Exactly solvable lower-dimensional gravity models

Thomas Mertens
Ghent University

Based on arXiv:2306.00941 with A. Blommaert and S. Yao arXiv:2212.07696
and earlier work arXiv:2109.07770, arXiv:2006.07072, arXiv:1812.00918

Established by the European Commission

Introduction

In recent years, and sparked by developments in the SYK model, lower-dimensional exactly solvable gravitational models ($1+1 \mathrm{~d}$) have been (re)investigated in depth

Introduction

In recent years, and sparked by developments in the SYK model, lower-dimensional exactly solvable gravitational models ($1+1 \mathrm{~d}$) have been (re)investigated in depth
In this talk, I will discuss three interrelated 1+1d gravitational models, and in particular observe and unify the underlying structure of their gravitational amplitudes in terms of representation theory

Introduction

In recent years, and sparked by developments in the SYK model, lower-dimensional exactly solvable gravitational models ($1+1 \mathrm{~d}$) have been (re)investigated in depth
In this talk, I will discuss three interrelated 1+1d gravitational models, and in particular observe and unify the underlying structure of their gravitational amplitudes in terms of representation theory This approach has been my main focus for several years, and has been pursued with several collaborators (A. Blommaert, Y. Fan, J. Simon, G.J. Turiaci, G. Wong, S. Yao) + WIP with F. Mariani, A. Belaey

Outline

2d JT gravity

SYK and DSSYK

Liouville gravity

Conclusion

Jackiw-Teitelboim gravity (1)

Dilaton gravity $=1+1$ dimensional toy model of gravity $S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g}(\Phi R+V(\Phi))+S_{\mathrm{bdy}}$ Φ is dilaton field, $V(\Phi)$ is dilaton potential

Jackiw-Teitelboim gravity (1)

Dilaton gravity $=1+1$ dimensional toy model of gravity
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g}(\Phi R+V(\Phi))+S_{\mathrm{bdy}}$
Φ is dilaton field, $V(\Phi)$ is dilaton potential
Jackiw-Teitelboim (JT) 2d dilaton gravity Teitelboim '83, Jackiw '85
$I=-\frac{1}{16 \pi G} \int d^{2} x \sqrt{g} \Phi(R+2)-\frac{1}{8 \pi G} \int d \tau \sqrt{\gamma} \Phi_{b d y} K$
$\Lambda=-2<0 \rightarrow$ AdS version

Jackiw-Teitelboim gravity (1)

Dilaton gravity $=1+1$ dimensional toy model of gravity
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g}(\Phi R+V(\Phi))+S_{\mathrm{bdy}}$
Φ is dilaton field, $V(\Phi)$ is dilaton potential
Jackiw-Teitelboim (JT) 2d dilaton gravity Teitelboim '83, Jackiw '85
$I=-\frac{1}{16 \pi G} \int d^{2} x \sqrt{g} \Phi(R+2)-\frac{1}{8 \pi G} \int d \tau \sqrt{\gamma} \Phi_{b d y} K$
$\Lambda=-2<0 \rightarrow$ AdS version
Review results on thermal amplitudes in this model $\operatorname{Tr}\left[. e^{-\beta H}\right]$ from Euclidean gravitational path integral (PI)

Jackiw-Teitelboim gravity (1)

Dilaton gravity $=1+1$ dimensional toy model of gravity
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g}(\Phi R+V(\Phi))+S_{\mathrm{bdy}}$
Φ is dilaton field, $V(\Phi)$ is dilaton potential
Jackiw-Teitelboim (JT) 2d dilaton gravity Teitelboim '83, Jackiw '85
$I=-\frac{1}{16 \pi G} \int d^{2} x \sqrt{g} \Phi(R+2)-\frac{1}{8 \pi G} \int d \tau \sqrt{\gamma} \Phi_{b d y} K$
$\Lambda=-2<0 \rightarrow$ AdS version
Review results on thermal amplitudes in this model $\operatorname{Tr}\left[. e^{-\beta H}\right]$ from Euclidean gravitational path integral (PI)
In Euclidean gravity, a black hole geometry has a contractible thermal circle (cigar/disk topology) Gibbons-Hawking '77
Disk partition function (with holographic boundary of length β):
Maldacena-Stanford '16, Stanford-Witten '17

Jackiw-Teitelboim gravity (1)

Dilaton gravity $=1+1$ dimensional toy model of gravity
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g}(\Phi R+V(\Phi))+S_{\mathrm{bdy}}$
Φ is dilaton field, $V(\Phi)$ is dilaton potential
Jackiw-Teitelboim (JT) 2d dilaton gravity Teitelboim '83, Jackiw '85
$I=-\frac{1}{16 \pi G} \int d^{2} x \sqrt{g} \Phi(R+2)-\frac{1}{8 \pi G} \int d \tau \sqrt{\gamma} \Phi_{b d y} K$
$\Lambda=-2<0 \rightarrow$ AdS version
Review results on thermal amplitudes in this model $\operatorname{Tr}\left[. e^{-\beta H}\right]$ from Euclidean gravitational path integral (PI) In Euclidean gravity, a black hole geometry has a contractible thermal circle (cigar/disk topology) Gibbons-Hawking '77
Disk partition function (with holographic boundary of length β):
Maldacena-Stanford '16, Stanford-Witten '17

$$
\beta \circlearrowleft=Z(\beta)=\operatorname{Tr}\left[e^{-\beta H}\right]=\int_{0}^{+\infty} d k(k \sinh 2 \pi k) e^{-\beta k^{2}}
$$

Jackiw-Teitelboim gravity (1)

Dilaton gravity $=1+1$ dimensional toy model of gravity
$S=\frac{1}{16 \pi G} \int d^{2} x \sqrt{-g}(\Phi R+V(\Phi))+S_{\mathrm{bdy}}$
Φ is dilaton field, $V(\Phi)$ is dilaton potential
Jackiw-Teitelboim (JT) 2d dilaton gravity Teitelboim '83, Jackiw '85
$I=-\frac{1}{16 \pi G} \int d^{2} x \sqrt{g} \Phi(R+2)-\frac{1}{8 \pi G} \int d \tau \sqrt{\gamma} \Phi_{b d y} K$
$\Lambda=-2<0 \rightarrow$ AdS version
Review results on thermal amplitudes in this model $\operatorname{Tr}\left[. e^{-\beta H}\right]$ from Euclidean gravitational path integral (PI)
In Euclidean gravity, a black hole geometry has a contractible thermal circle (cigar/disk topology) Gibbons-Hawking '77
Disk partition function (with holographic boundary of length β):
Maldacena-Stanford '16, Stanford-Witten '17

$$
\beta \circlearrowleft=Z(\beta)=\operatorname{Tr}\left[e^{-\beta H}\right]=\int_{0}^{+\infty} d k(k \sinh 2 \pi k) e^{-\beta k^{2}}
$$

$=\mathrm{QG}$ thermal partition function whose saddle matches classical
JT black hole $M\left(T_{H}\right)$ (mass vs Hawking temperature)

Jackiw-Teitelboim gravity (2)

Boundary two-point function: Bagrets-Altand-Kamenev ' 16 , ${ }^{17}$, TM-Turiaci-Verlinde
'17, Blommaert-TM-Verschelde '18, Yang '18, Kitaev-Suh '18, '19, Iliesiu-Pufu-Verlinde-Wang '19 ...
$\left\langle\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right)\right\rangle_{\beta}=\operatorname{Tr}\left[\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right) e^{-\beta H}\right]=\underbrace{\tau}_{\beta-\tau}=$

Jackiw-Teitelboim gravity (2)

