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QFT of spacetime: what does it mean?

-« spacetime = events and their geometric (& causal) relations

neglect fact that events =/= manifold points (due to diffeo invariance, have to be defined wrt dynamical fields)
- QFT on spacetime = QFT of physical entities for given spacetime

(including perturbative QG, partially QFT of spacetime if backreaction is considered)

» | QFT of spacetime = spacetime is fully dynamical
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example: QG path integral 3 3 )—/ D ge M

but spacetime topology is fixed, thus possible geometries are constrained o 5

» | QFT of spacetime = both spacetime geometry and spacetime topology are dynamical
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plus, can have in mind "emergent spacetime/gravity" scenarios, with continuum gravitational
field and spacetime replaced by more abstract non-spatiotemporal (possibly discrete) entities



Quantum gravity = quantum theory of atomic constituents of emergent spacetime

quantum theory of "new" non-spatiotemporal entities

continuum spacetime and geometric quantum observables
reconstructed from collective quantum dynamics of
"atoms of space”

quantum spacetime as a (background-independent) quantum many-body system

extraction of spacetime and cosmology similar to typical problem in condensed matter theory
(from atoms to macroscopic effective continuum physics)

+ GR from "hydrodynamic" approximation of fundamental "atomic" quantum theory

- all GR structures and dynamics are to be approximately obtained (in relational language) at effective level

- not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"



QFT of spacetime: what does it mean?

QFT of spacetime = both spacetime geometry and spacetime topology are dynamical

plus, maybe "QFT of spacetime" indicates (unconsciously) formulation in which we can still use most
standard QFT techniques, e.g. perturbation theory, renormalization (with some notion of scale), and

maybe also some sort of reference background for our dynamical fields (even if this cannot be spacetime)

» QFT of spacetime = QFT on only background allowed by "background independence of GR"

- available/allowed background structures in GR:
* spatial topology

- space of metrics (up to diffeos) + matterfield configurations = superspace
* signature

* local gage group (Lorentz)

plus, can have in mind "emergent spacetime/gravity" scenarios, with continuum gravitational
field and spacetime replaced by more abstract non-spatiotemporal (possibly discrete) entities

QFT of spacetime with "standard" QFT language and dynamical topology alongside dynamical geometry has
been proposed long time ago .....
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- difficulties with canonical inner product (indefinite supermetric)

 suppression of cosmological constant via wormholes corrections
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* Issues motivating going beyond canonical geometrodynamics:

- difficulties with canonical inner product (indefinite supermetric)

+ suppression of cosmological constant via wormholes corrections ( )T
Ts

. , . . . : 3, 3 3 il l

path integral can be defined for manifolds with spatial topology change G( 1, G2, 93) N——
T

jon = o T
specifying matching conditions at junctions (ensuring that 4-geometries are counted only once) ~— :

T J
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 Hilbert space:
 canonical Hilbert space (solutions of QG constraints) —» "timeless Fock space" of "many universes"

- "deparametrized" many-universes Fock space wrt to "clock field" appearing in 3rd quantized action
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more in spirit of emergent spacetime scenarios
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- all GR structures and dynamics are to be approximately obtained (in relational language) at effective level

- not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"
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states = generic assemblies of building blocks, including glued ones -

interactions = discrete spacetime structures

result: discrete gravity path integral replacing continuum one in Feynman expansion

ZA—/Dso Sl = ZA @ @ ‘ ________

— — SR({Le})
A[M] — / Dg 6_SEH(9) - lZmA_)OO d,u {L} or sum over lattices + sum
{g|M}

A _ over discrete geometric data
lima—o »  p(a,A) e~ Sr(the=al) J

issue: ¢ identify 3rd quantized action that produces sum over whole discretized manifolds (weighted by lattice gravity)

with only wormhole topologies arising in the perturbative sum

no example of such "global discrete" 3rd quantization except 2d cases, reconstructed from generalised 2d CDT

J. Ambjorn et al, '09, '15, '21

way forward: go atomic! . L .
we have successful examples  and promising generalizations of it



random matrix models for 2d (euclidean) QG

- matrices ~ 1d simplices (building blocks of 1d space) links/matrices Mij i,j=1,....N
- action example: S(M) = 1t7“]\42 ~ I yMB = EM@ KL MR, — LMiijanl yanl
2 v N 2 "/ VN

