entanglement
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In holography the emergence of classically connected spacetimes is related to the
quantum entanglement of quantum gravity degrees of freedom

* |In gravity the subregion entanglement is controlled by a symmetry group called the
corner symmetry group, which follows from gauge invariance of the total space.

* At the quantum level finding the group representations amount to quantizing
geometry and requires us to define the area as an operator

Corner symmetry= entanglement

* This allows us to show in the continuum and from quantization only that quantum
geometry carries quanta of area

* Recent works have shown that this naturally connects with S-matrix quantization
and soft theorems through celestial holography



Space entanglement

* Given 2 a Cauchy slice. We chose a 2d surface that divide the slice into 2
subregions 2~ = 2., U 2,

* S is the entangling surface it defines the codimension 2 corner of the sustaining

causal diamond S
R ¢ «—— Causal domain of
dependence of Int(S)
S

* We denote &/ the algebra of observable associated with the region 2 and #'s the
corresponding Hilbert space obtained by acting with &5 on a vacuum state

* In Quantum mechanics we have double factorizability.
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Infinite vaccuum entanglement .
& Reeh-Schlieder theorem



Space entanglement

* Given 2 a Cauchy slice. We chose a 2d surface that divide the slice into 2
subregions 2~ = 2., U 2,

* S is the entangling surface it defines the codimension 2 corner of the sustaining

causal diamond S
R ¢ «—— Causal domain of
dependence of Int(S)
S

* We denote &/ the algebra of observable associated with the region 2 and #'s the
corresponding Hilbert space obtained by acting with &5 on a vacuum state

* In Gravity and Gauge theory we also loose factorizability of observable algebra

A2y Vs and s+ Hy Q Xy,

/

Gauge invariant Observables
are non local.
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* Given 2 a Cauchy slice. We chose a 2d surface that divide the slice into 2
subregions 2~ = 2., U 2,

* S is the entangling surface it defines the codimension 2 corner of the sustaining

causal diamond S
R ¢ «—— Causal domain of
dependence of Int(S)
S

* We denote &/ the algebra of observable associated with the region 2 and #'s the
corresponding Hilbert space obtained by acting with &5 on a vacuum state

* In Quantum mechanics we have double factorizability.
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* In Relativistic QFT we loose factorizability of the Hilbert space

Ay =y VAy and HyFHy Q Xy since G(Xy,Xy5)F0

* In Gravity and gauge theory we also loose factorizability of observable algebra

A2y NV Ay and s+ Hy Q Xy,

To recover quasi-locality of the gauge invariant observables we need to understand dressing — symmetry



Gauge symmetry resolves entanglement

* |In gauge theory and gravity, when no boundary exists the time evolution
generator is a constraints C, = 0.

* The situation changes in the presence of a spacetime boundary or a spacetime
corner |
* In the presence of a spacetime boundary or a spacetime corner the time 0Z)) = J q;
evolution operator is entirely supported on codimension 2 corners.  E.Noether 1918 "%
* Corners unlike boundaries do not need the specification of boundary conditions
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* |In gauge theory and gravity, when no boundary exists the time evolution
generator is a constraints C; = 0.

* The situation changes in the presence of a spacetime boundary or a spacetime
corner _

* In the presence of a spacetime boundary or a spacetime corner the time 02)) = J q;
evolution operator is entirely supported on codimension 2 corners. E.Noether 1918 - %L

* Corners unlike boundaries do not need the specification of boundary conditions

* This property is the fundamental expression of local holography W. Donnelly, LF 2016

* Entangling corners carries the representation of a fundamental group of symmetry

the corner symmetry group Gg. The modular group which contains boost hinging
along S is a distinguished subgroup of Gy

* Noether theorem tells us that the charges represents elements of the spacetime [O: O, ] = 10}
geometry — Non-commutativity of the corner metric components

* Finding the quantum representation of Gy is equivalent to quantizing geometry

—  Understanding the quantum causal diamond



Symmetries and Gravity

* Given a region R with slice 2 the symmetry charges are supported on
codimension 2 corners 5= entangling sphere

.S
* The extended corner symmetry group Gy is the subgroup of Diff(M) which
and possesses non zero Noether charges in the presence of S, its with s
kinematical subgroup G¢ C E¢ preserves the region R.