Boundary two-point function: Bagrets-Altand-Kamenev ' 16, , 17 , TM-Turiaci-Verlinde
'17, Blommaert-TM-Verschelde '18, Yang '18, Kitaev-Suh '18, '19, Iliesiu-Pufu-Verlinde-Wang '19 ...
$\left\langle\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right)\right\rangle_{\beta}=\operatorname{Tr}\left[\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right) e^{-\beta H}\right]=\underbrace{}_{\beta-\tau} h=$
$\int_{0}^{+\infty} d k_{1}\left(k_{1} \sinh 2 \pi k_{1}\right) \int_{0}^{+\infty} d k_{2}\left(k_{2} \sinh 2 \pi k_{2}\right) e^{-\tau k_{1}^{2}-(\beta-\tau) k_{2}^{2}} \frac{\Gamma\left(h \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 h)}$

Jackiw-Teitelboim gravity (2)

Boundary two-point function: Bagrets-Altand-Kamenev ' 16, , 17 , TM-Turiaci-Verlinde
'17, Blommaert-TM-Verschelde '18, Yang '18, Kitaev-Suh '18, '19, Iliesiu-Pufu-Verlinde-Wang '19 ...
$\left\langle\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right)\right\rangle_{\beta}=\operatorname{Tr}\left[\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right) e^{-\beta H}\right]=\underbrace{\tau}_{\beta-\tau}=$
$\int_{0}^{+\infty} d k_{1}\left(k_{1} \sinh 2 \pi k_{1}\right) \int_{0}^{+\infty} d k_{2}\left(k_{2} \sinh 2 \pi k_{2}\right) e^{-\tau k_{1}^{2}-(\beta-\tau) k_{2}^{2}} \frac{\Gamma\left(h \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 h)}$

Observation:

Building blocks of amplitudes have a group theory interpretation: For the continuous irrep $j=-1 / 2+i k$ of $\operatorname{SL}(2, \mathbb{R})$:

Jackiw-Teitelboim gravity (2)

Boundary two-point function: Bagrets-Altand-Kamenev ' 16, , 17 , TM-Turiaci-Verlinde
'17, Blommaert-TM-Verschelde '18, Yang '18, Kitaev-Suh '18, '19, Iliesiu-Pufu-Verlinde-Wang '19 ...
$\left\langle\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right)\right\rangle_{\beta}=\operatorname{Tr}\left[\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right) e^{-\beta H}\right]=\underbrace{\tau}_{\beta-\tau}=$
$\int_{0}^{+\infty} d k_{1}\left(k_{1} \sinh 2 \pi k_{1}\right) \int_{0}^{+\infty} d k_{2}\left(k_{2} \sinh 2 \pi k_{2}\right) e^{-\tau k_{1}^{2}-(\beta-\tau) k_{2}^{2}} \frac{\Gamma\left(h \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 h)}$

Observation:

Building blocks of amplitudes have a group theory interpretation:
For the continuous irrep $j=-1 / 2+i k$ of $\operatorname{SL}(2, \mathbb{R})$:
$k^{2}(+1 / 4)$ is the quadratic Casimir

Jackiw-Teitelboim gravity (2)

Boundary two-point function: Bagrets-Altand-Kamenev ' 16, , 17 , TM-Turiaci-Verlinde
'17, Blommaert-TM-Verschelde '18, Yang '18, Kitaev-Suh '18, '19, Iliesiu-Pufu-Verlinde-Wang '19 ...
$\left\langle\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right)\right\rangle_{\beta}=\operatorname{Tr}\left[\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right) e^{-\beta H}\right]=\underbrace{\tau}_{\beta-\tau}=$
$\int_{0}^{+\infty} d k_{1}\left(k_{1} \sinh 2 \pi k_{1}\right) \int_{0}^{+\infty} d k_{2}\left(k_{2} \sinh 2 \pi k_{2}\right) e^{-\tau k_{1}^{2}-(\beta-\tau) k_{2}^{2}} \frac{\Gamma\left(h \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 h)}$

Observation:

Building blocks of amplitudes have a group theory interpretation:
For the continuous irrep $j=-1 / 2+i k$ of $\operatorname{SL}(2, \mathbb{R})$:
$k^{2}(+1 / 4)$ is the quadratic Casimir
$k \sinh 2 \pi k$ is the Plancherel measure subtleties related to the precise algebraic structure

Jackiw-Teitelboim gravity (2)

Boundary two-point function: Bagrets-Altand-Kamenev '16, '17, TM-Turiaci-Verlinde
'17, Blommaert-TM-Verschelde '18, Yang '18, Kitaev-Suh '18, '19, Iliesiu-Pufu-Verlinde-Wang '19 ...
$\left\langle\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right)\right\rangle_{\beta}=\operatorname{Tr}\left[\mathcal{O}^{h}\left(\tau_{1}\right) \mathcal{O}^{h}\left(\tau_{2}\right) e^{-\beta H}\right]=\underbrace{\tau}_{\beta-\tau}=$
$\int_{0}^{+\infty} d k_{1}\left(k_{1} \sinh 2 \pi k_{1}\right) \int_{0}^{+\infty} d k_{2}\left(k_{2} \sinh 2 \pi k_{2}\right) e^{-\tau k_{1}^{2}-(\beta-\tau) k_{2}^{2}} \frac{\Gamma\left(h \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 h)}$

Observation:

Building blocks of amplitudes have a group theory interpretation:
For the continuous irrep $j=-1 / 2+i k$ of $\operatorname{SL}(2, \mathbb{R})$:
$k^{2}(+1 / 4)$ is the quadratic Casimir
$k \sinh 2 \pi k$ is the Plancherel measure subteteies related to the precise algebraic structure $\frac{\Gamma\left(h \pm i k_{1} \pm i k_{2}\right)}{\Gamma(2 h)}=\int_{-\infty}^{+\infty} d \phi K_{2 i k_{1}}\left(e^{\phi}\right) e^{2 h \phi} K_{2 i k_{2}}\left(e^{\phi}\right)=(\text { Clebsch-Gordan) })^{2}$ $K_{2 i k_{1}}\left(e^{\phi}\right)$ are rep matrix elements in the principal series, $e^{2 h \phi}$ is a discrete series rep matrix element $(j=-h)$

Gauge theory formulation of JT gravity: the BF model (2)

No coincidence!

$1^{\text {st }}$ order formulation of JT gravity can be written in terms of $\mathfrak{s l}(2, \mathbb{R})$ BF theory Fukuyama-Kamimura '85, Isler-Trugenberger '89, Chamseddine-Wyler '89 $S_{\mathrm{BF}} \sim \int_{\mathcal{M}} d^{2} x \operatorname{Tr}(B F)$

Gauge theory formulation of JT gravity: the BF model (2)

No coincidence!
$1^{\text {st }}$ order formulation of JT gravity can be written in terms of $\mathfrak{s l}(2, \mathbb{R}) \mathrm{BF}$ theory Fukuyama-Kaminura ' 85 , Isler-Tugenberger '89, Chamseddine-Wyler' 89
$S_{\mathrm{BF}} \sim \int_{\mathcal{M}} d^{2} x \operatorname{Tr}(B F)$
On manifold with boundary along τ-direction тм '18:

$$
S_{\mathrm{BF}} \sim \int_{\mathcal{M}} d^{2} x \operatorname{Tr}(B F)-\frac{1}{2} \oint_{\partial \mathcal{M}} d \tau \operatorname{Tr}\left(B A_{\tau}\right),\left.\quad B\right|_{\partial \mathcal{M}}=\left.A_{\tau}\right|_{\partial \mathcal{M}}
$$

Gauge theory formulation of JT gravity: the BF model (2)

No coincidence!