K'Yy = 674 0 VIr ki = 60, 6"k 0

™M |
iJj

2=

« partition function: (
I

v
i) FZF — E :gVFNFF—%VF: E g" NX = ZeJr g x(A) —
\ N . I M I

« Feynman diagrams = (ribbon graphs dual to) 2d cellular complexes (here, simplicial) of arbitrary topology

- Feynman amplitudes = 2d discrete gravity path integral on equilateral lattice

discrete "locally generated" 3rd quantization: sum over (discrete) geometries + sum over topologies

topologies ~wormholes (2d setting is crucial)

o

Q]



control over random matrix models

1 1 | |
S(M) = §ter2 — \/‘q;ﬁtrl\f3 = iszKjlkiMkl - \;;NMZijanlV]nlmki

« partition function: (
I

- in large-N limit, planar (spherical) diagrams dominate, i.e. trivial topology

- continuum limit = phase transition (condensation) to theory of large continuum surfaces

expectation value for the total area of surface, for large number of vertices, is:

(A) = a(ia) = (Vr) = ag-InZ(g) ~ =

e which continuum theory does it correspond to? 2d quantum Liouville gravity

+ double scaling limit:

defining: K~ ! = N( — )(2_26) : ~ 2h—2, _ =2 2
g: g — &c Weget.Z_ZK, =Kk “fo+hH + K + .......
h

continuum limit to which all

can take combined limit N — oo and g — gc holding « fixed = topologies contribute!

» 3rd quantization of 2d Liouville (euclidean) QG
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example: D=3
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Til 1D corresponding to a (D-1)-simplex
real rank-D tensor
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k=0
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example: D=3

- Feynman amplitudes = discrete gravity /”+ E:> .

path integral on equilateral lattice F




Tensor mOdels (Ambjorn, Durhuus, Sasakura, ..., Gurau, Rivasseau, Bonzom, Ryan, Benedetti, Ben Geloun, Tanasa, ..... )

Construction generalized to D dimensions (tensor models generating D-dimensional simplicial complexes)

Til 1D corresponding to a (D-1)-simplex
real rank-D tensor
1 A "

L L . . _ _ 1 pattern of gluing of D+1 (D-1)-simplices

action: S(T) — §Tz1,...,zp Tzl...zD - ND(D-1)/4 T@'k ' to form boundary of D-simplex
k=0
Vr Vr D(D -1
Quantum dynamics: 7 — | DT ¢~ S(T:A) — Z A Ip = Z A Nir— W ( i )
sym/(T") - sym/(T")

Feynman diagrams dual to simplicial D-complexes of any topology

example: D=3

« Feynman amplitudes = discrete gravity —] E:> .

path integral on equilateral lattice F

 purely combinatorial 3rd quantization :;

- all topologies (not just wormholes) included in perturbative sum
- also spatial topologies can be dynamical

- finite system - correspondence to gravity to be looked for in continuum large-N limit
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G = Lie group
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1 A
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- Feynman diagrams are dual to cellular complexes of any topology

* perturbative expansion of quantum dynamics gives sum
over cellular complexes of all topologies
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adding data to the tensors: tensorial group field theories

toward a full 3rd quantization picture (i.e. richer field domain & quantum geometry)

G = Lie group
. D
Til,...,ID ? 90(917 Xy gD) ¥ - G~ —C (can extend to quantum groups)
domain can be extended to include local directions gO(gl, s 4D )Z) Q . GD X Rd — C

- field theory action with non-local interactions, describing how simplices connect to form higher-cells

details depend on (class of) models

S(0.9) = 5 [ldglp@@le)e(a) + o [1dgiade(gn)ep@ioV(giagin) + e

“combinatorial non-locality” /
in pairing of field arguments

- Feynman diagrams are dual to cellular complexes of any topology

* perturbative expansion of quantum dynamics gives sum
over cellular complexes of all topologies

AT

Z = /D@D@ et NpP) = Ar
ZF: sym(T’)

proper QFT (on group manifold)

which data? which dynamics (action, Feynman amplitudes)? ------ > quantum geometric models



TGFTs: well defined, controllable QFTs?