* In metric gravity E,= (Diff(S) X SL(Z,R)S) X R2S

W. Donnelly, L.F 2016
Group = Kinematical + dynamical L.F, Leigh, Ciambelli’ 21
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* The extended corner symmetry group Gy is the subgroup of Diff(M) which
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* In metric gravity E,= (Diff(S) X SL(Z,R)S) X R2S

W. Donnelly, L.F 2016
Group = Kinematical + dynamical L.F, Leigh, Ciambelli’ 21

* Double Universality of L, for metric gravity!

-Same group for infinitesimal diamond or very large ones
-Same group for Einstein gravity or any other higher derivative formulation
of gravity no matter how many extra derivative

Wald, Speranza’l 7

* What changes is either the choice of representation or the canonical representation of

the symmetry generators
13



Symmetry on null surfaces

> Local gravitational symmetries are attached to codimension 2 corner: In
metric gravity this group is the extended corner symmetry group (Universal)

E, = (Diff(S) X SL(2,R)’) X RS

> When we study Horizon, asymptotic infinity or the nature of quantum radiation
one focuses our attention onto a specific null surface. In that case the subgroup
preserving the preserving the null structure ( Thermal Carrollian structure) is

Barnich-Trossaert’ |0,

. g Chandrasekar, Flanagan, Prabhu’ | 8
BMSW — (DIH(S) X Weyl) X IR LF, Oliveri, Pranzetti Speziale 21

§ =Ty, + Y204 + W (udy, — 10,) t= o)

> At infinity, same group, conservation law are associated with GBMS 7 _ lDAyA
2

Barnich Troesseart ’| | Campiglia, Ladha ’16
Compere, Fiorucci, Ruzziconi’ | 8



Quantum Corner symmetry
GS — Diff(S) X SL(Z,L )S Donnelly, Moosavian,

2 Speranza, LF
* What are the reps! what are the Casimirs!?
* The little group is the group that preserves

» The subgroup generated by the SL(2,R) Casimir  CsLi2Rr), = det(q) > 0

q I
\/_ is the local affine boost group S
4G \ /! oy
Boost along the null plane

* Representations are classified by representations of the area preserving
Diffeomorphism subgroup with generator €2 = Vorticity of the fluid
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* The little group is the group that preserves
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» The subgroup generated by the SL(2,R) Casimir  CsLi2Rr), = det(q) > 0

q I
\/_ is the local affine boost group S
4G N oy
Boost along the null plane

* Representations are classified by representations of the area preserving
Diffeomorphism subgroup with generator €2 = Vorticity of the fluid

» Denoting P, the diff generator and N“ the SL(2,R) one Q = ¢*”

04Pp —

1

—€abc
2

OsN*OgN°N€

* The Casimirs are then given by C = / \/§Q” — Complete classification of rep where \/5 > ()
S

T — %



Edge modes and Quantum space-time

* In order to define Gravity in finite region we need a field that tells us where the

corner is situated X : § — 2 W. Donnelly, LF 2016
* This field, called the embedding field or edge mode field is part of the gravitational Speranza 2017
Phase space: [U(U) V(G) XA(U)] N [U(G) V(U) XA(U)] Lelgh, Ciambelli 2021
. N N LF 2021
Transverse null e di
coordinates tggﬁg:‘nﬂi The location of the quantum corner is determined by the quantum state

* Edge modes allows the possibility to define gauge invariant observables through the dressing of
observables. They render super-translation Hamiltonian

ex’t __ ext
+ This defines an extended algebra of observables &/v" = /7" V Connes 1973
* The extended algebra of observable is a cross product algebra Venkatesa, Witten et al 2023
* One of the corner symmetry group Casimir is the modular hamiltonian! Speranza et al. 2023
W N Leigh, 2023
Quantum geometry Entanglement LF, E Gesteau 2023 TA
A _ | = K = f log p
1G 4G . S\/§ 2

