Modern (discrete) 3rd quantization and emergent cosmology

Daniele Oriti
Arnold Sommerfeld Center for Theoretical Physics
Munich Center for Mathematical Philosophy
Munich Center for Quantum Science and Technology
Center for Advanced Studies
Ludwig-Maximilians-University, Munich, Germany, EU

Quantum Gravity 2023 - Radboud University Nijmegen, The Netherlands, 14.7.2023

Arnold Sommerfeld

QFT of spacetime: what does it mean?

- spacetime $=$ events and their geometric (\& causal) relations
neglect fact that events =/= manifold points (due to diffeo invariance, have to be defined wrt dynamical fields)
- QFT on spacetime = QFT of physical entities for given spacetime
(including perturbative QG, partially QFT of spacetime if backreaction is considered)

```
QFT of spacetime = spacetime is fully dynamical
```


QFT of spacetime: what does it mean?

- spacetime $=$ events and their geometric (\& causal) relations
neglect fact that events $=/=$ manifold points (due to diffeo invariance, have to be defined wrt dynamical fields)
- QFT on spacetime = QFT of physical entities for given spacetime
(including perturbative QG, partially QFT of spacetime if backreaction is considered)

- non-perturbative $Q G=$ fully dynamical geometry $=$ background-independence $=$ no spacetime is fixed
- any non-perturbative QG theory is a QFT of spacetime, by definition
example: QG path integral $\quad G\left({ }^{3} g,{ }^{3} g^{\prime}\right)=\int_{3_{g}}^{3^{\prime}} D^{4} g e^{-S}$

QFT of spacetime: what does it mean?

- spacetime = events and their geometric (\& causal) relations
neglect fact that events $=/=$ manifold points (due to diffeo invariance, have to be defined wrt dynamical fields)
- QFT on spacetime = QFT of physical entities for given spacetime
(including perturbative QG, partially QFT of spacetime if backreaction is considered)

```
QFT of spacetime = spacetime is fully dynamical
```

- non-perturbative $\mathrm{QG}=$ fully dynamical geometry $=$ background-independence $=$ no spacetime is fixed
- any non-perturbative QG theory is a QFT of spacetime, by definition
example: QG path integral $\quad G\left({ }^{3} g,{ }^{3} g^{\prime}\right)=\int_{3_{g}}^{{ }^{3} g^{\prime}} D^{4} g e^{-S}$
but spacetime topology is fixed, thus possible geometries are constrained

> QFT of spacetime = both spacetime geometry and spacetime topology are dynamical

QFT of spacetime: what does it mean?

QFT of spacetime = both spacetime geometry and spacetime topology are dynamical
plus, maybe "QFT of spacetime" indicates (unconsciously) formulation in which we can still use most standard QFT techniques, e.g. perturbation theory, renormalization (with some notion of scale), and maybe also some sort of reference background for our dynamical fields (even if this cannot be spacetime)

QFT of spacetime: what does it mean?

QFT of spacetime = both spacetime geometry and spacetime topology are dynamical
plus, maybe "QFT of spacetime" indicates (unconsciously) formulation in which we can still use most standard QFT techniques, e.g. perturbation theory, renormalization (with some notion of scale), and maybe also some sort of reference background for our dynamical fields (even if this cannot be spacetime)
\longrightarrow QFT of spacetime = QFT on only background allowed by "background independence of GR"

QFT of spacetime: what does it mean?

QFT of spacetime = both spacetime geometry and spacetime topology are dynamical
plus, maybe "QFT of spacetime" indicates (unconsciously) formulation in which we can still use most standard QFT techniques, e.g. perturbation theory, renormalization (with some notion of scale), and maybe also some sort of reference background for our dynamical fields (even if this cannot be spacetime)
\longrightarrow QFT of spacetime = QFT on only background allowed by "background independence of GR"

- available/allowed background structures in GR:
- spatial topology
- spacetime topology
- space of metrics (up to diffeos) + matterfield configurations = superspace
- signature
- local gage group (Lorentz)

QFT of spacetime: what does it mean?

QFT of spacetime = both spacetime geometry and spacetime topology are dynamical
plus, maybe "QFT of spacetime" indicates (unconsciously) formulation in which we can still use most standard QFT techniques, e.g. perturbation theory, renormalization (with some notion of scale), and maybe also some sort of reference background for our dynamical fields (even if this cannot be spacetime)
\longrightarrow QFT of spacetime = QFT on only background allowed by "background independence of GR"

- available/allowed background structures in GR:
- spatial topology
- epacet
- space of metrics (up to diffeos) + matterfield configurations = superspace
- signature
- local gage group (Lorentz)

QFT of spacetime: what does it mean?

QFT of spacetime = both spacetime geometry and spacetime topology are dynamical
plus, maybe "QFT of spacetime" indicates (unconsciously) formulation in which we can still use most standard QFT techniques, e.g. perturbation theory, renormalization (with some notion of scale), and maybe also some sort of reference background for our dynamical fields (even if this cannot be spacetime)
\longrightarrow QFT of spacetime = QFT on only background allowed by "background independence of GR"

- available/allowed background structures in GR:
- spatial topology ?
- epacet
- space of metrics (up to diffeos) + matterfield configurations = superspace
- signature
- local gage group (Lorentz)

QFT of spacetime: what does it mean?

QFT of spacetime = both spacetime geometry and spacetime topology are dynamical
plus, maybe "QFT of spacetime" indicates (unconsciously) formulation in which we can still use most standard QFT techniques, e.g. perturbation theory, renormalization (with some notion of scale), and maybe also some sort of reference background for our dynamical fields (even if this cannot be spacetime)
\longrightarrow QFT of spacetime = QFT on only background allowed by "background independence of GR"

- available/allowed background structures in GR:
- spatial topology ?
- epacot
- space of metrics (up to diffeos) + matterfield configurations = superspace
- signature
- local gage group (Lorentz)
plus, can have in mind "emergent spacetime/gravity" scenarios, with continuum gravitational field and spacetime replaced by more abstract non-spatiotemporal (possibly discrete) entities

Quantum gravity = quantum theory of atomic constituents of emergent spacetime
quantum theory of "new" non-spatiotemporal entities
continuum spacetime and geometric quantum observables reconstructed from collective quantum dynamics of "atoms of space"

quantum spacetime as a (background-independent) quantum many-body system
extraction of spacetime and cosmology similar to typical problem in condensed matter theory (from atoms to macroscopic effective continuum physics)

- GR from "hydrodynamic" approximation of fundamental "atomic" quantum theory
- all GR structures and dynamics are to be approximately obtained (in relational language) at effective level
- not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"

QFT of spacetime: what does it mean?

QFT of spacetime = both spacetime geometry and spacetime topology are dynamical
plus, maybe "QFT of spacetime" indicates (unconsciously) formulation in which we can still use most standard QFT techniques, e.g. perturbation theory, renormalization (with some notion of scale), and maybe also some sort of reference background for our dynamical fields (even if this cannot be spacetime)
\longrightarrow QFT of spacetime = QFT on only background allowed by "background independence of GR"

- available/allowed background structures in GR:
- spatial topology
- epacetimetepelog
- space of metrics (up to diffeos) + matterfield configurations = superspace
- signature
- local gage group (Lorentz)
plus, can have in mind "emergent spacetime/gravity" scenarios, with continuum gravitational field and spacetime replaced by more abstract non-spatiotemporal (possibly discrete) entities

QFT of spacetime with "standard" QFT language and dynamical topology alongside dynamical geometry has been proposed long time ago

3rd quantization of gravity, a QFT of universes

Coleman, Banks, Giddings, Strominger, Caderni, Martellini, Rubakov, McGuigan, Klebanov, Susskind,.....,

- canonical quantum geometrodynamics
see talk by Kiefer
S. Giddings, A. Strominger, '88
$\begin{aligned} & \text { globally hyperbolic topology, with given } \\ & \text { (e.g. spherical) spatial topology }\end{aligned} S^{\mathbf{3}} \times R \quad S=\int_{0}^{T} d t(\pi \cdot \dot{g}-N H) \quad$ proper time gauge
- Wheeler-DeWitt operator $\boldsymbol{N} \square \mathbf{\Psi}\left({ }^{\mathbf{3}} \boldsymbol{g}\right)=\mathbf{0} \quad$ analogous to Dalambertian on superspace, with DeWitt supermetric
- canonical QG Hilbert space (solutions of canonical QG constraints)