fully quantum geometric TGFTs --> more involved quantum amplitudes

simpler TGFT models --> more mathematical control

control over topology/combinatorics of TGFT diagrams

- techniques from crystallization theory (colored graphs, ...) are crucial
Gurau, Rivasseau, Bonzom, Ben Geloun, Tanasa,
Riello, Carrozza, Kaminski, Ryan, ......

large-N limit and melonic regime (N ~size of tensors ~ cut-off in irrep labels)

perturbative renormalizability Benedetti, Ben Geloun, Carrozza, Tanasa, DO,
Rivasseau, Gurau, Lahoche, Ousmane-Samary, ......

many renormalizable TGFT models - different dimensions (rank), abelian & non-abelian groups,
various conditions (e.g. gauge invariance)

quantum geometric 4d TGFT models (GFTs) more challenging

T. Krajewski et al., '10; A. Riello, '13; V.

results on scaling of amplitudes (for some diagrams) ~ radiative corrections Bonzom, B. Dittrich, 15; P. Dona’, ‘17;
P. Dona et al, '19; M. Finocchiaro, DO,

- (including all those obtained from spin foam perspective) '20; P. Dona et al. '22

constructive aspects Benedetti, Gurau, Rivasseau, .....



TGFTs: well defined, controllable QFTs?

fully quantum geometric TGFTs --> more involved quantum amplitudes

simpler TGFT models --> more mathematical control

- Functional Renormalization Group analysis
- different dimensions (rank), abelian & non-abelian groups, various conditions (e.g. gauge invariance)

- flows beyond melonic sector, studies of asymptotic safety/freedom

Ben Geloun, Carrozza, Tanasa, Toriumi, Krajewski,
Martini, DO, Rivasseau, Gurau, Lahoche, Ousmane-
Samary, Benedetti, Pithis, Thiirigen, ..

. critical behaviour

- under analytic control for tensor models and simple TGFTs

- analysis of critical behaviour and phase transitions in IR, via FRG, for TGFTs

- Landau-Ginzburg mean field analysis Marchetti, DO, Pithis, Thurigen, ...

- also for fully quantum geometric models

- mean field approx appears more reliable for more physical GFTs

see talk by A. Pithis




GFTs: basics 4d case - specific class of models  Barrett, Crane, De Pietri, Freidel, Krasnov,
Rovelli, Perez, DO, Livine, ......

see talk by H. Haggard
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GFTs: basics 4d case - specific class of models  Barrett, Crane, De Pietri, Freidel, Krasnov,
Rovelli, Perez, DO, Livine, ......

atoms of space ~ quantum 3-simplices with extra scalar dofs see talk by H. Haggard

N

- geometric variables: triangle vectors ~ su(2) Lie algebra elements

- observables: e.g. triangle areas, volume
1 — — —
AZ:|bz| V:E\/bl'bQng il

A
— —

become operators: ), — J;

Hilbert space of spin network vertex ~ quantum tetrahedron

quantum tetrahedron

d
. , Ho=P (X Vo o I~
(in terms of SU(2) irreps) ~ |\ ~ =~

i, \ =1 repr. space intertwiner space

, i i .
quantum geometric operators |] n > € V/  diagonalises area operator

act on this Hilbert space: E - . ,
P 1) € TN = Invg {V]l R...® V]ﬂ diagonalises volume operator

+ scalar dofs ®L2(R X ... X R)
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- equivalent representation: U(gy, ..., g4) = ¥(g1h, ..., g4h) = Z RS 34,1D%1n1( .. D%4n4( )le %41
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thus
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- Fock space
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. equivalentrepresentation:\Il(glj,.,)gél):q;(glh ,g4h Z IZARE J4IDJ1 ( ) DJ4 (g4)C~71 'j41

mi1...1M4y min1

mang

{gi,mi;l}

thus

L2 (SU(2)4/SU(2)) (quantum geometry dofs)

- Fock space

F(Hy) = @ sym {(H ® e e ')}

- GFT field operators (creating/annihilating tetrahedra):

1. X" = lgr s x") 2(9), #'(7)] =

- discrete (collective) quantum geometric observables

e.g. volume Vo = /[dgi][dgﬂsﬁ(gi)V(gi,gé')@(gé) = > ST V(I) ¢l J;)
7

%



o - i Barrett, Crane, De Pietri, Freidel, Krasnov,
GFTS: qu|CS 4d case SpelelC class of models Rovelli, Perez, DO, Livine, ......