* This simple fact implies a reduction of UV divergences Type Ill — Type Il



Quantum fluid

G is isomorphic to the symmetry groups of 2d hydrodynamics W. Donnelly,A. Speranza, FM
Moosavian, L.F 2020

e Analogy: the area density \/5 plays the role of the fluid density p
The outer curvature €2 plays the role of the fluid vorticity w

e The quantum representations are classified by a choice of Arnold'66; Marsden, Ratiu’d5
area and vorticity densities (p, w) on S. Chesin'l7

e (p,w) can be related to labels of the coadjoint orbits (hence
representation) of the fluid group’ H

e Classical fluid corresponds to a choice of density density measure p > O which is absolutely
continuous with respect to the Lebesgue measure

e Quantum fluid corresponds to a choice where both p and w are counting measures.
This gives a constituent picture to the fluid

|8



W. Donnelly,A. Speranza, EM

Q uantum fluid Moosavian, L.F 2020

Hg is isomorphic to the symmetry groups of 2d hydrodynamics Arnold: Marsden. Ratiu

e Analogy: the area density \/5 plays the role of the fluid density p

The outer curvature plays the role of the fluid vorticity w M. Geiller: D. Pranzetti. L.F 2021

e This provides a constituent picture where Ciambelli, Leigh, L.F TA
Fluid atomization = Area constituent _ 2
L L P = E ,pié( (o, c;)
Vortex quantization = momenta quantization .
l

e Each constituent carries a density, weight and spin (p;, A, s;)

Py = Z 520, 0)Dy + (A + 5:€,°)0p6'7(0,06)  Geiller Wiecland,

,; L.F 2022
* Area constituent in the continuum from quantization! Discretization is derived not postulated
» Einstein Cartan gravity with an Immirzi parameter implies that p;, = }/\/ji(jl- + 1). Wieland ‘19

Area gap in the continuum!

19
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e Each constituent carries a density, weight and spin (p;, A, s;)
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I

* Area constituent in the continuum from quantization!

: . , , o W. Donnelly, A.Speranza,
* The area preserving diffeomorphisms arises as the large N limit of SUN)  £M Moosavian, LF 2022

—> Matrix model deformation of Gravity and its symmetry.

20



Dynamics along null surfaces )

* The gravitational evolution along null surfaces can be entirely formulated as N S
conservation laws for the corner charges — Quantization of the Einstein equation ¢

Three main results for dynamics along causal Horizons:
Carollian structure (£“, g ) such that £9g_, = 0

* The Gravitational dynamics projected on ./ can be recast as a set of Null

: b _ b b b Donnay, Marteau ' | 9
conservation Laws Dpl,” =0~ T =17/"+7, LF, Hopfmueller; | 9; Sheikh-Jabbari’20
Carrollian connection Carrollian energy-

Speranza, Flanagan, Chandrasekaran 2|
momentum tensor

* This dynamics can be understood as the conservation of charges for a universal null surface
symmetry group BMSWV
 The dynamics can be understood in terms of a canonical structure associated with

1 1
O " = (—T“b5 b Ta&”“>€

—  Quantum Ray-Chauduri Ciambelli, Leigh, F to appear



Summary:

* The profound consequences of Noether theorem for gravitational theories leads to a
new picture of quantum geometry as a state of representation of the corner symmetry
group which capture the essence of subregions entanglement.

* |t encodes the non-commutativity of geometrical observables associated with subregions
representing the quantization of geometry.

* |t leads discretization of space from the representation of continuous non-commutative infinite
dimensional algebras represented as quantum fluid.

* This discretization is two-fold: It allows the possibility of corner constituents through
atomizisation of the density and the usual area gap from the presence of the immirzi parameter

* Edge modes allows the possibility to define quasi-localised gauge invariant observables and
finite density matrix attached to subregions

* |t gives a fundamental reason behind the type lll = type |l cross product reduction

* Dynamics along null surfaces is encoded into Carrolian conservation laws for the symmetry
charges and activated at the quantum level by the representation of the dynamical charges.
This dynamics is how open to quantization.
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