3rd quantization of gravity, a QFT of universes

Coleman, Banks, Giddings, Strominger, Caderni, Martellini, Rubakov, McGuigan, Klebanov, Susskind,.....,

- canonical quantum geometrodynamics
see talk by Kiefer
S. Giddings, A. Strominger, '88
$\underset{\text { (e.g. spherical) spatial topology }}{\text { globally hyperbolic topology, wiven }} S^{3} \times R \quad S=\int_{0}^{T} d t(\pi \cdot \dot{g}-N H) \quad$ proper time gauge
- Wheeler-DeWitt operator $\boldsymbol{N} \square \mathbf{\Psi}\left({ }^{\mathbf{3}} g\right)=\mathbf{0}$ analogous to Dalambertian on superspace, with DeWitt supermetric
- canonical QG Hilbert space (solutions of canonical QG constraints)
- gravitational path integral as "Feynman propagator" (Green function on superspace)
$G\left({ }^{3} g,{ }^{3} g^{\prime}\right)=\int_{3_{g}}^{3^{3}} D^{\prime} g e^{-S}=\int_{0}^{\infty} d T K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right) \quad K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right)=\int_{3_{g}(0)}^{3_{g}(T)} \prod_{t=0}^{T} D^{3} g(t) D^{3} \pi(t) e^{-S}$

$\square G\left({ }^{3} g,{ }^{3} g^{\prime}\right)=\square \int_{0}^{\infty} d T K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right)=\frac{1}{N} \delta\left({ }^{3} g,{ }^{3} g^{\prime}\right)$
related discussion in spin foam context
E. Livine, DO, '02; DO, '05;;...
E. Bianchi, P. Martin-Dussaud, '21

м
g

3rd quantization of gravity, a QFT of universes

globally hyperbolic topology, with given (e.g. spherical) spatial topology

- canonical QG Hilbert space (solutions of canonical QG constraints)
- gravitational path integral as "Feynman propagator" (Green function on superspace)
$G\left({ }^{3} g^{3} g^{3} g^{\prime}\right)=\int_{3_{g}}^{3^{\prime} g^{\prime}} D^{4} g e^{-S}=\int_{0}^{\infty} d T K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right) \quad K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right)=\int_{g_{g}(0)}^{{ }^{3} g^{\prime}(T)} \prod_{t=0}^{T} D^{3} g(t) D^{3} \pi(t) e^{-S}$

$\square G\left({ }^{3} g,{ }^{3} g^{\prime}\right)=\square \int_{0}^{\infty} d T K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right)=\frac{1}{N} \delta\left({ }^{3} g,{ }^{3} g^{\prime}\right)$
related discussion in spin foam context
E. Livine, DO, '02; DO, '05;;...
E. Bianchi, P. Martin-Dussaud, '21
- issues motivating going beyond canonical geometrodynamics:
- difficulties with canonical inner product (indefinite supermetric)
- suppression of cosmological constant via wormholes corrections

3rd quantization of gravity, a QFT of universes

globally hyperbolic topology, with given (e.g. spherical) spatial topology

- canonical QG Hilbert space (solutions of canonical QG constraints)
- gravitational path integral as "Feynman propagator" (Green function on superspace)

$$
G\left({ }^{3} g^{3}{ }^{3} g^{\prime}\right)=\int_{\mathrm{s}_{g}}^{3^{\prime} g^{\prime}} D^{4} g e^{-S}=\int_{0}^{\infty} d T K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right) \quad K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right)=\int_{3_{g}(0)}^{{ }^{3} g^{\prime}(T)} \prod_{t=0}^{T} D^{3} g(t) D^{3} \pi(t) e^{-S}
$$

$\square G\left({ }^{3} g,{ }^{3} g^{\prime}\right)=\square \int_{0}^{\infty} d T K\left({ }^{3} g,{ }^{3} g^{\prime} ; T\right)=\frac{1}{N} \delta\left({ }^{3} g,{ }^{3} g^{\prime}\right)$

- issues motivating going beyond canonical geometrodynamics:
- difficulties with canonical inner product (indefinite supermetric)
- suppression of cosmological constant via wormholes corrections
- path integral can be defined for manifolds with spatial topology change $G\left({ }^{3} g_{1},{ }^{3} g_{2},{ }^{3} g_{3}\right)$
specifying matching conditions at junctions (ensuring that 4-geometries are counted only once)

3rd quantization of gravity, a QFT of universes

- canonical wavefunction promoted to field on superspace (space of geometries, for given spatial topology) $\boldsymbol{\Phi}\left\lfloor{ }^{\mathbf{3}} \boldsymbol{g}\right]$

3rd quantization of gravity, a QFT of universes

- canonical wavefunction promoted to field on superspace (space of geometries, for given spatial topology) $\boldsymbol{\Phi}\left\lceil{ }^{\mathbf{3}} g\right]$
- action $\quad S=S_{2}+V[\Phi]=S_{2}(\Phi)+\lambda_{3} S_{3}(\Phi)+\ldots$
S. Giddings, A. Strominger, '88
$S_{2}=-\frac{1}{2} \int D^{3} g \Phi \square \Phi$
$\left.S_{3}=\left.\int D^{3} g_{1} D^{3} g_{2} D^{3} g_{3} \Phi\right|^{3} g_{1}\left|\Phi\left[^{3} g_{2}\right] \Phi\right|^{3} g_{3}\right] \delta\left({ }^{3} g_{2},{ }^{3} g_{1}^{-}\right) \delta\left({ }^{3} g_{3},{ }^{3} g_{1}^{+}\right)$
topology-changing process
kinetic term $=$ WdW operator

3rd quantization of gravity, a QFT of universes

- canonical wavefunction promoted to field on superspace (space of geometries, for given spatial topology) $\boldsymbol{\Phi}\left[{ }^{\mathbf{3}} g\right]$
- action $\boldsymbol{S}=\boldsymbol{S}_{\mathbf{2}}+\boldsymbol{V}[\boldsymbol{\Phi}]=S_{2}(\Phi)+\lambda_{3} S_{3}(\Phi)+\ldots$
S. Giddings, A. Strominger, ' 88
$S_{2}=-\frac{1}{2} \int D{ }^{3} g \Phi \square \Phi \quad S_{3}=\int D^{3} g_{1} D^{3} g_{2} D{ }^{3} g_{3} \Phi\left[{ }^{3} g_{1}\left|\Phi\left[{ }^{3} g_{2}\right] \Phi\right|^{3} g_{3}\right] \delta\left({ }^{3} g_{2},{ }^{3} g_{1}\right) \delta\left({ }^{3} g_{3},{ }^{3} g_{1}^{+}\right)$
topology-changing process
kinetic term $=$ WdW operator
encoding matching conditions at junctions
- classical eqn of motion

$$
\frac{\delta S}{\delta \Phi}=0=\square \Phi-V^{\prime}[\Phi]
$$

3rd quantization of gravity, a QFT of universes

- canonical wavefunction promoted to field on superspace (space of geometries, for given spatial topology) $\boldsymbol{\Phi}\left[{ }^{\mathbf{3}} g\right]$
- action $\boldsymbol{S}=\boldsymbol{S}_{\mathbf{2}}+\boldsymbol{V}[\Phi]=S_{2}(\Phi)+\lambda_{3} S_{3}(\Phi)+\ldots$
S. Giddings, A. Strominger, '88
$S_{2}=-\frac{1}{2} \int D{ }^{3} g \Phi \square \Phi \quad S_{3}=\int D^{3} g_{1} D^{3} g_{2} D{ }^{3} g_{3} \Phi\left[{ }^{3} g_{1}\left|\Phi\left[{ }^{3} g_{2}\right] \Phi\right|^{3} g_{3}\right] \delta\left({ }^{3} g_{2},{ }^{3} g_{1}\right) \delta\left({ }^{3} g_{3},{ }^{3} g_{1}^{+}\right)$
topology-changing process
kinetic term $=$ WdW operator
encoding matching conditions at junctions
- classical eqn of motion

$$
\frac{\delta S}{\delta \Phi}=0=\square \Phi-V^{\prime}[\Phi] \text { non-linear and non-local (on superspace) correction to WdW eqn }
$$