$1^{\text {st }}$ order formulation of JT gravity can be written in terms of $\mathfrak{s l}(2, \mathbb{R})$ BF theory Fukuyama-Kamimura ' '85, Iser-Trugenberger '89, Chamseddine-Wyler '89
$S_{\mathrm{BF}} \sim \int_{\mathcal{M}} d^{2} x \operatorname{Tr}(B F)$
On manifold with boundary along τ-direction тм '18:
$S_{\mathrm{BF}} \sim \int_{\mathcal{M}} d^{2} x \operatorname{Tr}(B F)-\frac{1}{2} \oint_{\partial \mathcal{M}} d \tau \operatorname{Tr}\left(B A_{\tau}\right),\left.\quad B\right|_{\partial \mathcal{M}}=\left.A_{\tau}\right|_{\partial \mathcal{M}}$ Path integrate over $B \longrightarrow A_{\mu}=g^{-1} \partial_{\mu} g$
\rightarrow Reduces to boundary action of large "would-be" gauge degrees of freedom:
$S_{\mathrm{BF}} \sim \oint_{\partial \mathcal{M}} d \tau \operatorname{Tr}\left(\left(g^{-1} \partial_{\tau} g\right)^{2}\right) \longrightarrow$ particle on group G

Gauge theory formulation of JT gravity: the BF model (2)

No coincidence!

$1^{\text {st }}$ order formulation of JT gravity can be written in terms of $\mathfrak{s l}(2, \mathbb{R})$ BF theory Fukuyama-Kamimura ' '85, Iser-Trugenberger '89, Chamseddine-Wyler '89
$S_{\mathrm{BF}} \sim \int_{\mathcal{M}} d^{2} x \operatorname{Tr}(B F)$
On manifold with boundary along τ-direction тм '18:
$S_{\mathrm{BF}} \sim \int_{\mathcal{M}} d^{2} x \operatorname{Tr}(B F)-\frac{1}{2} \oint_{\partial \mathcal{M}} d \tau \operatorname{Tr}\left(B A_{\tau}\right),\left.\quad B\right|_{\partial \mathcal{M}}=\left.A_{\tau}\right|_{\partial \mathcal{M}}$ Path integrate over $B \longrightarrow A_{\mu}=g^{-1} \partial_{\mu} g$
\rightarrow Reduces to boundary action of large "would-be" gauge degrees of freedom:
$S_{\mathrm{BF}} \sim \oint_{\partial \mathcal{M}} d \tau \operatorname{Tr}\left(\left(g^{-1} \partial_{\tau} g\right)^{2}\right) \longrightarrow$ particle on group G
Structure of theory:

- Hilbert space $L^{2}(G)$ is determined by Peter-Weyl theorem: $\mathcal{H}=\{|R, a, b\rangle, R=$ unitary irrep of $G, a, b=1 . . \operatorname{dim} R\}$
- Coordinate basis $\{|g\rangle, g \in G\}:\langle g \mid R, a b\rangle=\sqrt{\operatorname{dim} \mathrm{R}} R_{a b}(g)$

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions that moreover solve the (time-independent) Schrödinger equation: $\hat{H} R_{a b}(g)=\mathcal{C}_{R} R_{a b}(g)$ where $\hat{H}=$ Hamiltonian of particle on group system and \mathcal{C}_{R} is the quadratic Casimir in irrep R

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions that moreover solve the (time-independent) Schrödinger equation: $\hat{H} R_{a b}(g)=\mathcal{C}_{R} R_{a b}(g)$ where $\hat{H}=$ Hamiltonian of particle on group system and \mathcal{C}_{R} is the quadratic Casimir in irrep R Also: $\hat{H}=$ Two-bdy grav. Hamiltonian = Laplacian on group

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions that moreover solve the (time-independent) Schrödinger equation: $\hat{H} R_{a b}(g)=\mathcal{C}_{R} R_{a b}(g)$ where $\hat{H}=$ Hamiltonian of particle on group system and \mathcal{C}_{R} is the quadratic Casimir in irrep R Also: $\hat{H}=$ Two-bdy grav. Hamiltonian = Laplacian on group \rightarrow Explicit expression of $R_{a b}(g)$ by diagonalizing \hat{H}

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions that moreover solve the (time-independent) Schrödinger equation: $\hat{H} R_{a b}(g)=\mathcal{C}_{R} R_{a b}(g)$ where $\hat{H}=$ Hamiltonian of particle on group system and \mathcal{C}_{R} is the quadratic Casimir in irrep R Also: $\hat{H}=$ Two-bdy grav. Hamiltonian = Laplacian on group \rightarrow Explicit expression of $R_{a b}(g)$ by diagonalizing \hat{H} Math: Laplacian on $G \equiv$ Casimir in regular representation of \mathfrak{g}

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions that moreover solve the (time-independent) Schrödinger equation: $\hat{H} R_{a b}(g)=\mathcal{C}_{R} R_{a b}(g)$ where $\hat{H}=$ Hamiltonian of particle on group system and \mathcal{C}_{R} is the quadratic Casimir in irrep R Also: $\hat{H}=$ Two-bdy grav. Hamiltonian = Laplacian on group \rightarrow Explicit expression of $R_{a b}(g)$ by diagonalizing \hat{H} Math: Laplacian on $G \equiv$ Casimir in regular representation of \mathfrak{g} Left-regular representation: $f\left(g_{0}\right) \rightarrow f\left(g^{-1} \cdot g_{0}\right)$

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions that moreover solve the (time-independent) Schrödinger equation: $\hat{H} R_{a b}(g)=\mathcal{C}_{R} R_{a b}(g)$ where $\hat{H}=$ Hamiltonian of particle on group system and \mathcal{C}_{R} is the quadratic Casimir in irrep R Also: $\hat{H}=$ Two-bdy grav. Hamiltonian = Laplacian on group \rightarrow Explicit expression of $R_{a b}(g)$ by diagonalizing \hat{H} Math: Laplacian on $G \equiv$ Casimir in regular representation of \mathfrak{g} Left-regular representation: $f\left(g_{0}\right) \rightarrow f\left(g^{-1} \cdot g_{0}\right)$ Infinitesimally for 1-parameter subgroup:
$\hat{L}_{i} f\left(g_{0}\right)=\left.\frac{d}{d \epsilon} f\left(e^{-\epsilon X_{i}} g_{0}\right)\right|_{\epsilon=0} \Rightarrow \hat{L}_{i} g=-X_{i} g$ and $\hat{R}_{i} g=g X_{i}$

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions that moreover solve the (time-independent) Schrödinger equation: $\hat{H} R_{a b}(g)=\mathcal{C}_{R} R_{a b}(g)$ where $\hat{H}=$ Hamiltonian of particle on group system and \mathcal{C}_{R} is the quadratic Casimir in irrep R Also: $\hat{H}=$ Two-bdy grav. Hamiltonian = Laplacian on group \rightarrow Explicit expression of $R_{a b}(g)$ by diagonalizing \hat{H} Math: Laplacian on $G \equiv$ Casimir in regular representation of \mathfrak{g} Left-regular representation: $f\left(g_{0}\right) \rightarrow f\left(g^{-1} \cdot g_{0}\right)$ Infinitesimally for 1-parameter subgroup:
$\hat{L}_{i} f\left(g_{0}\right)=\left.\frac{d}{d \epsilon} f\left(e^{-\epsilon X_{i}} g_{0}\right)\right|_{\epsilon=0} \Rightarrow \hat{L}_{i} g=-X_{i} g$ and $\hat{R}_{i} g=g X_{i}$
\rightarrow Apply to JT gravity:
Algebra: $\mathfrak{s l}(2, \mathbb{R})$

$$
[H, E]=E, \quad[H, F]=-F, \quad[E, F]=2 H
$$

Gravitational wavefunctions of JT gravity (1)

