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Introduction

In recent years, and sparked by developments in the SYK model,
lower-dimensional exactly solvable gravitational models (1+1d)
have been (re)investigated in depth

In this talk, I will discuss three interrelated 1+1d gravitational
models, and in particular observe and unify the underlying structure
of their gravitational amplitudes in terms of representation theory

This approach has been my main focus for several years, and has
been pursued with several collaborators (A. Blommaert, Y. Fan, J.
Simon, G.J. Turiaci, G. Wong, S. Yao)
+ WIP with F. Mariani, A. Belaey
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Jackiw-Teitelboim gravity (1)

Dilaton gravity = 1+1 dimensional toy model of gravity
S = 1

16πG

∫
d2x

√
−g (ΦR + V (Φ)) + Sbdy

Φ is dilaton field, V (Φ) is dilaton potential

Jackiw-Teitelboim (JT) 2d dilaton gravity Teitelboim ’83, Jackiw ’85

I = − 1
16πG

∫
d2x

√
gΦ(R + 2)− 1

8πG

∫
dτ

√
γΦbdyK

Λ = −2 < 0 → AdS version

Review results on thermal amplitudes in this model Tr
[
. e−βH

]
from Euclidean gravitational path integral (PI)
In Euclidean gravity, a black hole geometry has a contractible
thermal circle (cigar/disk topology) Gibbons-Hawking ’77

Disk partition function (with holographic boundary of length β):
Maldacena-Stanford ’16, Stanford-Witten ’17

β = Z (β) = Tr
[
e−βH

]
=

∫ +∞
0 dk(k sinh 2πk)e−βk2

= QG thermal partition function whose saddle matches classical
JT black hole M(TH) (mass vs Hawking temperature)
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Jackiw-Teitelboim gravity (2)

Boundary two-point function: Bagrets-Altland-Kamenev ’16, ’17, TM-Turiaci-Verlinde

’17, Blommaert-TM-Verschelde ’18, Yang ’18, Kitaev-Suh ’18, ’19, Iliesiu-Pufu-Verlinde-Wang ’19 ...〈
Oh(τ1)Oh(τ2)

〉
β
= Tr

[
Oh(τ1)Oh(τ2)e

−βH
]
=

β − τ

τ

h
=

∫ +∞

0
dk1(k1 sinh 2πk1)

∫ +∞

0
dk2(k2 sinh 2πk2)e

−τk2
1−(β−τ)k2

2
Γ
(
h ± ik1 ± ik2

)
Γ(2h)

Observation:
Building blocks of amplitudes have a group theory interpretation:
For the continuous irrep j = −1/2 + ik of SL(2,R):
k2(+1/4) is the quadratic Casimir
k sinh 2πk is the Plancherel measure subtleties related to the precise algebraic structure

Γ(h±ik1±ik2)
Γ(2h) =

∫ +∞
−∞ dϕK2ik1(e

ϕ) e2hϕ K2ik2(e
ϕ) =(Clebsch-Gordan)2

K2ik1(e
ϕ) are rep matrix elements in the principal series, e2hϕ is a

discrete series rep matrix element (j = −h)
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Gauge theory formulation of JT gravity: the BF model (2)

No coincidence!
1st order formulation of JT gravity can be written in terms of
sl(2,R) BF theory Fukuyama-Kamimura ’85, Isler-Trugenberger ’89, Chamseddine-Wyler ’89

SBF ∼
∫
M d2x Tr(BF )

On manifold with boundary along τ -direction TM ’18:

SBF ∼
∫
M d2x Tr(BF )− 1

2

∮
∂M dτ Tr(BAτ ), B|∂M = Aτ |∂M

Path integrate over B −→ Aµ = g−1∂µg

→ Reduces to boundary action of large “would-be” gauge degrees
of freedom:
SBF ∼

∮
∂M dτ Tr

(
(g−1∂τg)

2
)
−→ particle on group G

Structure of theory:

▶ Hilbert space L2(G ) is determined by Peter-Weyl theorem:
H = {|R, a, b⟩ , R = unitary irrep of G , a, b = 1..dimR}

▶ Coordinate basis {|g⟩ , g ∈ G}: ⟨g |R, ab⟩ =
√
dim RRab(g)
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Gravitational wavefunctions of JT gravity (1)