- quantum effective action

$$
\Gamma\left[\Phi_{B}\right]=W[J]-\Phi_{B} J
$$

$$
\Phi_{B}=\frac{\delta W}{\delta J}
$$

- quantum eqns of motion $\frac{\delta \Gamma}{\delta \Phi_{B}}=0$

3rd quantization of gravity, a QFT of universes

- canonical wavefunction promoted to field on superspace (space of geometries, for given spatial topology) $\boldsymbol{\Phi}\left[{ }^{\mathbf{3}} g\right]$
- action $\quad S=S_{2}+V[\Phi]=S_{2}(\Phi)+\lambda_{3} S_{3}(\Phi)+\ldots$
S. Giddings, A. Strominger, '88
$S_{2}=-\frac{1}{2} \int D{ }^{3} g \Phi \square \Phi \quad S_{3}=\int D{ }^{3} g_{1} D{ }^{3} g_{2} D{ }^{3} g_{3} \Phi\left[{ }^{3} g_{1}\left|\Phi\left[{ }^{3} g_{2}\right] \Phi\right|^{3} g_{3}\right] \delta\left({ }^{3} g_{2},{ }^{3} g_{1}^{-}\right) \delta\left({ }^{3} g_{3},{ }^{3} g_{1}^{+}\right)$
topology-changing process
kinetic term $=$ WdW operator
encoding matching conditions at junctions
- classical eqn of motion

$$
\frac{\delta S}{\delta \Phi}=0=\square \Phi-V^{\prime}[\Phi] \text { non-linear and non-local (on superspace) correction to WdW eqn }
$$

- quantum effective action

$$
\Gamma\left[\Phi_{B}\right]=W[J]-\Phi_{B} J
$$

$$
\Phi_{B}=\frac{\delta W}{\delta J}
$$

- quantum eqns of motion $\frac{\delta \Gamma}{\delta \Phi_{B}}=0$
- quantum theory can be studied perturbatively

$$
\begin{array}{r}
Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]}=\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
\mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g e^{-S_{\mathcal{M}}^{E H}(g)}
\end{array}
$$

3rd quantization of gravity, a QFT of universes

- canonical wavefunction promoted to field on superspace (space of geometries, for given spatial topology) $\boldsymbol{\Phi}\left[{ }^{\mathbf{3}} g\right]$
- action

$$
\begin{aligned}
S & =S_{2}+V[\Phi]=S_{2}(\Phi)+\lambda_{3} S_{3}(\Phi)+\ldots \\
S_{2} & \left.=-\frac{1}{2} \int D{ }^{3} g \Phi \square \Phi \quad S_{3}=\left.\int D{ }^{3} g_{1} D{ }^{3} g_{2} D{ }^{3} g_{3} \Phi\right|^{3} g_{1} \right\rvert\, \Phi\left[{ }^{3} g_{2}\right] \Phi\left({ }^{3} g_{3} \mid \delta\left({ }^{3} g_{2},{ }^{3} g_{1}^{-}\right) \delta\left({ }^{3} g_{3},{ }^{3} g_{1}^{+}\right)\right.
\end{aligned}
$$

topology-changing process
kinetic term $=$ WdW operator
encoding matching conditions at junctions

- classical eqn of motion

$$
\frac{\delta S}{\delta \Phi}=0=\square \Phi-V^{\prime}[\Phi] \text { non-linear and non-local (on superspace) correction to WdW eqn }
$$

- quantum effective action

$$
\Gamma\left[\Phi_{B}\right]=W[J]-\Phi_{B} J
$$

$$
\Phi_{B}=\frac{\delta W}{\delta J}
$$

- quantum eqns of motion

$$
\frac{\delta \Gamma}{\delta \Phi_{B}}=0
$$

quantum corrected non-linear WdW eqn, including topology change

- quantum theory can be studied perturbatively

$$
\begin{array}{r}
Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]}=\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
\mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g e^{-S_{\mathcal{M}}^{E H}(g)}
\end{array}
$$

- Hilbert space:
- canonical Hilbert space (solutions of QG constraints) \longrightarrow "timeless Fock space" of "many universes"
- "deparametrized" many-universes Fock space wrt to "clock field" appearing in 3rd quantized action

3rd quantization of gravity, a QFT of universes

3rd quantization of gravity, a QFT of universes

- enormous (mathematical) difficulties - entirely formal
very limited results
- minisuperspace toy versions

$$
\text { e.g. } \quad\left(\frac{\partial^{2}}{\partial a^{2}}-\frac{1}{a^{2}} \frac{\partial}{\partial \phi_{i}} \frac{\partial}{\partial \phi_{i}}-a^{2}+a^{4}\left[\lambda+V\left(\phi_{i}\right)\right]\right) \Phi\left(a, \phi_{i}\right)=0 \quad a \rightarrow t, \quad \phi_{i} \rightarrow x_{i}
$$

- action (only indicating dependence on scale factor)
W. Fischler, I. Klebanov, J. Polchinski, L. Susskind, '89

$$
S_{\text {cubic }}=\frac{1}{2} \int_{0}^{\infty} \mathrm{d} t\left[\dot{\Phi}^{2}(t)+\left(t^{2}-\lambda t^{4}\right) \Phi^{2}(t)\right]+\frac{g}{2} \int_{0}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} \mathrm{d} t^{\prime \prime} \Phi(t) \Phi\left(t^{\prime}\right) \Phi\left(t^{\prime \prime}\right) \rho\left(t, t^{\prime}, t^{\prime \prime}\right)
$$

classical eqns of motion = non-linear quantum cosmology

3rd quantization of gravity, a QFT of universes

- enormous (mathematical) difficulties - entirely formal
very limited results
- minisuperspace toy versions

$$
\text { e.g. } \quad\left(\frac{\partial^{2}}{\partial a^{2}}-\frac{1}{a^{2}} \frac{\partial}{\partial \phi_{i}} \frac{\partial}{\partial \phi_{i}}-a^{2}+a^{4}\left[\lambda+V\left(\phi_{i}\right)\right]\right) \Phi\left(a, \phi_{i}\right)=0 \quad a \rightarrow t, \quad \phi_{i} \rightarrow x_{i}
$$

- action (only indicating dependence on scale factor)
W. Fischler, I. Klebanov, J. Polchinski, L. Susskind, '89

$$
S_{\mathrm{cubic}}=\frac{1}{2} \int_{0}^{\infty} \mathrm{d} t\left[\dot{\Phi}^{2}(t)+\left(t^{2}-\lambda t^{4}\right) \Phi^{2}(t)\right]+\frac{g}{2} \int_{0}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} \mathrm{d} t^{\prime \prime} \Phi(t) \Phi\left(t^{\prime}\right) \Phi\left(t^{\prime \prime}\right) \rho\left(t, t^{\prime}, t^{\prime \prime}\right)
$$

classical eqns of motion = non-linear quantum cosmology

- LQC-minisuperspace version G. Calcagni, S. Gielen, DO, '12; M. Bojowald et al., '12;

$$
\begin{array}{cc}
\hat{\mathcal{K}} \psi(\nu, \phi):=-B(\nu)\left(\Theta+\partial_{\phi}^{2}\right) \psi(\nu, \phi)=0 & \begin{array}{l}
\text { difference eqn wrt to volume ei } \\
\text { + (massless) scalar field }
\end{array} \\
S_{\mathrm{i}}[\Psi]=\frac{1}{2} \sum_{\nu} \int d \phi \Psi(\nu, \phi) \hat{\mathcal{K}} \Psi(\nu, \phi)+\sum_{j=2}^{n} \frac{\lambda_{j}}{j!} \sum_{\nu_{1} \ldots \nu_{j}} \int d \phi_{1} \ldots d \phi_{j} f_{j}\left(\nu_{i}, \phi_{i}\right) \prod_{k=1}^{j} \Psi\left(\nu_{k}, \phi_{k}\right)
\end{array}
$$

different choices of interaction terms (conserved quantities and matching quantities) are possible

3rd quantization of gravity, a QFT of universes

- enormous (mathematical) difficulties - entirely formal
very limited results
- minisuperspace toy versions

$$
\text { e.g. } \quad\left(\frac{\partial^{2}}{\partial a^{2}}-\frac{1}{a^{2}} \frac{\partial}{\partial \phi_{i}} \frac{\partial}{\partial \phi_{i}}-a^{2}+a^{4}\left[\lambda+V\left(\phi_{i}\right)\right]\right) \Phi\left(a, \phi_{i}\right)=0 \quad a \rightarrow t, \quad \phi_{i} \rightarrow x_{i}
$$