\rightarrow Representation matrices $R_{a b}(g)$ physically identified as two-boundary wavefunctions that moreover solve the (time-independent) Schrödinger equation:
$\hat{H} R_{a b}(g)=\mathcal{C}_{R} R_{a b}(g)$ where $\hat{H}=$ Hamiltonian of particle on group system and \mathcal{C}_{R} is the quadratic Casimir in irrep R Also: $\hat{H}=$ Two-bdy grav. Hamiltonian = Laplacian on group \rightarrow Explicit expression of $R_{a b}(g)$ by diagonalizing \hat{H}
Math: Laplacian on $G \equiv$ Casimir in regular representation of \mathfrak{g} Left-regular representation: $f\left(g_{0}\right) \rightarrow f\left(g^{-1} \cdot g_{0}\right)$
Infinitesimally for 1-parameter subgroup:
$\hat{L}_{i} f\left(g_{0}\right)=\left.\frac{d}{d \epsilon} f\left(e^{-\epsilon X_{i}} g_{0}\right)\right|_{\epsilon=0} \Rightarrow \hat{L}_{i} g=-X_{i} g$ and $\hat{R}_{i} g=g X_{i}$
\rightarrow Apply to JT gravity:
Algebra: $\mathfrak{s l}(2, \mathbb{R})$

$$
[H, E]=E, \quad[H, F]=-F, \quad[E, F]=2 H
$$

Group: Gauss-Euler decomposition for $\operatorname{SL}(2, \mathbb{R})$ group element $g=e^{\gamma F} e^{2 \phi H} e^{\beta E}$ for coordinates (γ, ϕ, β)

Gravitational wavefunctions of JT gravity (2)

Regular representations: $\hat{L}_{i} g=-X_{i} g$ and $\hat{R}_{i} g=g X_{i}$:

$$
\begin{array}{ll}
\hat{L}_{F}=\partial_{\gamma}, & \hat{R}_{F}=-\beta^{2} \partial_{\beta}-\beta \partial_{\phi}+e^{2 \phi} \partial_{\gamma}, \\
\hat{L}_{H}=-\gamma \partial_{\gamma}-\frac{1}{2} \partial_{\phi}, & \hat{R}_{H}=-\beta \partial_{\beta}-\frac{1}{2} \partial_{\phi}, \\
\hat{L}_{E}=-\gamma^{2} \partial_{\gamma}-\gamma \partial_{\phi}+e^{2 \phi} \partial_{\beta}, & \hat{R}_{E}=\partial_{\beta},
\end{array}
$$

Gravitational wavefunctions of JT gravity (2)

Regular representations: $\hat{L}_{i} g=-X_{i} g$ and $\hat{R}_{i} g=g X_{i}$:

$$
\begin{array}{ll}
\hat{L}_{F}=\partial_{\gamma}, & \hat{R}_{F}=-\beta^{2} \partial_{\beta}-\beta \partial_{\phi}+e^{2 \phi} \partial_{\gamma} \\
\hat{L}_{H}=-\gamma \partial_{\gamma}-\frac{1}{2} \partial_{\phi}, & \hat{R}_{H}=-\beta \partial_{\beta}-\frac{1}{2} \partial_{\phi} \\
\hat{L}_{E}=-\gamma^{2} \partial_{\gamma}-\gamma \partial_{\phi}+e^{2 \phi} \partial_{\beta}, & \hat{R}_{E}=\partial_{\beta}, \\
\rightarrow & \text { Casimir } \mathcal{C}=\hat{H}=\left(-\frac{1}{4} \partial_{\phi}^{2}-e^{2 \phi} \partial_{\beta} \partial_{\gamma}\right)
\end{array}
$$

Gravitational wavefunctions of JT gravity (2)

Regular representations: $\hat{L}_{i} g=-X_{i} g$ and $\hat{R}_{i} g=g X_{i}$:

$$
\begin{array}{ll}
\hat{L}_{F}=\partial_{\gamma}, & \hat{R}_{F}=-\beta^{2} \partial_{\beta}-\beta \partial_{\phi}+e^{2 \phi} \partial_{\gamma} \\
\hat{L}_{H}=-\gamma \partial_{\gamma}-\frac{1}{2} \partial_{\phi}, & \hat{R}_{H}=-\beta \partial_{\beta}-\frac{1}{2} \partial_{\phi} \\
\hat{L}_{E}=-\gamma^{2} \partial_{\gamma}-\gamma \partial_{\phi}+e^{2 \phi} \partial_{\beta}, & \hat{R}_{E}=\partial_{\beta} \\
\rightarrow \text { Casimir } \mathcal{C}=\hat{H}=\left(-\frac{1}{4} \partial_{\phi}^{2}-e^{2 \phi} \partial_{\beta} \partial_{\gamma}\right)
\end{array}
$$

Extra feature: (without proof) For holographic boundaries in JT gravity, indices a, b in $R_{a b}(g)$ are fixed and constrained: a is eigenvalue of F^{\dagger} parabolic generator, b is eigenvalue of E parabolic generator (Brown-Henneaux aAdS, Hamiltonian reduction)

Gravitational wavefunctions of JT gravity (2)

Regular representations: $\hat{L}_{i} g=-X_{i} g$ and $\hat{R}_{i} g=g X_{i}$:

$$
\begin{array}{ll}
\hat{L}_{F}=\partial_{\gamma}, & \hat{R}_{F}=-\beta^{2} \partial_{\beta}-\beta \partial_{\phi}+e^{2 \phi} \partial_{\gamma}, \\
\hat{L}_{H}=-\gamma \partial_{\gamma}-\frac{1}{2} \partial_{\phi}, & \hat{R}_{H}=-\beta \partial_{\beta}-\frac{1}{2} \partial_{\phi}, \\
\hat{L}_{E}=-\gamma^{2} \partial_{\gamma}-\gamma \partial_{\phi}+e^{2 \phi} \partial_{\beta}, & \hat{R}_{E}=\partial_{\beta},
\end{array}
$$

\rightarrow Casimir $\mathcal{C}=\hat{H}=\left(-\frac{1}{4} \partial_{\phi}^{2}-e^{2 \phi} \partial_{\beta} \partial_{\gamma}\right)$
Extra feature: (without proof) For holographic boundaries in JT gravity, indices a, b in $R_{a b}(g)$ are fixed and constrained: a is eigenvalue of F^{\dagger} parabolic generator, b is eigenvalue of E parabolic generator (Brown-Henneaux aAdS, Hamiltonian reduction)
\Rightarrow Constrain $\hat{L}_{F}=\partial_{\gamma}=-1$ and $\hat{R}_{E}=\partial_{\beta}=1$ to implement gravitational boundary condition

Gravitational wavefunctions of JT gravity (2)

Regular representations: $\hat{L}_{i} g=-X_{i} g$ and $\hat{R}_{i} g=g X_{i}$:

$$
\begin{array}{ll}
\hat{L}_{F}=\partial_{\gamma}, & \hat{R}_{F}=-\beta^{2} \partial_{\beta}-\beta \partial_{\phi}+e^{2 \phi} \partial_{\gamma} \\
\hat{L}_{H}=-\gamma \partial_{\gamma}-\frac{1}{2} \partial_{\phi}, & \hat{R}_{H}=-\beta \partial_{\beta}-\frac{1}{2} \partial_{\phi}, \\
\hat{L}_{E}=-\gamma^{2} \partial_{\gamma}-\gamma \partial_{\phi}+e^{2 \phi} \partial_{\beta}, & \hat{R}_{E}=\partial_{\beta},
\end{array}
$$

\rightarrow Casimir $\mathcal{C}=\hat{H}=\left(-\frac{1}{4} \partial_{\phi}^{2}-e^{2 \phi} \partial_{\beta} \partial_{\gamma}\right)$
Extra feature: (without proof) For holographic boundaries in JT gravity, indices a, b in $R_{a b}(g)$ are fixed and constrained: a is eigenvalue of F^{\dagger} parabolic generator, b is eigenvalue of E parabolic generator (Brown-Henneaux aAdS, Hamiltonian reduction)
\Rightarrow Constrain $\hat{L}_{F}=\partial_{\gamma}=-1$ and $\hat{R}_{E}=\partial_{\beta}=1$ to implement gravitational boundary condition

$$
\left(-\frac{1}{4} \partial_{\phi}^{2}+e^{2 \phi}\right) \psi(\phi)=k^{2} \psi(\phi) \text { with solution } K_{2 i k}\left(2 e^{\phi}\right)
$$