→ Representation matrices Rab(g) physically identified as
two-boundary wavefunctions

that moreover solve the (time-independent) Schrödinger equation:
ĤRab(g) = CRRab(g) where Ĥ = Hamiltonian of particle on group
system and CR is the quadratic Casimir in irrep R
Also: Ĥ = Two-bdy grav. Hamiltonian = Laplacian on group
→ Explicit expression of Rab(g) by diagonalizing Ĥ
Math: Laplacian on G ≡ Casimir in regular representation of g
Left-regular representation: f (g0) → f (g−1 · g0)
Infinitesimally for 1-parameter subgroup:
L̂i f (g0) =

d
dϵ f (e

−ϵXig0)|ϵ=0 ⇒ L̂ig = −Xig and R̂ig = gXi

→ Apply to JT gravity:
Algebra: sl(2,R)

[H,E ] = E , [H,F ] = −F , [E ,F ] = 2H
Group: Gauss-Euler decomposition for SL(2,R) group element
g = eγF e2ϕH eβE for coordinates (γ, ϕ, β)
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ĤRab(g) = CRRab(g) where Ĥ = Hamiltonian of particle on group
system and CR is the quadratic Casimir in irrep R
Also: Ĥ = Two-bdy grav. Hamiltonian = Laplacian on group

→ Explicit expression of Rab(g) by diagonalizing Ĥ
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Gravitational wavefunctions of JT gravity (2)

Regular representations: L̂ig = −Xig and R̂ig = gXi :

L̂F = ∂γ , R̂F = −β2∂β − β∂ϕ + e2ϕ∂γ ,

L̂H = −γ∂γ −
1

2
∂ϕ, R̂H = −β∂β − 1

2
∂ϕ,

L̂E = −γ2∂γ − γ∂ϕ + e2ϕ∂β, R̂E = ∂β,

→ Casimir C = Ĥ =
(
−1

4∂
2
ϕ − e2ϕ∂β∂γ

)
Extra feature: (without proof) For holographic boundaries in JT
gravity, indices a, b in Rab(g) are fixed and constrained: a is
eigenvalue of F † parabolic generator, b is eigenvalue of E parabolic
generator (Brown-Henneaux aAdS, Hamiltonian reduction)

⇒ Constrain L̂F = ∂γ = −1 and R̂E = ∂β = 1 to implement
gravitational boundary condition(
−1

4∂
2
ϕ + e2ϕ

)
ψ(ϕ) = k2ψ(ϕ) with solution K2ik

(
2eϕ

)

Exactly solvable lower-dimensional gravity models Thomas Mertens 8 16
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The SYK-model: double-scaling limit

SYK model: N 0+1 dimensional Majorana fermions ψi (t),
satisfying {ψi , ψj} = δij with all-to-all random interactions of p
fermions Sachdev-Ye ’92, Kitaev ’15:
H =

∑
i1<...<ip

Ji1...ipψi1 ...ψip

Conjectured to be dual to 1+1d gravitational model in the bulk
A tractable limit of SYK exists that is both analytically solvable
and interesting: we double-scale p → ∞ and N → ∞ keeping ratio
λ ≡ p2/N fixed ⇒ Double-scaled SYK: DSSYK
In Berkooz-Isachenkov-Narovlansky-Torrents ’18 ..., the same correlation functions as
in JT were obtained

Disk partition function:
Z (β) =

∫ π
0 dθ (e±2iθ; q2)∞ e−β2 cos(θ) with ρ(θ) ∼ (e±2iθ; q2)∞

q-Pochhammer: (a; q)∞=
∏∞

k=0(1− aqk)
q = e−λ
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DSSYK: group structure (1)

Boundary two-point function:∫ π
0 dθ1 ρ(θ1) e

−τ2 cos(θ1)
∫ π
0 dθ2 ρ(θ2) e

−(β−τ)2 cos(θ2) (q4h;q2)∞
(q2he±iθ1±iθ2 ;q2)∞

where (q4h;q2)∞
(q2h±2iθ1±2iθ2 ;q2)∞

=
∑+∞

n=0
Hn(cos(θ1)|q2)

(q2;q2)n
q2nhHn(cos(θ2)|q2)

Hn is continuous q-Hermite polynomial

→ Very similar structure as JT!

→ Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: Uq(su(1, 1)) defined by

[H,E ] = E , [H,F ] = −F , [E ,F ] = q2H−q−2H

q−q−1 where 0 < q < 1
Quantum group: Gauss-Euler decomposition Fronsdal-Galindo ’92:
g = eγF

q−2 e
2ϕH eβE

q2
, exq ≡

∑+∞
n=0

xn

[n]q!
, [n]q ≡ 1−qn

1−q

for non-commutative coordinates (γ, ϕ, β) satisfying
eϕγ = qγeϕ, eϕβ = qβeϕ, [β, γ] = 0

Exactly solvable lower-dimensional gravity models Thomas Mertens 10 16



DSSYK: group structure (1)

Boundary two-point function:∫ π
0 dθ1 ρ(θ1) e

−τ2 cos(θ1)
∫ π
0 dθ2 ρ(θ2) e

−(β−τ)2 cos(θ2) (q4h;q2)∞
(q2he±iθ1±iθ2 ;q2)∞

where (q4h;q2)∞
(q2h±2iθ1±2iθ2 ;q2)∞

=
∑+∞

n=0
Hn(cos(θ1)|q2)

(q2;q2)n
q2nhHn(cos(θ2)|q2)

Hn is continuous q-Hermite polynomial

→ Very similar structure as JT!

→ Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: Uq(su(1, 1)) defined by

[H,E ] = E , [H,F ] = −F , [E ,F ] = q2H−q−2H

q−q−1 where 0 < q < 1
Quantum group: Gauss-Euler decomposition Fronsdal-Galindo ’92:
g = eγF

q−2 e
2ϕH eβE

q2
, exq ≡

∑+∞
n=0

xn

[n]q!
, [n]q ≡ 1−qn

1−q

for non-commutative coordinates (γ, ϕ, β) satisfying
eϕγ = qγeϕ, eϕβ = qβeϕ, [β, γ] = 0

Exactly solvable lower-dimensional gravity models Thomas Mertens 10 16



DSSYK: group structure (1)

Boundary two-point function:∫ π
0 dθ1 ρ(θ1) e

−τ2 cos(θ1)
∫ π
0 dθ2 ρ(θ2) e

−(β−τ)2 cos(θ2) (q4h;q2)∞
(q2he±iθ1±iθ2 ;q2)∞

where (q4h;q2)∞
(q2h±2iθ1±2iθ2 ;q2)∞

=
∑+∞

n=0
Hn(cos(θ1)|q2)

(q2;q2)n
q2nhHn(cos(θ2)|q2)

Hn is continuous q-Hermite polynomial

→ Very similar structure as JT!

→ Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: Uq(su(1, 1)) defined by

[H,E ] = E , [H,F ] = −F , [E ,F ] = q2H−q−2H

q−q−1 where 0 < q < 1
Quantum group: Gauss-Euler decomposition Fronsdal-Galindo ’92:
g = eγF

q−2 e
2ϕH eβE

q2
, exq ≡

∑+∞
n=0

xn

[n]q!
, [n]q ≡ 1−qn

1−q

for non-commutative coordinates (γ, ϕ, β) satisfying
eϕγ = qγeϕ, eϕβ = qβeϕ, [β, γ] = 0

Exactly solvable lower-dimensional gravity models Thomas Mertens 10 16



DSSYK: group structure (1)

Boundary two-point function:∫ π
0 dθ1 ρ(θ1) e

−τ2 cos(θ1)
∫ π
0 dθ2 ρ(θ2) e

−(β−τ)2 cos(θ2) (q4h;q2)∞
(q2he±iθ1±iθ2 ;q2)∞

where (q4h;q2)∞
(q2h±2iθ1±2iθ2 ;q2)∞

=
∑+∞

n=0
Hn(cos(θ1)|q2)

(q2;q2)n
q2nhHn(cos(θ2)|q2)

Hn is continuous q-Hermite polynomial

→ Very similar structure as JT!

→ Explain explicitly (i.e. are the blue functions rep. matrices?)

Quantum algebra: Uq(su(1, 1)) defined by

[H,E ] = E , [H,F ] = −F , [E ,F ] = q2H−q−2H

q−q−1 where 0 < q < 1
Quantum group: Gauss-Euler decomposition Fronsdal-Galindo ’92:
g = eγF

q−2 e
2ϕH eβE

q2
, exq ≡

∑+∞
n=0

xn

[n]q!
, [n]q ≡ 1−qn

1−q

for non-commutative coordinates (γ, ϕ, β) satisfying
eϕγ = qγeϕ, eϕβ = qβeϕ, [β, γ] = 0

Exactly solvable lower-dimensional gravity models Thomas Mertens 10 16



DSSYK: group structure (1)

Boundary two-point function:∫ π
0 dθ1 ρ(θ1) e

−τ2 cos(θ1)
∫ π
0 dθ2 ρ(θ2) e

−(β−τ)2 cos(θ2) (q4h;q2)∞
(q2he±iθ1±iθ2 ;q2)∞

where (q4h;q2)∞
(q2h±2iθ1±2iθ2 ;q2)∞

=
∑+∞

n=0
Hn(cos(θ1)|q2)

(q2;q2)n
q2nhHn(cos(θ2)|q2)

Hn is continuous q-Hermite polynomial

→ Very similar structure as JT!

→ Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: Uq(su(1, 1)) defined by

[H,E ] = E , [H,F ] = −F , [E ,F ] = q2H−q−2H

q−q−1 where 0 < q < 1

Quantum group: Gauss-Euler decomposition Fronsdal-Galindo ’92:
g = eγF

q−2 e
2ϕH eβE

q2
, exq ≡

∑+∞
n=0

xn

[n]q!
, [n]q ≡ 1−qn

1−q

for non-commutative coordinates (γ, ϕ, β) satisfying
eϕγ = qγeϕ, eϕβ = qβeϕ, [β, γ] = 0

Exactly solvable lower-dimensional gravity models Thomas Mertens 10 16



DSSYK: group structure (1)

Boundary two-point function:∫ π
0 dθ1 ρ(θ1) e

−τ2 cos(θ1)
∫ π
0 dθ2 ρ(θ2) e

−(β−τ)2 cos(θ2) (q4h;q2)∞
(q2he±iθ1±iθ2 ;q2)∞

where (q4h;q2)∞
(q2h±2iθ1±2iθ2 ;q2)∞

=
∑+∞

n=0
Hn(cos(θ1)|q2)

(q2;q2)n
q2nhHn(cos(θ2)|q2)

Hn is continuous q-Hermite polynomial

→ Very similar structure as JT!

→ Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: Uq(su(1, 1)) defined by

[H,E ] = E , [H,F ] = −F , [E ,F ] = q2H−q−2H

q−q−1 where 0 < q < 1
Quantum group: Gauss-Euler decomposition Fronsdal-Galindo ’92:
g = eγF

q−2 e
2ϕH eβE

q2
, exq ≡

∑+∞
n=0

xn

[n]q!
, [n]q ≡ 1−qn

1−q

for non-commutative coordinates (γ, ϕ, β) satisfying
eϕγ = qγeϕ, eϕβ = qβeϕ, [β, γ] = 0

Exactly solvable lower-dimensional gravity models Thomas Mertens 10 16



DSSYK: group structure (1)

Boundary two-point function:∫ π
0 dθ1 ρ(θ1) e

−τ2 cos(θ1)
∫ π
0 dθ2 ρ(θ2) e

−(β−τ)2 cos(θ2) (q4h;q2)∞
(q2he±iθ1±iθ2 ;q2)∞

where (q4h;q2)∞
(q2h±2iθ1±2iθ2 ;q2)∞

=
∑+∞

n=0
Hn(cos(θ1)|q2)

(q2;q2)n
q2nhHn(cos(θ2)|q2)

Hn is continuous q-Hermite polynomial

→ Very similar structure as JT!

→ Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: Uq(su(1, 1)) defined by

[H,E ] = E , [H,F ] = −F , [E ,F ] = q2H−q−2H

q−q−1 where 0 < q < 1
Quantum group: Gauss-Euler decomposition Fronsdal-Galindo ’92:
g = eγF

q−2 e
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q2
, exq ≡

∑+∞
n=0

xn

[n]q!
, [n]q ≡ 1−qn

1−q

for non-commutative coordinates (γ, ϕ, β) satisfying
eϕγ = qγeϕ, eϕβ = qβeϕ, [β, γ] = 0

Exactly solvable lower-dimensional gravity models Thomas Mertens 10 16



DSSYK: group structure (2)

Let’s define left-regular representation by L̂ig = −Xig :

L̂F = −
(

d
dγ

)
q−2

, qL̂H = Tϕ
− log q/2R

γ
q

L̂E = −e−2ϕRγ
q2

(
d
dβ

)
q2
Tϕ
− log q − γ

Tϕ
log q−Rγ

q2
Tϕ
− log q

q−q−1

where we used the notation
(

d
dx

)
q
f (x) ≡ f (qx)−f (x)

qx−x ,

T x
a f (x) = f (x + a) and Rx

a f (x) = f (ax)