- action (only indicating dependence on scale factor)
W. Fischler, I. Klebanov, J. Polchinski, L. Susskind, '89

$$
S_{\mathrm{cubic}}=\frac{1}{2} \int_{0}^{\infty} \mathrm{d} t\left[\dot{\Phi}^{2}(t)+\left(t^{2}-\lambda t^{4}\right) \Phi^{2}(t)\right]+\frac{g}{2} \int_{0}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} \mathrm{d} t^{\prime \prime} \Phi(t) \Phi\left(t^{\prime}\right) \Phi\left(t^{\prime \prime}\right) \rho\left(t, t^{\prime}, t^{\prime \prime}\right)
$$

classical eqns of motion = non-linear quantum cosmology

- LQC-minisuperspace version G. Calcagni, S. Gielen, DO, '12; M. Bojowald et al., '12;

$$
\begin{array}{cc}
\hat{\mathcal{K}} \psi(\nu, \phi):=-B(\nu)\left(\Theta+\partial_{\phi}^{2}\right) \psi(\nu, \phi)=0 & \begin{array}{c}
\text { difference eqn wrt to volume eigenvalues } \\
+(\text { massless }) \text { scalar field }
\end{array} \\
S_{\mathrm{i}}[\Psi]=\frac{1}{2} \sum_{\nu} \int d \phi \Psi(\nu, \phi) \hat{\mathcal{K}} \Psi(\nu, \phi)+\sum_{j=2}^{n} \frac{\lambda_{j}}{j!} \sum_{\nu_{1} \ldots \nu_{j}} \int d \phi_{1} \ldots d \phi_{j} f_{j}\left(\nu_{i}, \phi_{i}\right) \prod_{k=1}^{j} \Psi\left(\nu_{k}, \phi_{k}\right)
\end{array}
$$

different choices of interaction terms (conserved quantities and matching quantities) are possible

- in fact, two possible interpretations of 3rd quantized minisuperpace QG:
- spatial topology change - universe creation/annihilation - wormholes
- merging/splitting of homogeneous patches of inhomogeneous universe ("separate universe" cosmology)
classical eqns of motion = non-linear quantum cosmology

3rd quantization of gravity, a QFT of universes

- enormous (mathematical) difficulties - entirely formal
very limited results
- minisuperspace toy versions

$$
\text { e.g. } \quad\left(\frac{\partial^{2}}{\partial a^{2}}-\frac{1}{a^{2}} \frac{\partial}{\partial \phi_{i}} \frac{\partial}{\partial \phi_{i}}-a^{2}+a^{4}\left[\lambda+V\left(\phi_{i}\right)\right]\right) \Phi\left(a, \phi_{i}\right)=0 \quad a \rightarrow t, \quad \phi_{i} \rightarrow x_{i}
$$

- action (only indicating dependence on scale factor)
W. Fischler, I. Klebanov, J. Polchinski, L. Susskind, '89

$$
S_{\mathrm{cubic}}=\frac{1}{2} \int_{0}^{\infty} \mathrm{d} t\left[\dot{\Phi}^{2}(t)+\left(t^{2}-\lambda t^{4}\right) \Phi^{2}(t)\right]+\frac{g}{2} \int_{0}^{\infty} \mathrm{d} t \mathrm{~d} t^{\prime} \mathrm{d} t^{\prime \prime} \Phi(t) \Phi\left(t^{\prime}\right) \Phi\left(t^{\prime \prime}\right) \rho\left(t, t^{\prime}, t^{\prime \prime}\right)
$$

classical eqns of motion = non-linear quantum cosmology

- LQC-minisuperspace version G. Calcagni, S. Gielen, DO, '12; M. Bojowald et al., '12;

$$
\begin{array}{cc}
\hat{\mathcal{K}} \psi(\nu, \phi):=-B(\nu)\left(\Theta+\partial_{\phi}^{2}\right) \psi(\nu, \phi)=0 & \begin{array}{c}
\text { difference eqn wrt to volume eigenvalues } \\
+(\text { massless }) \text { scalar field }
\end{array} \\
S_{\mathrm{i}}[\Psi]=\frac{1}{2} \sum_{\nu} \int d \phi \Psi(\nu, \phi) \hat{\mathcal{K}} \Psi(\nu, \phi)+\sum_{j=2}^{n} \frac{\lambda_{j}}{j!} \sum_{\nu_{1} \ldots \nu_{j}} \int d \phi_{1} \ldots d \phi_{j} f_{j}\left(\nu_{i}, \phi_{i}\right) \prod_{k=1}^{j} \Psi\left(\nu_{k}, \phi_{k}\right)
\end{array}
$$

different choices of interaction terms (conserved quantities and matching quantities) are possible

- in fact, two possible interpretations of 3rd quantized minisuperpace QG:
- spatial topology change - universe creation/annihilation - wormholes
- merging/splitting of homogeneous patches of inhomogeneous universe ("separate universe" cosmology)
classical eqns of motion = non-linear quantum cosmology

general idea of discrete 3rd quantization

- chop universe into building blocks

result: discrete gravity path integral replacing continuum one in Feynman expansion

general idea of discrete 3rd quantization

- chop universe into building blocks

result: discrete gravity path integral replacing continuum one in Feynman expansion

$$
\begin{aligned}
& Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]}=\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
& \mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g \quad e^{-S_{\mathcal{M}}^{E H}(g)}=\lim _{\Delta \rightarrow \infty} \int d \mu\left(\left\{L_{e}\right\}\right) e^{-S_{R}^{A}\left(\left\{L_{e}\right\}\right)} \\
&=\lim _{a \rightarrow 0} \sum_{\Delta} \mu(a, \Delta) e^{-S_{R}^{\Delta}\left(\left\{L_{e}=a\right\}\right)} \\
& \text { or sum over lattices }+ \text { sum }
\end{aligned}
$$

general idea of discrete 3rd quantization

- chop universe into building blocks

result: discrete gravity path integral replacing continuum one in Feynman expansion

$$
\begin{aligned}
& Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]}=\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
& \mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g \quad e^{-S_{\mathcal{M}}^{E H}(g)}=\lim _{\Delta \rightarrow \infty} \int d \mu\left(\left\{L_{e}\right\}\right) e^{-S_{R}^{S}\left(\left\{L_{e}\right\}\right)} \\
&=\lim _{a \rightarrow 0} \sum_{\Delta} \mu(a, \Delta) e^{-S_{R}^{\Delta}\left(\left\{L_{e}=a\right\}\right)} \quad \\
& \text { or sum over discrete geometric data }
\end{aligned}
$$

issue: - identify 3rd quantized action that produces sum over whole discretized manifolds
with only wormhole topologies arising in the perturbative sum

general idea of discrete 3rd quantization

- chop universe into building blocks

result: discrete gravity path integral replacing continuum one in Feynman expansion

$$
\begin{aligned}
Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]} & =\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
\mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g \quad e^{-S_{\mathcal{M}}^{E H}(g)} & =\lim _{\Delta \rightarrow \infty} \int d \mu\left(\left\{L_{e}\right\}\right) e^{-S_{R}^{S}\left(\left\{L_{e}\right\}\right)} \\
& =\lim _{a \rightarrow 0} \sum_{\Delta} \mu(a, \Delta) e^{-S_{R}^{\Delta}\left(\left\{L_{e}=a\right\}\right)} \quad \text { or sum over discrete geometric data }
\end{aligned}
$$

issue: - identify 3rd quantized action that produces sum over whole discretized manifolds
with only wormhole topologies arising in the perturbative sum
no example of such "global discrete" 3rd quantization
except 2d cases, reconstructed from generalised 2d CDT
J. Ambjorn et al, '09, '15, '21

general idea of discrete 3rd quantization

- chop universe into building blocks

result: discrete gravity path integral replacing continuum one in Feynman expansion

$$
\begin{aligned}
& Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]}=\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
& \mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g \quad e^{-S_{\mathcal{M}}^{E H}(g)}=\lim _{\Delta \rightarrow \infty} \int d \mu\left(\left\{L_{e}\right\}\right) e^{-S_{R}^{S}\left(\left\{L_{e}\right\}\right)} \\
&=\lim _{a \rightarrow 0} \sum_{\Delta} \mu(a, \Delta) e^{-S_{R}^{\Delta}\left(\left\{L_{e}=a\right\}\right)} \\
& \text { or sum over discrete geometric data }
\end{aligned}
$$

issue: - identify 3rd quantized action that produces sum over whole discretized manifolds
with only wormhole topologies arising in the perturbative sum
no example of such "global discrete" 3rd quantization
except 2d cases, reconstructed from generalised 2d CDT
J. Ambjorn et al, '09, '15, '21 way forward: go atomic!