- equivalent representation: ¥(gy, ..., g4) = ¥(g1 h, ..., g4h) = Z gIt-dsl Dt (g1
{gi,ms31}

thus

L2 (SU(2)4/SU(2)) (quantum geometry dofs)

- Fock space

F(Hy) = Py sym { ( M 7—[(2) - ® H(V)) }

- GFT field operators (creating/annihilating tetrahedra):

—

P91, x*) = lgrxts- - X") [@(g), @T(g’)] —
- discrete (collective) quantum geometric observables

eg volume Vior = / dgi)ldg])3" (9:) V(ging}) 0(al) = 37 61 V(i) 8(J;)
J

- maximal entanglement of "triangle dofs" ~ gluing of tetrahedra across triangle

entangled states ~ extended simplicial complexes

see talks by S. Langenscheidt
& G. Chirco
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dynamics of quantum atomic geometry

GFT action = prescription for weights associated to building blocks of 4d lattice in sum over discrete geometries

S(0.9) = 5 [ [dgle@le)e(e) + 1y [ giale(gn)op(@io)V (giasgin)  + e
ise AN
“= /DSODSO IR =) sym(T") Ar

r
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GFTS' bGSICS 4d case SpelelC class of models Rovelli, Perez, DO, Livine, ......

dynamics of quantum atomic geometry

GFT action = prescription for weights associated to building blocks of 4d lattice in sum over discrete geometries

_ 1 A _ _
S(0.9) = 5 [ lgle@@Ke)e(e) + 1y [Wdgialelgn)-eGp)V(gagiv) + ce
5 (0.7) AT
Z = [ DeDyp e \¥7¥ = A
/ ©Dg EF: (D) AT
- Feynman diagrams = cellular complexes of arbitrary topology De Pietri, Petronio, '00; R. Gurau, '10; ...

labelled by group-theoretic data (group elements, group irreps, ...)

Feynman amplitudes (model-dependent) = sum over group-theoretic data (group elements,
Lie algebra elements, group irreps, ... ) associated to lattice dual to Feynman diagram

basic guideline for choosing action: quantum geometric input from canonical LQG, simplicial geometry

Reisenberger,Rovelli, 00

- GFT Feynman amplitudes = lattice gravity path integrals = spin foam models
A. Baratin, DO, ‘11

fully discrete and quantum geometric 3rd quantization: QFT for quantum "atoms of space” M. Finocehiaro, DO, "18

- GFT quanta ~ quantum tetrahedra ~ spin network vertices
- entangled GFT many-body states ~ (2nd quantized) spin networks

+ GFT (perturbative) amplitudes = spin foam amplitudes ~ simplicial gravity path integrals
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from perspective of fundamental QG atoms of space:
continuum geometry = coarse-grained description of discrete geometry of many (infinite) QG atoms
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GFT (condensate) cosmology: general strategy

from perspective of fundamental QG atoms of space:
continuum geometry = coarse-grained description of discrete geometry of many (infinite) QG atoms

GR dynamics = approximate description of collective quantum dynamics of many (infinite) QG atoms

extracting effective continuum dynamics from QG ~ typical problem of quantum many-body physics

GFT: similar QFT language and tools as in quantum many-body physics

note: this is main outstanding issue of all non-perturbative QG approaches

cosmology expected to correspond to "most coarse-grained” dynamics

» in other words: effective dynamics of » QG hydrodynamics
special (global) observables of full theory
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 hypothesis: universe as QG quantum fluid (condensate)
- extract approximate hydrodynamic egns for QG fluid (density and phase)
- compute relational cosmological observables in hydrodynamic approximation

- translate hydrodynamic egns into egns for cosmological observables



GFT (condensate) cosmology: general strategy

 hypothesis: universe as QG quantum fluid (condensate)
 extract approximate hydrodynamic egns for QG fluid (density and phase)
- compute relational cosmological observables in hydrodynamic approximation

- translate hydrodynamic egns into egns for cosmological observables

S(0.9) = 5 [ lgle@@IKe)e(e) + 1y [ldgiale(gn)-eGp)V(gagiv) + ce
. _ AV
— A ZS}\( ) ) _
Z = /Dnggp et o) = EF sym(T) Ar