The SYK-model: double-scaling limit

SYK model: $N 0+1$ dimensional Majorana fermions $\psi_{i}(t)$, satisfying $\left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j}$ with all-to-all random interactions of p fermions Sachdev-Ye '92, Kitaev '15:

$$
H=\sum_{i_{1}<\ldots<i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1} \ldots \psi_{i_{p}}}
$$

The SYK-model: double-scaling limit

SYK model: $N 0+1$ dimensional Majorana fermions $\psi_{i}(t)$, satisfying $\left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j}$ with all-to-all random interactions of p fermions Sachdev-Ye '92, Kitaev '15:
$H=\sum_{i_{1}<\ldots<i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1} \ldots} \ldots \psi_{i_{p}}$
Conjectured to be dual to $1+1$ d gravitational model in the bulk

The SYK-model: double-scaling limit

SYK model: $N 0+1$ dimensional Majorana fermions $\psi_{i}(t)$, satisfying $\left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j}$ with all-to-all random interactions of p fermions Sachdev-Ye '92, Kitaev '15: $H=\sum_{i_{1}<\ldots<i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1}} \ldots \psi_{i_{p}}$
Conjectured to be dual to $1+1 \mathrm{~d}$ gravitational model in the bulk A tractable limit of SYK exists that is both analytically solvable and interesting: we double-scale $p \rightarrow \infty$ and $N \rightarrow \infty$ keeping ratio $\lambda \equiv p^{2} / N$ fixed \Rightarrow Double-scaled SYK: DSSYK

The SYK-model: double-scaling limit

SYK model: $N 0+1$ dimensional Majorana fermions $\psi_{i}(t)$, satisfying $\left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j}$ with all-to-all random interactions of p fermions Sachdev-Ye '92, Kitaev '15:
$H=\sum_{i_{1}<\ldots<i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1}} \ldots \psi_{i_{p}}$
Conjectured to be dual to $1+1 \mathrm{~d}$ gravitational model in the bulk A tractable limit of SYK exists that is both analytically solvable and interesting: we double-scale $p \rightarrow \infty$ and $N \rightarrow \infty$ keeping ratio $\lambda \equiv p^{2} / N$ fixed \Rightarrow Double-scaled SYK: DSSYK
In Berkooz-lsachenkov-Narovlansky-Torrents '18 ..., the same correlation functions as
in JT were obtained

The SYK-model: double-scaling limit

SYK model: $N 0+1$ dimensional Majorana fermions $\psi_{i}(t)$, satisfying $\left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j}$ with all-to-all random interactions of p fermions Sachdev-Ye '92, Kitaev '15:
$H=\sum_{i_{1}<\ldots<i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1} \ldots \psi_{i_{p}}}$
Conjectured to be dual to $1+1 \mathrm{~d}$ gravitational model in the bulk A tractable limit of SYK exists that is both analytically solvable and interesting: we double-scale $p \rightarrow \infty$ and $N \rightarrow \infty$ keeping ratio $\lambda \equiv p^{2} / N$ fixed \Rightarrow Double-scaled SYK: DSSYK
In Berkooz-Isachenkov-Narovlansky-Torrents '18..., the same correlation functions as
in JT were obtained
Disk partition function:
$Z(\beta)=\int_{0}^{\pi} d \theta\left(e^{ \pm 2 i \theta} ; q^{2}\right)_{\infty} e^{-\beta 2 \cos (\theta)}$ with $\rho(\theta) \sim\left(e^{ \pm 2 i \theta} ; q^{2}\right)_{\infty}$
q-Pochhammer: $(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)$
$q=e^{-\lambda}$

DSSYK: group structure (1)

Boundary two-point function:

$$
\int_{0}^{\pi} d \theta_{1} \rho\left(\theta_{1}\right) e^{-\tau 2 \cos \left(\theta_{1}\right)} \int_{0}^{\pi} d \theta_{2} \rho\left(\theta_{2}\right) e^{-(\beta-\tau) 2 \cos \left(\theta_{2}\right)} \frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h} e^{\left. \pm i \theta_{1} \pm i \theta_{2} ; q^{2}\right)_{\infty}}\right.}
$$

DSSYK: group structure (1)

Boundary two-point function:

$\int_{0}^{\pi} d \theta_{1} \rho\left(\theta_{1}\right) e^{-\tau 2 \cos \left(\theta_{1}\right)} \int_{0}^{\pi} d \theta_{2} \rho\left(\theta_{2}\right) e^{-(\beta-\tau) 2 \cos \left(\theta_{2}\right)} \frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h} e^{ \pm i \theta_{1} \pm i \theta_{2}} ; q^{2}\right)_{\infty}}$
where $\frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{\left.2 h \pm 2 i \theta_{1} \pm 2 i \theta_{2} ; q^{2}\right)_{\infty}}=\sum_{n=0}^{+\infty} \frac{H_{n}\left(\cos \left(\theta_{1}\right) \mid q^{2}\right)}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n h} H_{n}\left(\cos \left(\theta_{2}\right) \mid q^{2}\right) .{ }^{2}\right)}$
H_{n} is continuous q-Hermite polynomial

DSSYK: group structure (1)

Boundary two-point function:

$\int_{0}^{\pi} d \theta_{1} \rho\left(\theta_{1}\right) e^{-\tau 2 \cos \left(\theta_{1}\right)} \int_{0}^{\pi} d \theta_{2} \rho\left(\theta_{2}\right) e^{-(\beta-\tau) 2 \cos \left(\theta_{2}\right)} \frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h} e^{ \pm i \theta_{1} \pm i \theta_{2}} ; q^{2}\right)_{\infty}}$
where $\frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{\left.2 h \pm 2 i \theta_{1} \pm 2 i \theta_{2} ; q^{2}\right)_{\infty}}=\sum_{n=0}^{+\infty} \frac{H_{n}\left(\cos \left(\theta_{1}\right) \mid q^{2}\right)}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n h} H_{n}\left(\cos \left(\theta_{2}\right) \mid q^{2}\right) .{ }^{2}\right)}$
H_{n} is continuous q-Hermite polynomial
\rightarrow Very similar structure as JT!

DSSYK: group structure (1)

Boundary two-point function:

$\int_{0}^{\pi} d \theta_{1} \rho\left(\theta_{1}\right) e^{-\tau 2 \cos \left(\theta_{1}\right)} \int_{0}^{\pi} d \theta_{2} \rho\left(\theta_{2}\right) e^{-(\beta-\tau) 2 \cos \left(\theta_{2}\right)} \frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h} e^{ \pm i \theta_{1} \pm i \theta_{2}} ; q^{2}\right)_{\infty}}$
where $\frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h \pm 2 i \theta_{1}} \pm 2 i \theta_{2} ; q^{2}\right)_{\infty}}=\sum_{n=0}^{+\infty} \frac{H_{n}\left(\cos \left(\theta_{1}\right) \mid q^{2}\right)}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n h} H_{n}\left(\cos \left(\theta_{2}\right) \mid q^{2}\right)$
H_{n} is continuous q-Hermite polynomial
\rightarrow Very similar structure as JT!
\rightarrow Explain explicitly (i.e. are the blue functions rep. matrices?)