general idea of discrete 3rd quantization

- chop universe into building blocks
- write field theory for building blocks
states $=$ generic assemblies of building blocks, including glued ones
interactions = discrete spacetime structures

result: discrete gravity path integral replacing continuum one in Feynman expansion

$$
\begin{aligned}
& Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]}=\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
& \mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g \quad e^{-S_{\mathcal{M}}^{E H}(g)}=\lim _{\Delta \rightarrow \infty} \int d \mu\left(\left\{L_{e}\right\}\right) e^{-S_{R}^{S}\left(\left\{L_{e}\right\}\right)} \\
&=\lim _{a \rightarrow 0} \sum_{\Delta} \mu(a, \Delta) e^{-S_{R}^{\Delta}\left(\left\{L_{e}=a\right\}\right)} \\
& \text { or sum over discrete geometric data }
\end{aligned}
$$

issue: • identify 3rd quantized action that produces sum over whole discretized manifolds
with only wormhole topologies arising in the perturbative sum
no example of such "global discrete" 3rd quantization
except 2d cases, reconstructed from generalised 2d CDT
J. Ambjorn et al, '09, '15, '21

general idea of discrete 3rd quantization

- chop universe into building blocks
- write field theory for building blocks
states $=$ generic assemblies of building blocks, including glued ones
interactions = discrete spacetime structures

result: discrete gravity path integral replacing continuum one in Feynman expansion

$$
\begin{aligned}
& Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]}=\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
& \begin{aligned}
\mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g \quad e^{-S_{\mathcal{M}}^{E H}(g)} & =\lim _{\Delta \rightarrow \infty} \int d \mu\left(\left\{L_{e}\right\}\right) e^{-S_{R}^{\Delta}\left(\left\{L_{e}\right\}\right)} \\
& =\lim _{a \rightarrow 0} \sum_{\Delta} \mu(a, \Delta) e^{-S_{R}^{\Delta}\left(\left\{L_{e}=a\right\}\right)}
\end{aligned} \\
& \text { or sum over lattices + sum } \\
& \text { over discrete geometric data }
\end{aligned}
$$

issue: • identify 3rd quantized action that produces sum over whole discretized manifolds
with only wormhole topologies arising in the perturbative sum
no example of such "global discrete" 3rd quantization way forward: go atomic!
except 2d cases, reconstructed from generalised 2d CDT
J. Ambjorn et al, '09, '15, '21
more in spirit of emergent spacetime scenarios

Quantum gravity = quantum theory of atomic constituents of emergent spacetime
quantum theory of "new" non-spatiotemporal entities
continuum spacetime and geometric quantum observables reconstructed from collective quantum dynamics of "atoms of space"

quantum spacetime as a (background-independent) quantum many-body system
extraction of spacetime and cosmology similar to typical problem in condensed matter theory (from atoms to macroscopic effective continuum physics)

- GR from "hydrodynamic" approximation of fundamental "atomic" quantum theory
- all GR structures and dynamics are to be approximately obtained (in relational language) at effective level
- not just emergent gravity; flat spacetime itself would be emergent, highly excited, collective state of "QG atoms"

general idea of discrete 3rd quantization

- chop universe into building blocks
- write field theory for building blocks
states $=$ generic assemblies of building blocks, including glued ones
interactions = discrete spacetime structures

result: discrete gravity path integral replacing continuum one in Feynman expansion

$$
\begin{aligned}
Z_{\lambda}=\int \mathcal{D} \varphi(q) e^{-S[\varphi(q)]} & =\sum_{\mathcal{M}} \mathcal{A}[\mathcal{M}] \\
\mathcal{A}[\mathcal{M}]=\int_{\{g \mid \mathcal{M}\}} \mathcal{D} g \quad e^{-S_{\mathcal{M}}^{E H}(g)} & =\lim _{\Delta \rightarrow \infty} \int d \mu\left(\left\{L_{e}\right\}\right) e^{-S_{R}^{D}\left(\left\{L_{e}\right\}\right)} \\
& =\lim _{a \rightarrow 0} \sum_{\Delta} \mu(a, \Delta) e^{-S_{R}^{A}\left(\left\{L_{e}=a\right\}\right)} \\
\text { or sum over lattices + sum } &
\end{aligned}
$$

issue: - identify 3rd quantized action that produces sum over whole discretized manifolds (weighted by lattice gravity) with only wormhole topologies arising in the perturbative sum
no example of such "global discrete" 3rd quantization except 2d cases, reconstructed from generalised 2d CDT
J. Ambjorn et al, '09, '15, '21

random matrix models for 2d (euclidean) QG

- matrices $\sim 1 d$ simplices (building blocks of 1d space)
links/matrices $\quad M_{j}^{i} \quad i, j=1, \ldots, N$
- action example: $\quad S(M)=\frac{1}{2} \operatorname{tr} M^{2}-\frac{g}{\sqrt{N}} \operatorname{tr} M^{3}=\frac{1}{2} M^{i}{ }_{j} K^{j l}{ }_{k i} M^{k}{ }_{l}-\frac{g}{\sqrt{N}} M^{i}{ }_{j} M^{m}{ }_{n} M^{k}{ }_{l} V^{j n l}{ }_{m k i}$ $K^{j l}{ }_{k i}=\delta^{j}{ }_{k} \delta^{l}{ }_{i} \quad V^{j n l}{ }_{m k i}=\delta^{j}{ }_{m} \delta^{n}{ }_{k} \delta^{l}{ }_{i}$
$\mathrm{M}_{1 j}$

- partition function:

$$
Z=\sum_{\Gamma}\left(\frac{g}{\sqrt{N}}\right)^{V_{\Gamma}} Z_{\Gamma}=\sum_{\Gamma} g^{V_{\Gamma}} N^{F_{\Gamma}-\frac{1}{2} V_{\Gamma}}=\sum_{\Gamma} g^{V} N^{\chi}=\sum_{\Delta} e^{+\frac{4 \pi}{G} \chi(\Delta)-\frac{a \Lambda}{G} t_{\Delta}}
$$

- Feynman diagrams = (ribbon graphs dual to) 2d cellular complexes (here, simplicial) of arbitrary topology
- Feynman amplitudes = 2d discrete gravity path integral on equilateral lattice
discrete "locally generated" 3rd quantization: sum over (discrete) geometries + sum over topologies

control over random matrix models

$$
S(M)=\frac{1}{2} \operatorname{tr} M^{2}-\frac{g}{\sqrt{N}} \operatorname{tr} M^{3}=\frac{1}{2} M^{i}{ }_{j} K^{j l}{ }_{k i} M^{k}{ }_{l}-\frac{g}{\sqrt{N}} M^{i}{ }_{j} M^{m}{ }_{n} M^{k}{ }_{l} V^{j n l}{ }_{m k i}
$$

- partition function:

$$
Z=\sum_{\Gamma}\left(\frac{g}{\sqrt{N}}\right)^{V_{\Gamma}} Z_{\Gamma}=\sum_{\Gamma} g^{V_{\Gamma}} N^{F_{\Gamma}-\frac{1}{2} V_{\Gamma}}=\sum_{\Gamma} g^{V} N^{\chi}
$$