Fx(J) = mZ\[J|  Dlg| = sup;(J-¢—F(J)) (o) =0¢

* simplest approximation: ~ 1 .
meaﬁ P ﬁsdrodynamics I [gb] ~ S\ (gb) mean field ~ condensate wavefunction

 corresponding quantum states:
(simplest): GFT field coherent state

| > — ex (A) \()> superposition of infinitely many spin networks dofs,
g) = XpAo “gas”of tetrahedra, all associated with same state

&:=/d4g o(91)¢'(g91)  o(grk) = olgr)

\ condensate wavefunction (also incl. scalar dofs)




GFT (condensate) cosmology: general features

« immediate cosmological interpretation of (domain of) condensate wavefunction:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace

o (D) D =~ {geometries of tetrahedron} ~
S. Gielen, DO, L. Sindoni, '13

~ {continuum spatial geometries at a point} =~ S. Gielen. '15

~ minisuperspace of homogeneous geometries A. Jercher, DO, A. Pithis, '21
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GFT (condensate) cosmology: general features

« immediate cosmological interpretation of (domain of) condensate wavefunction:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace
o (D) D ~ {geometries of tetrahedron} ~
) . . ) S. Gielen, DO, L. Sindoni, '13
~ {continuum spatial geometries at a point} =~ 3. Gielen. '15
~ minisuperspace of homogeneous geometries A. Jercher, DO, A. Pithis, '21

- general form of resulting (Gross-Pitaevskii) equations of motion for condensate wavefunction (mean field):
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cosmology as QG hydrodynamics ~ non-linear extension of (loop) quantum cosmology

that is, in isotropic restriction and with just one matter field:

O(CL, ¢) "wavefunction” on minisuperspace

K(a, 04, ,04)0(a, @) + V'[o(a,$)] =0  hydrodynamic (non-linear, possibly non-local) eqn on minisuperspace

like in minisuperspace 3rd quantization, but:
+ kinetic term is not WdW operator

* interaction term dictated by simplicial quantum geometry, not continuum topology change or separate universe cosmology




Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock+ 3 rods + 1 matter scalar field)

Sgrr = K +U +U”
h= /ng dhl/ddx A% de¢ d¢’ @(gr. X)K (g1, hr; (x — X)3s (¢ — &) hr, )", &)

5) 5)
:/ddngb/(Hdg?)U "'79[ H gI7 ,u Qb
a=1 (=1




Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock+ 3 rods + 1 matter scalar field)

Sepr = K+ U + U
h= /ng dh; / d%x d%’ d¢ d¢’ @(gr, \)K (g1, hr; (x — X)3, (¢ — ¢")?)e(hr, (X' )", @)

5) 5)
:/ddxdgb/<Hdg?>U "'79[ H gI7 ,u Qb
a=1 (=1

restriction to "good clock+rods" condensate states - peakedness properties on clock/rod values

4// peaked functions (e.g. Gaussians)
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quantum geometric EPRL model with 4 scalar dofs (1 clock+ 3 rods + 1 matter scalar field)
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restriction to "good clock+rods" condensate states - peakedness properties on clock/rod values
/ peaked functions (e.g. Gaussians)
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simplifying assumptions:
- subdominant GFT interactions: U << K (consistent with LQG/spin foam and discrete gravity interpretation)

- isotropy:  condensate wavefunction depends on single j (plus clock/rods/matter)
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quantum geometric EPRL model with 4 scalar dofs (1 clock+ 3 rods + 1 matter scalar field)

Sepr = K+ U + U
h= /ng dh; / d%x d%’ d¢ d¢’ @(gr, \)K (g1, hr; (x — X)3, (¢ — ¢")?)e(hr, (X' )", @)
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restriction to "good clock+rods" condensate states - peakedness properties on clock/rod values

4// peaked functions (e.g. Gaussians)
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simplifying assumptions:
- subdominant GFT interactions: U << K (consistent with LQG/spin foam and discrete gravity interpretation)

- isotropy:  condensate wavefunction depends on single j (plus clock/rods/matter)

resulting (free) mean field hydrodynamics eqn: Fourier mode of matter

. ~ / field variable
056;(z,my) — iy005j(x, mg) — NE (7T¢)O'] (z,74) + a®*V?5;(x,7y) =0

dependence on Ve \ 1 1522 i)
parameters of Y= 5 ° ( )EJZ = 2 TJ,2(7T¢) (1 + 3 ) o = §—2 7“9) = ~?O)
model and state €20 0 €20 K,




Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock+ 3 rods + 1 matter scalar field)

using: J; = pj GXp[in] rewrite in standard hydrodynamic form (fluid density, phase)

homogeneous background + inhomogeneous perturbations (spacetime localization defined in relational terms)

pj =Pjt0p;  0;=0;+00; p =00 m) 0= 000w

L. Marchetti, DO, '20, '21,'22
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Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock+ 3 rods + 1 matter scalar field)

using: 0j = pj GXp[in] rewrite in standard hydrodynamic form (fluid density, phase)

homogeneous background + inhomogeneous perturbations (spacetime localization defined in relational terms)

pj =p;+0p;  0;=0;+ 00, p=pa%ms) 8= 0",
background eqns: (", mg) — [(é}(:po, 7s))° + M (mg) — 7052, qu)} pi(z?,7y) =0
. . (p7)'(2°,my)
9// 0 9/. 0 . 2 J o ()\) 2 — 0
J (Qj 77T¢) —|— ( j(aj 77T¢) ,7/ ) ,03 (xo 7_‘_¢) /BJ
now, need to obtain equations for physical observables
© universe volume V= / d"x / dgr dg7 ¢ (91, x")V (91, 97)@(97, X*)
- value of clock/rods scalar fields Xt = /d” /dgzx o' (g1, x*)o(91, X%)
. n Jd .
- momentum of clock/rods scalar fields /d /dg; [ (91, x° (a—so gr, X )]
- 1
- value of matter scalar field O = ;/ng/dllX/dﬂ_qb@ g1, x“,w)@w@(gz,x“,%)
- momentum of matter scalar field H¢ = /dg;/d X/dw¢ TP T(g[,x“,w(b)@(g[,xu,w@

L. Marchetti, DO, '20, '21,'22 2nd quantized operators acting on fundamental GFT Fock space




Derivation of effective cosmological dynamics: main steps

- expectation values of fundamental observables in peaked states: relational spacetime-localized interpretation

N(xoaxi) = <U€,5,7T077Tm,w“‘N‘U€,5momx,w“> V(xoaxi) = <‘76,5,7ro,7ra;,96“‘V’06,5,Wo,ﬁm,w”>
X'u, (x()? xz) = <0.€)537T077T:I:7x'u |V|O‘€75)7TO77TQB7$’LL> = '/L”u H(ZCO7 ‘/'Cz) = <O-€75777077Tm7xu ‘HV‘0-67577T077T:B733M>

¢(xosz) = <0-€75)7T0)7TZC7$'U'|¢‘0-€7577T077Tw7$'u> H¢('CBO)$Z) = <O-€,5,7T0,7T93,CU“‘]/‘_‘\[¢‘0-€,5,7T0,7Tw,$“>

observables of effective continuum gravitational physics = collective observables, averages in suitable QG states
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- derivatives with respect to "clock time" = expectation value of "clock scalar field"

- depend on conserved quantities associated to choice of condensate state
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- expectation values of fundamental observables in peaked states: relational spacetime-localized interpretation
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observables of effective continuum gravitational physics = collective observables, averages in suitable QG states

- can now turn GFT hydrodynamic egns into equations for cosmological observables

background volume dynamics: L. Marchetti, DO, '21  A. Jercher, DO, A. Pithis, 21
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- derivatives with respect to "clock time" = expectation value of "clock scalar field"

- depend on conserved quantities associated to choice of condensate state

* now we can analyse the emergent cosmological dynamics in different regimes
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* intermediate times: large volume - QG interactions still subdominant

V'\? v - classical Friedmann dynamics in GR
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- late times: as universe expands, interactions become more relevant, until they drive evolution
» accelerated cosmological expansion
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- "phenomenological” approach (simplified GFT interactions):
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value of cosmological constant linked to value of critical density at quantum bounce
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(both depending on volume eigenvalue of dominant mode and state-dependent constant) A — Q5 (1)

DO, X. Pang, to appear 3V12



M. Assanioussi, G. Calcagni, A. Calcinari, M. De Cesare, G. Chirco, R. Dekhil, F.

GFT Cosmology some results Gerhardt, S. Gielen, A. Jercher, |. Kotecha, S. Liberati, L. Marchetti, DO, X. Pang, A.
(among many....) Pithis, A. Polaczek, M. Sakellariadou, L. Sindoni, A. Tomov, Y. Wang, E. Wilson-Ewing,
« very early times: very small volume - QG interactions subdominant quan’Fum bounpe |
~ (no big bang singularity)!