DSSYK: group structure (1)

Boundary two-point function:

$\int_{0}^{\pi} d \theta_{1} \rho\left(\theta_{1}\right) e^{-\tau 2 \cos \left(\theta_{1}\right)} \int_{0}^{\pi} d \theta_{2} \rho\left(\theta_{2}\right) e^{-(\beta-\tau) 2 \cos \left(\theta_{2}\right)} \frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h} e^{ \pm i \theta_{1} \pm i \theta_{2}} ; q^{2}\right)_{\infty}}$
where $\frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h \pm 2 i \theta_{1}} \pm 2 i \theta_{2} ; q^{2}\right)_{\infty}}=\sum_{n=0}^{+\infty} \frac{H_{n}\left(\cos \left(\theta_{1}\right) \mid q^{2}\right)}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n h} H_{n}\left(\cos \left(\theta_{2}\right) \mid q^{2}\right)$
H_{n} is continuous q-Hermite polynomial
\rightarrow Very similar structure as JT!
\rightarrow Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: $\mathrm{U}_{q}(\mathfrak{s u}(1,1))$ defined by
$[H, E]=E, \quad[H, F]=-F, \quad[E, F]=\frac{q^{2 H}-q^{-2 H}}{q-q^{-1}}$ where $0<q<1$

DSSYK: group structure (1)

Boundary two-point function:

$\int_{0}^{\pi} d \theta_{1} \rho\left(\theta_{1}\right) e^{-\tau 2 \cos \left(\theta_{1}\right)} \int_{0}^{\pi} d \theta_{2} \rho\left(\theta_{2}\right) e^{-(\beta-\tau) 2 \cos \left(\theta_{2}\right)} \frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h} e^{ \pm i \theta_{1} \pm i \theta_{2}} ; q^{2}\right)_{\infty}}$
where $\frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h \pm 2 i \theta_{1}} \pm 2 i \theta_{2} ; q^{2}\right)_{\infty}}=\sum_{n=0}^{+\infty} \frac{H_{n}\left(\cos \left(\theta_{1}\right) \mid q^{2}\right)}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n h} H_{n}\left(\cos \left(\theta_{2}\right) \mid q^{2}\right)$
H_{n} is continuous q-Hermite polynomial
\rightarrow Very similar structure as JT!
\rightarrow Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: $\mathrm{U}_{q}(\mathfrak{s u}(1,1))$ defined by
$[H, E]=E, \quad[H, F]=-F, \quad[E, F]=\frac{q^{2 H}-q^{-2 H}}{q-q^{-1}}$ where $0<q<1$
Quantum group: Gauss-Euler decomposition Fronsdal-Galindo '92:
$g=e_{q^{-2}}^{\gamma F} e^{2 \phi H} e_{q^{2}}^{\beta E}, \quad e_{q}^{x} \equiv \sum_{n=0}^{+\infty} \frac{\chi^{n}}{[n] q!}, \quad[n]_{q} \equiv \frac{1-q^{n}}{1-q}$

DSSYK: group structure (1)

Boundary two-point function:

$\int_{0}^{\pi} d \theta_{1} \rho\left(\theta_{1}\right) e^{-\tau 2 \cos \left(\theta_{1}\right)} \int_{0}^{\pi} d \theta_{2} \rho\left(\theta_{2}\right) e^{-(\beta-\tau) 2 \cos \left(\theta_{2}\right)} \frac{\left(q^{44} ; q^{2}\right)_{\infty}}{\left(q^{2 h} e^{ \pm i \theta_{1} \pm i \theta_{2}} ; q^{2}\right)_{\infty}}$
where $\frac{\left(q^{4 h} ; q^{2}\right)_{\infty}}{\left(q^{2 h \pm 2 i \theta_{1}} \pm 2 i \theta_{2} ; q^{2}\right)_{\infty}}=\sum_{n=0}^{+\infty} \frac{H_{n}\left(\cos \left(\theta_{1}\right) \mid q^{2}\right)}{\left(q^{2} ; q^{2}\right)_{n}} q^{2 n h} H_{n}\left(\cos \left(\theta_{2}\right) \mid q^{2}\right)$
H_{n} is continuous q-Hermite polynomial
\rightarrow Very similar structure as JT!
\rightarrow Explain explicitly (i.e. are the blue functions rep. matrices?)
Quantum algebra: $\mathrm{U}_{q}(\mathfrak{s u}(1,1))$ defined by
$[H, E]=E, \quad[H, F]=-F, \quad[E, F]=\frac{q^{2 H}-q^{-2 H}}{q-q^{-1}}$ where $0<q<1$
Quantum group: Gauss-Euler decomposition Fronsdal-Galindo '92:
$g=e_{q^{-2}}^{\gamma F} e^{2 \phi H} e_{q^{2}}^{\beta E}, \quad e_{q}^{x} \equiv \sum_{n=0}^{+\infty} \frac{x^{n}}{[n]_{q}!}, \quad[n]_{q} \equiv \frac{1-q^{n}}{1-q}$
for non-commutative coordinates (γ, ϕ, β) satisfying
$e^{\phi} \gamma=q \gamma e^{\phi}, \quad e^{\phi} \beta=q \beta e^{\phi}, \quad[\beta, \gamma]=0$

DSSYK: group structure (2)

Let's define left-regular representation by $\hat{L}_{i} g=-X_{i} g$:

DSSYK: group structure (2)

Let's define left-regular representation by $\hat{L}_{i} g=-X_{i} g$:
$\hat{L}_{F}=-\left(\frac{d}{d \gamma}\right)_{q^{-2}}, \quad q^{\hat{L}_{H}}=T_{-\log q / 2}^{\phi} R_{q}^{\gamma}$
$\hat{L}_{E}=-e^{-2 \phi} R_{q^{2}}^{\gamma}\left(\frac{d}{d \beta}\right)_{q^{2}} T_{-\log q}^{\phi}-\gamma \frac{T_{\log q}^{\phi}-R_{q^{2}}^{\gamma} T_{-\log q}^{\phi}}{q-q^{-1}}$
where we used the notation $\left(\frac{d}{d x}\right)_{q} f(x) \equiv \frac{f(q x)-f(x)}{q x-x}$, $T_{a}^{x} f(x)=f(x+a)$ and $R_{a}^{x} f(x)=f(a x)$

DSSYK: group structure (2)

Let's define left-regular representation by $\hat{L}_{i} g=-X_{i} g$:
$\hat{L}_{F}=-\left(\frac{d}{d \gamma}\right)_{q^{-2}}, \quad q^{\hat{L}_{H}}=T_{-\log q / 2}^{\phi} R_{q}^{\gamma}$
$\hat{L}_{E}=-e^{-2 \phi} R_{q^{2}}^{\gamma}\left(\frac{d}{d \beta}\right)_{q^{2}} T_{-\log q}^{\phi}-\gamma \frac{T_{\log q}^{\phi}-R_{q^{2}}^{\gamma} T_{-\log q}^{\phi}}{q-q^{-1}}$
where we used the notation $\left(\frac{d}{d x}\right)_{q} f(x) \equiv \frac{f(q x)-f(x)}{q x-x}$,
$T_{a}^{x} f(x)=f(x+a)$ and $R_{a}^{x} f(x)=f(a x)$
\rightarrow Casimir \mathcal{C} is difference operator $=\frac{q q^{2 H}+q^{-1} q^{2 H}}{\left(q-q^{-1}\right)^{2}}+F E=$
$\frac{q T_{\log q}^{\phi}+q^{-1} T_{-\log q}^{\phi}}{\left(q-q^{-1}\right)^{2}}+\left(\frac{d}{d \gamma}\right)_{q^{-2}} e^{-2 \phi} R_{q^{2}}^{\gamma}\left(\frac{d}{d \beta}\right)_{q^{2}} T_{-\log q}^{\phi}$

DSSYK: group structure (2)