- in large-N limit, planar (spherical) diagrams dominate, i.e. trivial topology
- continuum limit = phase transition (condensation) to theory of large continuum surfaces expectation value for the total area of surface, for large number of vertices, is:
$\langle A\rangle=a\left\langle t_{\Delta}\right\rangle=\left\langle V_{\Gamma}\right\rangle=a \frac{\partial}{\partial g} \ln Z_{0}(g) \simeq \frac{a}{g-g_{c}}$
- which continuum theory does it correspond to? 2d quantum Liouville gravity
- double scaling limit:
defining: $\quad \kappa^{-1}=N\left(g-g_{c}\right)^{\frac{(2-\beta)}{2}} \quad$ we get: $Z \simeq \sum_{h} \kappa^{2 h-2} f_{h}=\kappa^{-2} f_{0}+f_{1}+\kappa^{2} f_{2}+\ldots \ldots$. can take combined limit $\quad N \rightarrow \infty$ and $g \rightarrow g_{c}$ holding κ fixed $\Rightarrow \begin{gathered}\text { continuum limit to whic } \\ \text { topologies contribute! }\end{gathered}$

Tensor models

Construction generalized to D dimensions (tensor models generating D-dimensional simplicial complexes)

$$
\begin{aligned}
& T_{i_{1} \ldots i_{D}} \quad \text { corresponding to a (D-1)-simplex } \\
& \text { real rank-D tensor }
\end{aligned}
$$

Tensor models

Construction generalized to D dimensions (tensor models generating D-dimensional simplicial complexes)

$$
\begin{aligned}
& T_{i_{1} \ldots i_{D}} \quad \text { corresponding to a (D-1)-simplex } \\
& \text { real rank-D tensor }
\end{aligned}
$$

action: $\quad S(T)=\frac{1}{2} T_{i_{1}, \ldots, i_{D}} T_{i_{1} \ldots i_{D}}+\frac{\lambda}{N^{D(D-1) / 4}} \prod_{k=0}^{D} T_{\vec{i}_{k}} \longleftarrow{ }^{\text {pattern of gluing of } \mathrm{D}+1 \text { (D-1)-simplices }}$

Tensor models

Construction generalized to D dimensions (tensor models generating D-dimensional simplicial complexes)

$$
\begin{aligned}
& T_{i_{1} \ldots i_{D}} \quad \text { corresponding to a (D-1)-simplex } \\
& \text { real rank-D tensor }
\end{aligned}
$$

action: $\quad S(T)=\frac{1}{2} T_{i_{1}, \ldots, i_{D}} T_{i_{1} \ldots i_{D}}+\frac{\lambda}{N^{D(D-1) / 4}} \prod_{k=0}^{D} T_{\vec{i}_{k}}$ pattern of gluing of $D+1$ (D-1)-simplices to form boundary of D-simplex

Quantum dynamics: $Z=\int \mathcal{D} T e^{-S(T, \lambda)}=\sum_{\Gamma} \frac{\lambda^{V_{\Gamma}}}{\operatorname{sym}(\Gamma)} Z_{\Gamma}=\sum_{\Gamma} \frac{\lambda^{V_{\Gamma}}}{\operatorname{sym}(\Gamma)} N^{F_{\Gamma}-V_{\Gamma} \frac{D(D-1)}{4}}$
Feynman diagrams dual to simplicial D-complexes of any topology

Tensor models

Construction generalized to D dimensions (tensor models generating D-dimensional simplicial complexes)

$$
\underset{i_{1} \ldots i_{D}}{T_{\text {real rank-D tensor }}} \text { corresponding to a (D-1)-simplex }
$$

action: $\quad S(T)=\frac{1}{2} T_{i_{1}, \ldots, i_{D}} T_{i_{1} \ldots i_{D}}+\frac{\lambda}{N^{D(D-1) / 4}} \prod_{k=0}^{D} T_{\vec{i}_{k}}$

Quantum dynamics: $Z=\int \mathcal{D} T e^{-S(T, \lambda)}=\sum_{\Gamma} \frac{\lambda^{V_{\Gamma}}}{\operatorname{sym}(\Gamma)} Z_{\Gamma}=\sum_{\Gamma} \frac{\lambda^{V_{\Gamma}}}{\operatorname{sym}(\Gamma)} N^{F_{\Gamma}-V_{\Gamma} \frac{D(D-1)}{4}}$
Feynman diagrams dual to simplicial D-complexes of any topology
example: $\mathrm{D}=3$

Tensor models

Construction generalized to D dimensions (tensor models generating D-dimensional simplicial complexes)

$$
\begin{gathered}
T_{i_{1} \ldots i_{D}} \\
\text { real rank-D tensor }
\end{gathered} \quad \text { corresponding to a (D-1)-simplex }
$$

action: $\quad S(T)=\frac{1}{2} T_{i_{1}, \ldots, i_{D}} T_{i_{1} \ldots i_{D}}+\frac{\lambda}{N^{D(D-1) / 4}} \prod_{k=0}^{D} T_{\vec{i}_{k}}$

Quantum dynamics: $Z=\int \mathcal{D} T e^{-S(T, \lambda)}=\sum_{\Gamma} \frac{\lambda^{V_{\Gamma}}}{\operatorname{sym}(\Gamma)} Z_{\Gamma}=\sum_{\Gamma} \frac{\lambda^{V_{\Gamma}}}{\operatorname{sym}(\Gamma)} N^{F_{\Gamma}-V_{\Gamma} \frac{D(D-1)}{4}}$
Feynman diagrams dual to simplicial D-complexes of any topology

$$
\text { example: D = } 3
$$

- Feynman amplitudes = discrete gravity path integral on equilateral lattice

Tensor models

Construction generalized to D dimensions (tensor models generating D-dimensional simplicial complexes)

$$
\underset{i_{1} \ldots i_{D}}{ } \quad T_{\text {real rank-D tensor }} \quad \text { corresponding to a (D-1)-simplex }
$$

action: $\quad S(T)=\frac{1}{2} T_{i_{1}, \ldots, i_{D}} T_{i_{1} \ldots i_{D}}+\frac{\lambda}{N^{D(D-1) / 4}} \prod_{k=0}^{D} T_{\vec{i}_{k}}$

Quantum dynamics: $Z=\int \mathcal{D} T e^{-S(T, \lambda)}=\sum_{\Gamma} \frac{\lambda^{V_{\Gamma}}}{\operatorname{sym}(\Gamma)} Z_{\Gamma}=\sum_{\Gamma} \frac{\lambda^{V_{\Gamma}}}{\operatorname{sym}(\Gamma)} N^{F_{\Gamma}-V_{\Gamma} \frac{D(D-1)}{4}}$
Feynman diagrams dual to simplicial D-complexes of any topology

$$
\text { example: D = } 3
$$

- Feynman amplitudes = discrete gravity path integral on equilateral lattice
- purely combinatorial 3rd quantization

- all topologies (not just wormholes) included in perturbative sum
- also spatial topologies can be dynamical
- finite system - correspondence to gravity to be looked for in continuum large-N limit

adding data to the tensors: tensorial group field theories

toward a full 3rd quantization picture (i.e. richer field domain \& quantum geometry)

adding data to the tensors: tensorial group field theories

toward a full 3rd quantization picture (i.e. richer field domain \& quantum geometry)

$$
G=\text { Lie group }
$$

$$
T_{i_{1}, \ldots, I_{D}} \longrightarrow \varphi\left(g_{1}, \ldots, g_{D}\right) \quad \varphi: G^{D} \rightarrow \mathbb{C}
$$

(can extend to quantum groups)
domain can be extended to include local directions $\varphi\left(g_{1}, \ldots, g_{D} ; \vec{\chi}\right) \quad \varphi: G^{D} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$

adding data to the tensors: tensorial group field theories

toward a full 3rd quantization picture (i.e. richer field domain \& quantum geometry)

$$
T_{i_{1}, \ldots, I_{D}} \longrightarrow \varphi\left(g_{1}, \ldots, g_{D}\right) \quad \varphi: G^{D} \rightarrow \mathbb{C}
$$

G = Lie group
(can extend to quantum groups)
domain can be extended to include local directions $\varphi\left(g_{1}, \ldots, g_{D} ; \vec{\chi}\right) \quad \varphi: G^{D} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$

- field theory action with non-local interactions, describing how simplices connect to form higher-cells details depend on (class of) models

$$
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right) \quad+\quad \text { c.c. }
$$

adding data to the tensors: tensorial group field theories

toward a full 3rd quantization picture (i.e. richer field domain \& quantum geometry)

$$
T_{i_{1}, \ldots, I_{D}} \longrightarrow \varphi\left(g_{1}, \ldots, g_{D}\right) \quad \varphi: G^{D} \rightarrow \mathbb{C}
$$

$$
G=\text { Lie group }
$$

(can extend to quantum groups)
domain can be extended to include local directions $\varphi\left(g_{1}, \ldots, g_{D} ; \vec{\chi}\right) \quad \varphi: G^{D} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$

