
Causal sets and classical algebras Quantization States and dequantization Summary and generalization

Algebras and states for quantum fields on causal sets

Christoph Minz1

1as part of my PhD research, supervised by Eli Hawkins and Kasia Rejzner
at the Department of Mathematics, University of York

Radboud University Nijmegen, Quantum Gravity, 11 July 2023

Christoph Minz Algebras and states for quantum fields on causal sets Quantum Gravity, 11 July 2023 1 / 12



Causal sets and classical algebras Quantization States and dequantization Summary and generalization

Algebras and states for quantum fields on causal sets

1 Discreteness: What are causal sets and what is the classical algebra?

2 Quantization: Construction of quantum algebras

3 Dequantization: A tool to define states

4 Generalization: Summary with a view on interacting field theory

Note that thoughout the talk, we take the free, scalar field theory as the main example.

The main part of this talk is based on the publication [Hawkins-Minz-Rejzner] (currently under review).
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Causal sets

Definition (Causal set)
A causal set (causet) is a partially ordered set (S,⪯) that is locally
finite, i.e. the cardinality of the interval between any two elements
(events) x, y ∈ S,

[x, y] := {z ∈ S | x ⪯ z ⪯ y} ,

is finite.

For an overview, see the living review [Surya 2019].

Similarities with spacetime manifolds

partial order describes causal structure (definitions of past and
future subsets J∓(x) are identical)
local compactness of a spacetime manifold ⇒ local finiteness of a
causet model of this manifold

Hasse diagram of a finite
causet (3-simplex) that

embeds in d-dimensional
Minkowski spacetime with

d ≥ 1 + 3.
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Field configurations and classical observables

Definition (Scalar field configuration space)
For (a local region of) a causet C, the configuration space is given by all
functions E(C) := {f : C → R}.
For a spacetime manifold M , the space of real scalar fields is the space
of smooth functions, E(M) := C∞(M,R).

Definition (Algebra of classical observables)
The algebra of classical observables on X = C or X = M is the space of
smooth, complex-valued functionals over the configuration space
F(X ) = C∞(

E(X ),C
)

with pointwise addition and multiplication.

This can be equipped with an (off-shell) Poisson bracket
[DableHeath-Fewster-Rejzner-Woods 2020]

{F1, F2} (φ) = πoff

(
F ′

1(φ), F ′
2(φ)

)
.

For a finite causet C with
cardinality n, E(C) ∼= Rn,

write f⃗ = (f1, f2, . . . , fn)T.
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Field equations and on-shell fields

Imposing field equations
To find the on-shell algebra, we have to discretize the Klein-Gordon
equations (Pφ = 0)

(Pφ)(x) = c0φ(x) + c1
∑

z∈L1(x)

φ(z) + c2
∑

z∈L2(x)

φ(z) + . . .

where Li(x) are certain subsets of events in the past of x. Define

retarded Green operator: E+ := P−1,

advanced Green operator: E− := (E+)∗ = (E+)T,

Pauli-Jordan operator: E := E+ − E−.

So the solution space is the vector space S = img(E) = img(π♯
off).

In common discretization
methods, Li(x) are past
layers [Dowker-Glaser 2013].
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Quantization methods

How to quantize the classical algebra?

Formal deformation quantization – via star
products (for causal sets, see
[DableHeath-Fewster-Rejzner-Woods 2020])
Strict deformation quantization – via a field
of C*-algebras
...
Geometric quantization

1 via a quantization line bundle
2 the Bochner Laplacian and
3 the Toeplitz quantization map

Input: Starting structure for geometric
quantization

a 2N -dimensional vector space S with
an inner product ⟨·, ·⟩, and
a symplectic form ω as inverse of the
non-degenerate, on-shell Poisson bracket

such that

∀v1, v2 ∈ S : ω(v1, v2) =
〈
v1, E

−1v2
〉
,

where E−1 relates the symplectc form and the
inner product (this is almost the Pauli-Jordan
operator)
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Quantization bundle and subbundles

Definition (Quantization bundle)
Let (M, ω) be a real, symplectic manifold. A
quantization bundle is a Hermitian line bundle
Lℏ → M with connection ∇ℏ such that its
curvature RLℏ is proportional to the symplectic
form,

RLℏ = − i
ℏ
ω,

parametrized by the quantization parameter,
ℏ > 0. The connection respects the Hermitian
inner product on Lℏ.

Physical Hilbert space = subbundle
A physical Hilbert space Hℏ is constructed from a
subbundle (polarized sections).
As subbundle, consider the eigensections
corresponding to the lowest part of the spectrum
of the Bochner Laplacian

△ℏ := ∇∗
ℏ∇ℏ.
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The Bochner Laplacian

Hℏ
2ϑ1

ℏ

spec(△ℏ) for a symplectic
vector space with
2 dimensions

Theorem (Spectrum of the Bochner Laplacian)
The spectrum of the Laplacian for the quantization bundle
Lℏ → S over (S, ω, ⟨·, ·⟩) is determined by a set of
strictly-positive numbers ϑi ∈ R such that

spec(△ℏ) =
{

1
ℏ

N∑
i=1

(2ni + 1)ϑi

∣∣∣∣∣ ni ∈ N

}
.

The illustration shows the spectrum for a 2N -dimensional space
(with N ∈ [1, 9]) and bounds in the more general case of a
symplectic manifold [Ma-Marinescu 2002, 2008].