Let's define left-regular representation by $\hat{L}_{i} g=-X_{i} g$:
$\hat{L}_{F}=-\left(\frac{d}{d \gamma}\right)_{q^{-2}}, \quad q^{\hat{L}_{H}}=T_{-\log q / 2}^{\phi} R_{q}^{\gamma}$
$\hat{L}_{E}=-e^{-2 \phi} R_{q^{2}}^{\gamma}\left(\frac{d}{d \beta}\right)_{q^{2}} T_{-\log q}^{\phi}-\gamma \frac{T_{\log q}^{\phi}-R_{q^{2}}^{\gamma} T_{-\log q}^{\phi}}{q-q^{-1}}$
where we used the notation $\left(\frac{d}{d x}\right)_{q} f(x) \equiv \frac{f(q x)-f(x)}{q x-x}$,
$T_{a}^{x} f(x)=f(x+a)$ and $R_{a}^{x} f(x)=f(a x)$
\rightarrow Casimir \mathcal{C} is difference operator $=\frac{q q^{2 H}+q^{-1} q^{-2 H}}{\left(q-q^{-1}\right)^{2}}+F E=$
$\frac{q T_{\log q}^{\phi}+q^{-1} T_{--\log q}^{\phi}}{\left(q-q^{-1}\right)^{2}}+\left(\frac{d}{d \gamma}\right)_{q^{-2}} e^{-2 \phi} R_{q^{2}}^{\gamma}\left(\frac{d}{d \beta}\right)_{q^{2}} T_{-\log q}^{\phi}$
\rightarrow Impose same (boundary) constraints as in JT
Left eigenfunction: $q^{n} H_{n}\left(\cos (\theta) \mid q^{2}\right), \quad \phi=-n \log q$
Right eigenfunction: $\frac{q^{n}}{\left(q^{2} ; q^{2}\right)_{n}} H_{n}\left(\cos (\theta) \mid q^{2}\right)$
\rightarrow precisely matches with the structure of DSSYK!

Liouville gravity: Definition

Non-critical string from 2d conformal matter coupled to 2d gravity, or critical string with a 2 d Liouville + matter + ghost CFT Polyakov '81, David '88, Distler-Kawai '89.
Liouville gravity: $S_{L}+S_{M}+S_{\text {gh }}$
with conformal anomaly constraint $c_{M}+c_{L}+c_{\mathrm{gh}}=0$

Liouville gravity: Definition

Non-critical string from 2d conformal matter coupled to 2d gravity, or critical string with a 2 d Liouville + matter + ghost CFT Polyakov '81, David '88, Distler-Kawai '89.
Liouville gravity: $S_{L}+S_{M}+S_{\text {gh }}$
with conformal anomaly constraint $c_{M}+c_{L}+c_{\mathrm{gh}}=0$

- Liouville action: $S_{L}=\frac{1}{4 \pi} \int_{\Sigma}\left[(\hat{\nabla} \phi)^{2}+Q \hat{R} \phi+4 \pi \mu e^{2 b \phi}\right]$ $Q=b+b^{-1}, c_{L}=1+6 Q^{2}>25$

Liouville gravity: Definition

Non-critical string from 2d conformal matter coupled to 2d gravity, or critical string with a 2 d Liouville + matter + ghost CFT Polyakov '81, David '88, Distler-Kawai '89
Liouville gravity: $S_{L}+S_{M}+S_{\text {gh }}$
with conformal anomaly constraint $c_{M}+c_{L}+c_{\mathrm{gh}}=0$

- Liouville action: $S_{L}=\frac{1}{4 \pi} \int_{\Sigma}\left[(\hat{\nabla} \phi)^{2}+Q \hat{R} \phi+4 \pi \mu e^{2 b \phi}\right]$ $Q=b+b^{-1}, c_{L}=1+6 Q^{2}>25$
- $S_{M}=$ arbitrary CFT with $c_{M}<1$
- S_{gh} is usual $b c$-ghost theory with $c_{\mathrm{gh}}=-26$

Disk partition function and boundary two-point function

Amplitudes determined in Tм-Turiaci '20 using older results of Zamolodchikov² et al. Disk partition function:
$Z(\beta)=\beta \quad=\int_{0}^{\infty} d s \sinh (2 \pi b s) \sinh \left(\frac{2 \pi s}{b}\right) e^{-\beta \cosh (2 \pi b s)}$

Disk partition function and boundary two-point function

Amplitudes determined in TM-Turiaci ' 20 using older results of Zamolodchikov² et al.
Disk partition function:
$Z(\beta)=\beta \quad=\int_{0}^{\infty} d s \sinh (2 \pi b s) \sinh \left(\frac{2 \pi s}{b}\right) e^{-\beta \cosh (2 \pi b s)}$

Boundary two-point function:

$$
\mathcal{B}=c \Phi_{M} e^{\beta_{L} \phi}
$$

$\sim \int_{0}^{+\infty} d s_{1} d s_{2} \rho\left(s_{1}\right) \rho\left(s_{2}\right) e^{-\cosh 2 \pi b s_{1} \tau} e^{-\cosh 2 \pi b s_{2}(\beta-\tau)} \frac{S_{b}\left(h \pm i s_{1} \pm i s_{2}\right)}{S_{b}(2 h)}$ where $h=b-\beta_{L}, S_{b}$ is double sine function $\rho(s) \sim \sinh (2 \pi b s) \sinh \left(\frac{2 \pi s}{b}\right)$

Quantum group interpretation of Liouville gravity

where $\frac{S_{b}\left(h \pm i s_{1} \pm i s_{2}\right)}{S_{b}(2 h)} \sim \int_{-\infty}^{+\infty} d x R_{s_{2}}^{*}(x) e^{2 h \pi x} R_{s_{1}}(x)$ тM-Turiaci '20
where $R_{s}(x)=$
$e^{\pi i 2 s x} \int_{-\infty}^{+\infty} \frac{d \zeta}{(2 \pi b)^{-2 i \zeta / b-2 i s / b}} S_{b}(-i \zeta) S_{b}(-i 2 s-i \zeta) e^{-\pi i \epsilon\left(\zeta^{2}+2 s \zeta\right)} e^{2 \pi i \zeta x}$

Quantum group interpretation of Liouville gravity

where $\frac{S_{b}\left(h \pm i s_{1} \pm i s_{2}\right)}{S_{b}(2 h)} \sim \int_{-\infty}^{+\infty} d x R_{s_{2}}^{*}(x) e^{2 h \pi x} R_{S_{1}}(x)$ тМ-Turiaci '20
where $R_{s}(x)=$
$e^{\pi i 2 s x} \int_{-\infty}^{+\infty} \frac{d \zeta}{(2 \pi b)^{-2 i \zeta / b-2 i s / b}} S_{b}(-i \zeta) S_{b}(-i 2 s-i \zeta) e^{-\pi i \epsilon\left(\zeta^{2}+2 s \zeta\right)} e^{2 \pi i \zeta x}$ \rightarrow Explain explicitly (i.e. are the blue functions rep. matrices?)

Quantum group interpretation of Liouville gravity

$$
\text { where } \frac{S_{b}\left(h \pm i s_{1} \pm i s_{2}\right)}{S_{b}(2 h)} \sim \int_{-\infty}^{+\infty} d x R_{s_{2}}^{*}(x) e^{2 h \pi x} R_{s_{1}}(x) \text { тM-Turiaci '20 }
$$

where $R_{s}(x)=$
$e^{\pi i 2 s x} \int_{-\infty}^{+\infty} \frac{d \zeta}{(2 \pi b)^{-2 i \zeta / b-2 i s / b}} S_{b}(-i \zeta) S_{b}(-i 2 s-i \zeta) e^{-\pi i \epsilon\left(\zeta^{2}+2 s \zeta\right)} e^{2 \pi i \zeta x}$
\rightarrow Explain explicitly (i.e. are the blue functions rep. matrices?)
Based on so-called modular double of $\mathrm{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$ quantum algebra Teschner
Quantum algebra: Two (commuting) copies of the $\mathrm{U}_{q}(\mathfrak{s l}(2, \mathbb{R})$)
quantum algebra $[H, E]=E, \quad[H, F]=-F, \quad[E, F]=\frac{q^{2 H}-q^{-2 H}}{q-q^{-1}}$ with $q=e^{\pi i b^{2}}$ and $\tilde{q}=e^{\pi i b^{-2}}$