→ Casimir C is difference operator = qq2H+q−1q−2H

(q−q−1)2
+ FE =

qTϕ
log q+q−1Tϕ

− log q

(q−q−1)2
+
(

d
dγ

)
q−2

e−2ϕRγ
q2

(
d
dβ

)
q2
Tϕ
− log q

→ Impose same (boundary) constraints as in JT
Left eigenfunction: qnHn(cos(θ)|q2), ϕ = −n log q
Right eigenfunction: qn

(q2;q2)n
Hn(cos(θ)|q2)

→ precisely matches with the structure of DSSYK!
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Liouville gravity: Definition

Non-critical string from 2d conformal matter coupled to 2d gravity,
or critical string with a 2d Liouville + matter + ghost CFT Polyakov

’81, David ’88, Distler-Kawai ’89 . . .

Liouville gravity: SL + SM + Sgh
with conformal anomaly constraint cM + cL + cgh = 0

▶ Liouville action: SL = 1
4π

∫
Σ

[
(∇̂ϕ)2 + QR̂ϕ+ 4πµe2bϕ

]
Q = b + b−1, cL = 1 + 6Q2 > 25

▶ SM = arbitrary CFT with cM < 1

▶ Sgh is usual bc-ghost theory with cgh = −26
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Disk partition function and boundary two-point function

Amplitudes determined in TM-Turiaci ’20 using older results of Zamolodchikov2 et al.

Disk partition function:

Z (β) = β =
∫∞
0 ds sinh(2πbs) sinh

(
2πs
b

)
e−β cosh(2πbs)

Boundary two-point function:

B B

τ

β − τ

B = c ΦMeβLϕ

∼
∫ +∞
0 ds1ds2 ρ(s1) ρ(s2)e

− cosh 2πbs1τe− cosh 2πbs2(β−τ) Sb(h±is1±is2)
Sb(2h)

where h = b − βL, Sb is double sine function
ρ(s) ∼ sinh(2πbs) sinh

(
2πs
b

)
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Quantum group interpretation of Liouville gravity

where Sb(h±is1±is2)
Sb(2h)

∼
∫ +∞
−∞ dx R∗

s2(x)e
2hπxRs1(x) TM-Turiaci ’20

where Rs(x) =
eπi2sx

∫ +∞
−∞

dζ
(2πb)−2iζ/b−2is/b Sb(−iζ)Sb(−i2s − iζ)e−πiϵ(ζ2+2sζ)e2πiζx

→ Explain explicitly (i.e. are the blue functions rep. matrices?)

Based on so-called modular double of Uq(sl(2,R)) quantum
algebra Teschner ...

Quantum algebra: Two (commuting) copies of the Uq(sl(2,R))
quantum algebra [H,E ] = E , [H,F ] = −F , [E ,F ] = q2H−q−2H

q−q−1

with q = eπib
2
and q̃ = eπib

−2

Quantum group: g = gb(γf ) e
2ϕH g∗

b (βe) TM ’22 where gb is
Faddeev’s quantum dilogarithm, e = (2 sinπb2)E and
f = (2 sinπb2)F
→ Above blue function Rs(x) is indeed eigenfunction of associated
Casimir eigenvalue problem
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Outlook

Why are these models so similar in structure?

One can argue for bulk descriptions of all three models in terms of
Poisson-sigma model = generalization of BF-model with
non-linear symmetry algebra
Can be written, in turn, as dilaton gravity model with either sine
dilaton potential (DSSYK) or sinh dilaton potential (Liouville
gravity)

Leads to unconventional models of holography that are not aAdS:

▶ The sinh dilaton gravity model has a curvature singularity at
the boundary

▶ The sine dilaton gravity model can lead to positively curved
regions in spacetime, allowing us to implement dS physics
within the UV-complete model of DSSYK
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Conclusion

Discussed three gravitational models that share a lot of structure

▶ Amplitudes in JT gravity governed by SL(2,R)
Physics: Two-sided gravitational wavefunctions are
Hamiltonian eigenstates
Math: They are representation matrices that solve the Casimir
eigenvalue problem

▶ Amplitudes in double-scaled SYK governed by SUq(1, 1)

▶ Amplitudes in Liouville gravity governed by modular double of
SLq(2,R)

→ Defined and constructed regular representation of these
quantum groups and showed that the resulting Casimir equation
determines the two-boundary gravitational wavefunctions
→ Unified description in terms of dilaton gravity models with
different dilaton potentials

Thank you!
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