Physical Hilbert space Hℏ from sections of the lowest part of the
spectrum (here, a single eigenvalue)
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The Bochner Laplacian
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Toeplitz quantization

For the finite-dimensional vector space, use
complex coordiantes (zi, z ı̄).

The lowest eigensections are the holomorphic
sections

ψ(z) = α(z)
√

2πℏN
exp

(
− 1

2ℏ |z|2
)

with some holomorphic function α
Choose Hilbert space basis with
⟨m1, . . . ,mN |n1, . . . , nN ⟩ℏ =

∏N
i=1 δmini

(for
any n1, . . . , nN ∈ N), and
ladder operators a+

ı̄ := 1√
ℏδı̄iz

i −
√
ℏ∇ı̄

Definition (Toeplitz quantization map)
Let A0 be the subspace of Schwarz functions in
the classical algebra and K(Hℏ) ⊆ B(Hℏ) be the
algebra of compact operators. The
(Berezin-)Toeplitz quantization map

Tℏ : A0 → K(Hℏ)

is given by the projector Πℏ : L2(S,Lℏ) → Hℏ as

∀ψ ∈ Hℏ : Tℏ(f)ψ = Πℏ(fψ).

Toeplitz quantization extends to the bounded
operators B(Hℏ).

Christoph Minz Algebras and states for quantum fields on causal sets Quantum Gravity, 11 July 2023 9 / 12



Causal sets and classical algebras Quantization States and dequantization Summary and generalization

Toeplitz quantization

For the finite-dimensional vector space, use
complex coordiantes (zi, z ı̄).

The lowest eigensections are the holomorphic
sections

ψ(z) = α(z)
√

2πℏN
exp

(
− 1

2ℏ |z|2
)

with some holomorphic function α
Choose Hilbert space basis with
⟨m1, . . . ,mN |n1, . . . , nN ⟩ℏ =

∏N
i=1 δmini

(for
any n1, . . . , nN ∈ N), and
ladder operators a+

ı̄ := 1√
ℏδı̄iz

i −
√
ℏ∇ı̄

Definition (Toeplitz quantization map)
Let A0 be the subspace of Schwarz functions in
the classical algebra and K(Hℏ) ⊆ B(Hℏ) be the
algebra of compact operators. The
(Berezin-)Toeplitz quantization map

Tℏ : A0 → K(Hℏ)

is given by the projector Πℏ : L2(S,Lℏ) → Hℏ as

∀ψ ∈ Hℏ : Tℏ(f)ψ = Πℏ(fψ).

Toeplitz quantization extends to the bounded
operators B(Hℏ).

Christoph Minz Algebras and states for quantum fields on causal sets Quantum Gravity, 11 July 2023 9 / 12



Causal sets and classical algebras Quantization States and dequantization Summary and generalization

Berezin-Toeplitz dequantization

Let µℏ be a measure such that for compactly
supported functions

Tr
(
Tℏ(f)

)
=
ˆ

S
f dµℏ.

Definition
The (Berezin)-Toeplitz dequantization is a family
of linear maps Ξℏ : Aℏ → A0 such that for all
complex-valued, compactly supported functions
f ∈ Cc(S,C) and all operators Aℏ ∈ Aℏ

Tr
(
AℏTℏ(f)

)
= 1

(2πℏ)N

ˆ
S
Ξℏ(Aℏ)f dvol.

By construction, this map respects the involution,
Ξℏ(A∗) = Ξℏ(A), and is normalized.
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Tℏ(f)

A(ℏ)

Tℏ

Ξℏ

T (f) ∈ Γ

A ∈ Γ

f

A(0)

A0 ⊂ A0

Aℏ
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A state from dequantization

Definition (Algebraic state)
A state is a linear functional σ : Aℏ → C that is
positive (∀A ∈ Aℏ : σ(A∗A) ≥ 0) and normalized.

Theorem (Sorkin-Johnston state from
dequantization)
The linear map σℏ : Aℏ → C given by

σℏ(A) := Ξℏ(A)(0)

is the Sorkin-Johnston state.

For any Toeplitz operator Tℏ(f) ∈ Aℏ (f ∈ A0):

σℏ
(
Tℏ(f)

)
=
ˆ

S

1
(2πℏ)N

e− 1
ℏ |z|2

f(z) dvol(z).

Originally [Johnston 2010, Sorkin 2011, 2017] derived it
from a set of axioms on an operator ASJ (defining
a two-point function)

positivity: ASJ ≥ 0,
commutator: ASJ −ASJ = iE,

purity: ASJASJ = 0.

Note: In quantum field theory on curved
spacetimes, this state is uniquely defined but
not Hadamard [Fewster-Verch 2012, 2013],
though
(non-unique) modifications are Hadamard
[Brum-Fredenhagen 2014, Wingham 2019].
A similar state has been considered for Dirac
fermions [Finster 2011].
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Summary and application to interacting field theory
Even though there are simpler ways to quantize the classical algebra for free field theory, the geometric
quantization method directly generalizes to more involved settings, like interacting field theory. We do
the same steps again, just with some modifications

1 Define a Poisson bracket (as modification of the free Poisson bracket using Møller maps
[DableHeath-Fewster-Rejzner-Woods 2020])

2 Take the image as solution space and construct a symplectic space, in general, a symplectic
manifold with Riemannian metric

3 Consider the gap in the spectrum of the Bochner Laplacian to identify the physical Hilbert space
4 Apply the Toeplitz quantization map
5 Construct a state, using the dual, dequantization map

Thank you for your interest!
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