- field theory action with non-local interactions, describing how simplices connect to form higher-cells
details depend on (class of) models

$$
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right) \quad+\quad \text { c.c. }
$$

- Feynman diagrams are dual to cellular complexes of any topology
- perturbative expansion of quantum dynamics gives sum
over cellular complexes of all topologies

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

proper QFT (on group manifold)

adding data to the tensors: tensorial group field theories

toward a full 3rd quantization picture (i.e. richer field domain \& quantum geometry)

$$
T_{i_{1}, \ldots, I_{D}} \longrightarrow \varphi\left(g_{1}, \ldots, g_{D}\right) \quad \varphi: G^{D} \rightarrow \mathbb{C}
$$

$$
G=\text { Lie group }
$$

(can extend to quantum groups)
domain can be extended to include local directions $\varphi\left(g_{1}, \ldots, g_{D} ; \vec{\chi}\right) \quad \varphi: G^{D} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$

- field theory action with non-local interactions, describing how simplices connect to form higher-cells details depend on (class of) models

$$
S(\varphi, \bar{\varphi})=\frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right) \quad+\quad \text { c.c. }
$$

- Feynman diagrams are dual to cellular complexes of any topology
- perturbative expansion of quantum dynamics gives sum
over cellular complexes of all topologies

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
$$

proper QFT (on group manifold)
which data? which dynamics (action, Feynman amplitudes)? ------> quantum geometric models

TGFTs: well defined, controllable QFTs?

fully quantum geometric TGFTs --> more involved quantum amplitudes
simpler TGFT models --> more mathematical control

- control over topology/combinatorics of TGFT diagrams
- techniques from crystallization theory (colored graphs, ...) are crucial

Gurau, Rivasseau, Bonzom, Ben Geloun, Tanasa, Riello, Carrozza, Kaminski, Ryan,

- large- N limit and melonic regime ($\mathrm{N} \sim$ size of tensors \sim cut-off in irrep labels)
- perturbative renormalizability

Benedetti, Ben Geloun, Carrozza, Tanasa, DO, Rivasseau, Gurau, Lahoche, Ousmane-Samary,

- many renormalizable TGFT models - different dimensions (rank), abelian \& non-abelian groups, various conditions (e.g. gauge invariance)
- quantum geometric 4d TGFT models (GFTs) more challenging
T. Krajewski et al., '10; A. Riello, '13; V
- results on scaling of amplitudes (for some diagrams) ~ radiative corrections
- (including all those obtained from spin foam perspective)

Bonzom, B. Dittrich, '15; P. Dona', '17; P. Dona et al, '19; M. Finocchiaro, DO, '20; P. Dona et al. '22

TGFTs: well defined, controllable QFTs?

fully quantum geometric TGFTs --> more involved quantum amplitudes
simpler TGFT models --> more mathematical control

- Functional Renormalization Group analysis
- different dimensions (rank), abelian \& non-abelian groups, various conditions (e.g. gauge invariance)
- flows beyond melonic sector, studies of asymptotic safety/freedom

Ben Geloun, Carrozza, Tanasa, Toriumi, Krajewski, Martini, DO, Rivasseau, Gurau, Lahoche, Ousmane-

- critical behaviour

Samary, Benedetti, Pithis, Thürigen, ..

- under analytic control for tensor models and simple TGFTs
- analysis of critical behaviour and phase transitions in IR, via FRG, for TGFTs
- Landau-Ginzburg mean field analysis Marchetti, DO, Pithis, Thurigen, ...
- also for fully quantum geometric models
- mean field approx appears more reliable for more physical GFTs

> see talk by A. Pithis
atoms of space \sim quantum 3 -simplices with extra scalar dofs

- geometric variables: triangle vectors $\sim \operatorname{su}(2)$ Lie algebra elements

atoms of space \sim quantum 3 -simplices with extra scalar dofs
- geometric variables: triangle vectors $\sim \operatorname{su}(2)$ Lie algebra elements
- observables: e.g. triangle areas, volume

$$
A_{i}=\left|b_{i}\right| \quad V=\frac{1}{6} \sqrt{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}} \times \overrightarrow{b_{3}}}
$$

become operators: $\overrightarrow{b_{i}} \rightarrow \hat{\vec{J}}$

atoms of space \sim quantum 3 -simplices with extra scalar dofs

see talk by H. Haggard

- geometric variables: triangle vectors \sim su(2) Lie algebra elements
- observables: e.g. triangle areas, volume

$$
A_{i}=\left|b_{i}\right| \quad V=\frac{1}{6} \sqrt{\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}} \times \overrightarrow{b_{3}}}
$$

become operators: $\overrightarrow{b_{i}} \rightarrow \hat{\vec{J}}_{i}$

Hilbert space of
quantum tetrahedron
(in terms of $\operatorname{SU}(2)$ irreps)
quantum geometric operators act on this Hilbert space:
spin network vertex ~ quantum tetrahedron

$$
\mathcal{H}_{v}=\bigoplus_{\overrightarrow{j_{v}}}(\bigotimes_{i=1}^{d} \underbrace{V^{j_{v}^{i}}}_{\text {repr. space }} \otimes \underbrace{\mathcal{I}^{\vec{j}_{v}}}_{\text {intertwiner space }})
$$

$$
\left|j^{i} n^{i}\right\rangle \in V j^{i} \quad \text { diagonalises area operator }
$$

$$
|\vec{j}\rangle \in \mathcal{I}^{\vec{j}}=\operatorname{Inv}_{G}\left[V^{j^{1}} \otimes \ldots \otimes V^{j^{d}}\right] \text { diagonalises volume operator }
$$

$$
+ \text { scalar dofs } \otimes L^{2}(\mathbb{R} \times \ldots \times \mathbb{R})
$$

- equivalent representation: $\Psi\left(g_{1}, \ldots, g_{4}\right)=\Psi\left(g_{1} h, \ldots, g_{4} h\right)=\sum_{\left\{j_{i}, m_{i} ; I\right\}} \Psi_{m_{1} \ldots m_{4}}^{j_{1} \ldots j_{4} ; I} D_{m_{1} n_{1}}^{j_{1}}\left(g_{1}\right) \ldots D_{m_{4} n_{4}}^{j_{4}}\left(g_{4}\right) C_{n_{1} \ldots n_{4}}^{j_{1} \ldots j_{4} I}$ thus
$L^{2}\left(S U(2)^{4} / S U(2)\right)$ (quantum geometry dofs)

GFTs: basics

4d case - specific class of models

- equivalent representation: $\Psi\left(g_{1}, \ldots, g_{4}\right)=\Psi\left(g_{1} h, \ldots, g_{4} h\right)=\sum_{\left\{j_{i}, m_{i} ; I\right\}} \Psi_{m_{1} \ldots m_{4}}^{j_{1} \ldots j_{4} ; I} D_{m_{1} n_{1}}^{j_{1}}\left(g_{1}\right) \ldots D_{m_{4} n_{4}}^{j_{4}}\left(g_{4}\right) C_{n_{1} \ldots n_{4}}^{j_{1} \ldots j_{4} I}$

$$
\text { thus } L^{2}\left(S U(2)^{4} / S U(2)\right) \text { (quantum geometry dofs) }
$$

- Fock space
$\mathcal{F}\left(\mathcal{H}_{v}\right)=\oplus_{V=0}^{\infty} \operatorname{sym}\left\{\left(\mathcal{H}_{v}^{(1)} \otimes \mathcal{H}_{v}^{(2)} \otimes \cdots \otimes \mathcal{H}_{v}^{(V)}\right)\right\}$

- GFT field operators (creating/annihilating tetrahedra):

$$
\hat{\varphi}\left(g_{I}, \chi^{a}\right) \equiv \hat{\varphi}\left(g_{I}, \chi^{1}, \ldots, \chi^{n}\right) \quad\left[\hat{\varphi}(\vec{g}), \hat{\varphi}^{\dagger}\left(\vec{g}^{\prime}\right)\right]=\mathbb{I}_{G}\left(\vec{g}, \vec{g}^{\prime}\right) \quad\left[\hat{\varphi}(\vec{g}), \hat{\varphi}\left(\vec{g}^{\prime}\right)\right]=\left[\hat{\varphi}^{\dagger}(\vec{g}), \hat{\varphi}^{\dagger}\left(\vec{g}^{\prime}\right)\right]=0
$$