~ y
for | I f states: — 2
or large class of states V = Zj V?pj

& / Pi (X) 7 0vX . remains positive at all times | -
__(with single turning point) y M

DO, L. Sindoni, E. Wilson-Ewing, '16;
L. Marchetti, DO, '20, '21

* intermediate times: large volume - QG interactions still subdominant

V'\? v - classical Friedmann dynamics in GR
(here written neglecting matter contribution) (—) = — = 127G (wrt relational clock, with effective
V V Newton constant) - flat FRW

- late times: as universe expands, interactions become more relevant, until they drive evolution
2 —

» accelerated cosmological expansion
X. Pang, DO, '21 157
- "phenomenological” approach (simplified GFT interactions): 1}
2vv// I n 0.5
- effective cosmological dynamics w=23— for "emergent matter® s ol
(V)2 component (of QG origin)

-0.5 ¢
order-6 interactions 4l

2> modes —> effective phantom-like dark energy (of pure QG origin) e

0O 2 4 6 8 10 12 14 16 18
InV

X. Pang, DO, '21 + asymptotic De Sitter universe

- value of cosmological constant linked to value of critical density at quantum bounce

2
(both depending on volume eigenvalue of dominant mode and state-dependent constant) A — 4;625 (1)
3V

DO, X. Pang, to appear

« QG-produced early-time acceleration possible M. De Cesare, A. Pithis, M. Sakellariadou, 17;
T. Landstatter, L. Marchetti, DO, to appear; P. Fischer, L. Marchetti, DO, to appear



GFT cosmology many other results

« GFT (deparametrized) quantization wrt scalar field clock

relation between "frozen" and deparametrized formalism S. Gielen, '21

E. Wilson-Ewing, '18; S. Gielen, A. Polaczek, E. Wilson-Ewing, '19

cosmological perturbations

see talk by L. Marchetti

- localization fully relational, analysis still in mean field approx.

- dynamics of cosmological perturbations

L. Marchetti, DO, '21

- cosmological perturbations in GFT models including timelike tetrahedra  A. Jercher, L. Marchetti, A. Pithis, to appear

- effective field theory for scalar matter (QG signatures?) R. Dekhil, S.

Liberati, DO, to appear

other approaches to cosmological perturbations  s. Gielen, DO, ‘17 S. Gielen, '18 F. Gerhardt, DO, E. Wilson-Ewing, ‘18

reduction to LQC (as special sector of GFT cosmology)

DO, L. Sindoni, E. Wilson-Ewing, '16; S. Gielen, '17;

L. Marchetti, DO, '20, '21; G. Calcagni, .......

anisotropies A pithis, M. Sakellariadou, '16; M. De Cesare, DO, A. Pithis, M. Sakellariadou, ‘17; A. Calcinari, S. Gielen, '22; Y. Wang, DO, in prog

thermal fluctuations (of QG observables) during cosmological evolution

+ requires extension of GFT formalism to thermal states -
concrete proposal for covariant quantum statistical mechanics

cosmological dynamics from generalised (squeezed) GFT states
analysis of quantum fluctuations of observables during cosmic evolution

many free scalar fields S. Gielen, A. Polaczek, '20

M. Assanioussi, |I. Kotecha, '19,'20

|. Kotecha, '20; |. Kotecha, DO, '18;
G. Chirco, I. Kotecha, DO, '18

S. Gielen, A. Polaczek, '19

S. Gielen, A. Polaczek, '19; L. Marchetti, DO, '21



Main messages

modern discrete version of 3rd quantization formalism for QG, incorporating topology change, exist ‘
tensorial group field theory as combinatorial generalization and quantum geometric enrichment of 2d matrix models |
candidate definition of simplicial gravity path integrals, including their continuum limit

candidate definition of spin foam models, including their continuum limit

can be controlled (sum over topologies, renormalizability, etc) - level of control depends on complexity of model
continuum cosmological dynamics can be extracted from their (mean field) hydrodynamics

emergent cosmological dynamics shows quantum bounce (and late-time acceleration)

|
h



Thank you for your attention