Quantum group interpretation of Liouville gravity

$$
\text { where } \frac{S_{b}\left(h \pm i s_{1} \pm i s_{2}\right)}{S_{b}(2 h)} \sim \int_{-\infty}^{+\infty} d x R_{s_{2}}^{*}(x) e^{2 h \pi x} R_{s_{1}}(x) \text { тм-Turiaci '20 }
$$

where $R_{s}(x)=$
$e^{\pi i 2 s x} \int_{-\infty}^{+\infty} \frac{d \zeta}{(2 \pi b)^{-2 i \zeta / b-2 i s / b}} S_{b}(-i \zeta) S_{b}(-i 2 s-i \zeta) e^{-\pi i \epsilon\left(\zeta^{2}+2 s \zeta\right)} e^{2 \pi i \zeta x}$
\rightarrow Explain explicitly (i.e. are the blue functions rep. matrices?)
Based on so-called modular double of $\mathrm{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$ quantum algebra Teschner ..
Quantum algebra: Two (commuting) copies of the $\mathrm{U}_{q}(\mathfrak{s l}(2, \mathbb{R})$)
quantum algebra $[H, E]=E, \quad[H, F]=-F, \quad[E, F]=\frac{q^{2 H}-q^{-2 H}}{q-q^{-1}}$ with $q=e^{\pi i b^{2}}$ and $\tilde{q}=e^{\pi i b^{-2}}$
Quantum group: $g=g_{b}(\gamma f) e^{2 \phi H} g_{b}^{*}(\beta e)$ тм'22 where g_{b} is Faddeev's quantum dilogarithm, $e=\left(2 \sin \pi b^{2}\right) E$ and $f=\left(2 \sin \pi b^{2}\right) F$

Quantum group interpretation of Liouville gravity

$$
\text { where } \frac{S_{b}\left(h \pm i s_{1} \pm i s_{2}\right)}{S_{b}(2 h)} \sim \int_{-\infty}^{+\infty} d x R_{s_{2}}^{*}(x) e^{2 h \pi x} R_{s_{1}}(x) \text { тм-Turiaci '20 }
$$

where $R_{s}(x)=$
$e^{\pi i 2 s x} \int_{-\infty}^{+\infty} \frac{d \zeta}{(2 \pi b)^{-2 i \zeta / b-2 i s / b}} S_{b}(-i \zeta) S_{b}(-i 2 s-i \zeta) e^{-\pi i \epsilon\left(\zeta^{2}+2 s \zeta\right)} e^{2 \pi i \zeta x}$
\rightarrow Explain explicitly (i.e. are the blue functions rep. matrices?)
Based on so-called modular double of $\mathrm{U}_{q}(\mathfrak{s l}(2, \mathbb{R}))$ quantum algebra Teschner...
Quantum algebra: Two (commuting) copies of the $\mathrm{U}_{q}(\mathfrak{s l}(2, \mathbb{R})$)
quantum algebra $[H, E]=E, \quad[H, F]=-F, \quad[E, F]=\frac{q^{2 H}-q^{-2 H}}{q-q^{-1}}$ with $q=e^{\pi i b^{2}}$ and $\tilde{q}=e^{\pi i b^{-2}}$
Quantum group: $g=g_{b}(\gamma f) e^{2 \phi H} g_{b}^{*}(\beta e)$ тм'22 where g_{b} is Faddeev's quantum dilogarithm, $e=\left(2 \sin \pi b^{2}\right) E$ and $f=\left(2 \sin \pi b^{2}\right) F$
\rightarrow Above blue function $R_{s}(x)$ is indeed eigenfunction of associated Casimir eigenvalue problem

Outlook

Why are these models so similar in structure?

Outlook

Why are these models so similar in structure?
One can argue for bulk descriptions of all three models in terms of Poisson-sigma model = generalization of BF-model with non-linear symmetry algebra

Outlook

Why are these models so similar in structure?
One can argue for bulk descriptions of all three models in terms of Poisson-sigma model = generalization of BF-model with non-linear symmetry algebra
Can be written, in turn, as dilaton gravity model with either sine dilaton potential (DSSYK) or sinh dilaton potential (Liouville gravity)

Outlook

Why are these models so similar in structure?

One can argue for bulk descriptions of all three models in terms of Poisson-sigma model $=$ generalization of BF-model with non-linear symmetry algebra
Can be written, in turn, as dilaton gravity model with either sine dilaton potential (DSSYK) or sinh dilaton potential (Liouville gravity)
Leads to unconventional models of holography that are not aAdS:

- The sinh dilaton gravity model has a curvature singularity at the boundary
- The sine dilaton gravity model can lead to positively curved regions in spacetime, allowing us to implement dS physics within the UV-complete model of DSSYK

Conclusion

Discussed three gravitational models that share a lot of structure

Conclusion

Discussed three gravitational models that share a lot of structure

- Amplitudes in JT gravity governed by $\operatorname{SL}(2, \mathbb{R})$

Conclusion

Discussed three gravitational models that share a lot of structure

- Amplitudes in JT gravity governed by $\operatorname{SL}(2, \mathbb{R})$ Physics: Two-sided gravitational wavefunctions are Hamiltonian eigenstates
Math: They are representation matrices that solve the Casimir eigenvalue problem

Conclusion

Discussed three gravitational models that share a lot of structure

- Amplitudes in JT gravity governed by $\operatorname{SL}(2, \mathbb{R})$ Physics: Two-sided gravitational wavefunctions are Hamiltonian eigenstates
Math: They are representation matrices that solve the Casimir eigenvalue problem
- Amplitudes in double-scaled SYK governed by $\mathrm{SU}_{q}(1,1)$
- Amplitudes in Liouville gravity governed by modular double of $\mathrm{SL}_{q}(2, \mathbb{R})$

Conclusion

Discussed three gravitational models that share a lot of structure

- Amplitudes in JT gravity governed by $\operatorname{SL}(2, \mathbb{R})$

Physics: Two-sided gravitational wavefunctions are Hamiltonian eigenstates
Math: They are representation matrices that solve the Casimir eigenvalue problem

- Amplitudes in double-scaled SYK governed by $\mathrm{SU}_{q}(1,1)$
- Amplitudes in Liouville gravity governed by modular double of $\mathrm{SL}_{q}(2, \mathbb{R})$
\rightarrow Defined and constructed regular representation of these quantum groups and showed that the resulting Casimir equation determines the two-boundary gravitational wavefunctions

Conclusion

Discussed three gravitational models that share a lot of structure

- Amplitudes in JT gravity governed by $\operatorname{SL}(2, \mathbb{R})$

Physics: Two-sided gravitational wavefunctions are Hamiltonian eigenstates
Math: They are representation matrices that solve the Casimir eigenvalue problem

- Amplitudes in double-scaled SYK governed by $\mathrm{SU}_{q}(1,1)$
- Amplitudes in Liouville gravity governed by modular double of $\mathrm{SL}_{q}(2, \mathbb{R})$
\rightarrow Defined and constructed regular representation of these quantum groups and showed that the resulting Casimir equation determines the two-boundary gravitational wavefunctions
\rightarrow Unified description in terms of dilaton gravity models with different dilaton potentials

Conclusion

Discussed three gravitational models that share a lot of structure

- Amplitudes in JT gravity governed by $\operatorname{SL}(2, \mathbb{R})$

Physics: Two-sided gravitational wavefunctions are Hamiltonian eigenstates
Math: They are representation matrices that solve the Casimir eigenvalue problem

- Amplitudes in double-scaled SYK governed by $\mathrm{SU}_{q}(1,1)$
- Amplitudes in Liouville gravity governed by modular double of $\mathrm{SL}_{q}(2, \mathbb{R})$
\rightarrow Defined and constructed regular representation of these quantum groups and showed that the resulting Casimir equation determines the two-boundary gravitational wavefunctions
\rightarrow Unified description in terms of dilaton gravity models with different dilaton potentials

Thank you!