GFTs: basics

4d case - specific class of models

- equivalent representation: $\Psi\left(g_{1}, \ldots, g_{4}\right)=\Psi\left(g_{1} h, \ldots, g_{4} h\right)=\sum_{\left\{j_{i}, m_{i} ; I\right\}} \Psi_{m_{1} \ldots m_{4}}^{j_{1} \ldots j_{4} ; I} D_{m_{1} n_{1}}^{j_{1}}\left(g_{1}\right) \ldots D_{m_{4} n_{4}}^{j_{4}}\left(g_{4}\right) C_{n_{1} \ldots n_{4}}^{j_{1} \ldots j_{4} I}$

thus
 $L^{2}\left(S U(2)^{4} / S U(2)\right)$ (quantum geometry dofs)

- Fock space
$\mathcal{F}\left(\mathcal{H}_{v}\right)=\oplus_{V=0}^{\infty} \operatorname{sym}\left\{\left(\mathcal{H}_{v}^{(1)} \otimes \mathcal{H}_{v}^{(2)} \otimes \cdots \otimes \mathcal{H}_{v}^{(V)}\right)\right\}$

- GFT field operators (creating/annihilating tetrahedra):

$$
\hat{\varphi}\left(g_{I}, \chi^{a}\right) \equiv \hat{\varphi}\left(g_{I}, \chi^{1}, \ldots, \chi^{n}\right) \quad\left[\hat{\varphi}(\vec{g}), \hat{\varphi}^{\dagger}\left(\vec{g}^{\prime}\right)\right]=\mathbb{I}_{G}\left(\vec{g}, \vec{g}^{\prime}\right) \quad\left[\hat{\varphi}(\vec{g}), \hat{\varphi}\left(\vec{g}^{\prime}\right)\right]=\left[\hat{\varphi}^{\dagger}(\vec{g}), \hat{\varphi}^{\dagger}\left(\vec{g}^{\prime}\right)\right]=0
$$

- discrete (collective) quantum geometric observables
e.g. volume $\quad \hat{V}_{t o t}=\int\left[d g_{i}\right]\left[d g_{j}^{\prime}\right] \hat{\varphi}^{\dagger}\left(g_{i}\right) V\left(g_{i}, g_{j}^{\prime}\right) \hat{\varphi}\left(g_{j}^{\prime}\right)=\sum_{J_{i}} \hat{\varphi}^{\dagger}\left(J_{i}\right) V\left(J_{i}\right) \hat{\varphi}\left(J_{j}\right)$
- equivalent representation: $\Psi\left(g_{1}, \ldots, g_{4}\right)=\Psi\left(g_{1} h, \ldots, g_{4} h\right)=\sum_{\left\{j_{i}, m_{i} ; I\right\}} \Psi_{m_{1} \ldots m_{4}}^{j_{1} \ldots j_{4} I} D_{m_{1} n_{1}}^{j_{1}}\left(g_{1}\right) \ldots D_{m_{4} n_{4}}^{j_{4}}\left(g_{4}\right) C_{n_{1} \ldots n_{4}}^{j_{1} \ldots j_{4} I}$ thus
$L^{2}\left(S U(2)^{4} / S U(2)\right)$ (quantum geometry dofs)
- Fock space
$\mathcal{F}\left(\mathcal{H}_{v}\right)=\bigoplus_{V=0}^{\infty} \operatorname{sym}\left\{\left(\mathcal{H}_{v}^{(1)} \otimes \mathcal{H}_{v}^{(2)} \otimes \cdots \otimes \mathcal{H}_{v}^{(V)}\right)\right\}$

- GFT field operators (creating/annihilating tetrahedra):

$$
\hat{\varphi}\left(g_{I}, \chi^{a}\right) \equiv \hat{\varphi}\left(g_{I}, \chi^{1}, \ldots, \chi^{n}\right) \quad\left[\hat{\varphi}(\vec{g}), \hat{\varphi}^{\dagger}\left(\vec{g}^{\prime}\right)\right]=\mathbb{I}_{G}\left(\vec{g}, \vec{g}^{\prime}\right) \quad\left[\hat{\varphi}(\vec{g}), \hat{\varphi}\left(\vec{g}^{\prime}\right)\right]=\left[\hat{\varphi}^{\dagger}(\vec{g}), \hat{\varphi}^{\dagger}\left(\vec{g}^{\prime}\right)\right]=0
$$

- discrete (collective) quantum geometric observables
e.g. volume $\quad \hat{V}_{t o t}=\int\left[d g_{i}\right]\left[d g_{j}^{\prime}\right] \hat{\varphi}^{\dagger}\left(g_{i}\right) V\left(g_{i}, g_{j}^{\prime}\right) \hat{\varphi}\left(g_{j}^{\prime}\right)=\sum_{J_{i}} \hat{\varphi}^{\dagger}\left(J_{i}\right) V\left(J_{i}\right) \hat{\varphi}\left(J_{j}\right)$
- maximal entanglement of "triangle dofs" ~ gluing of tetrahedra across triangle
entangled states \sim extended simplicial complexes
see talks by S. Langenscheidt \& G. Chirco

GFTs: basics

4d case - specific class of models
dynamics of quantum atomic geometry
GFT action = prescription for weights associated to building blocks of 4d lattice in sum over discrete geometries

$$
\begin{aligned}
S(\varphi, \bar{\varphi})= & \frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right) \quad+\quad \text { c.c. } \\
\mathcal{Z} & =\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
\end{aligned}
$$

GFTs: basics

dynamics of quantum atomic geometry
GFT action = prescription for weights associated to building blocks of 4 d lattice in sum over discrete geometries

$$
\begin{aligned}
S(\varphi, \bar{\varphi})= & \frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
\mathcal{Z} & =\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
\end{aligned}
$$

- Feynman diagrams = cellular complexes of arbitrary topology

GFTs: basics

dynamics of quantum atomic geometry

GFT action = prescription for weights associated to building blocks of 4d lattice in sum over discrete geometries

$$
\begin{aligned}
S(\varphi, \bar{\varphi})= & \frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right)+\quad \text { c.c. } \\
\mathcal{Z} & =\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
\end{aligned}
$$

- Feynman diagrams = cellular complexes of arbitrary topology
labelled by group-theoretic data (group elements, group irreps, ...)
Feynman amplitudes (model-dependent) = sum over group-theoretic data (group elements,
Lie algebra elements, group irreps, ...) associated to lattice dual to Feynman diagram

GFTs: basics

dynamics of quantum atomic geometry

GFT action = prescription for weights associated to building blocks of 4 d lattice in sum over discrete geometries

$$
\begin{aligned}
S(\varphi, \bar{\varphi})= & \frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right) \quad+\quad \text { c.c. } \\
\mathcal{Z} & =\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
\end{aligned}
$$

- Feynman diagrams = cellular complexes of arbitrary topology
labelled by group-theoretic data (group elements, group irreps, ...)
Feynman amplitudes (model-dependent) = sum over group-theoretic data (group elements,
Lie algebra elements, group irreps, ...) associated to lattice dual to Feynman diagram
basic guideline for choosing action: quantum geometric input from canonical LQG, simplicial geometry
- GFT Feynman amplitudes = lattice gravity path integrals = spin foam models

Reisenberger,Rovelli, '00
A. Baratin, DO, ' 11
M. Finocchiaro, DO, '18

GFTs: basics
4d case - specific class of models

dynamics of quantum atomic geometry

GFT action = prescription for weights associated to building blocks of 4 d lattice in sum over discrete geometries

$$
\begin{aligned}
S(\varphi, \bar{\varphi})= & \frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right) \quad+\quad \text { c.c. } \\
\mathcal{Z} & =\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
\end{aligned}
$$

- Feynman diagrams = cellular complexes of arbitrary topology De Pietri, Petronio, '00; R. Gurau, '10; ...
labelled by group-theoretic data (group elements, group irreps, ...)
Feynman amplitudes (model-dependent) = sum over group-theoretic data (group elements,
Lie algebra elements, group irreps, ...) associated to lattice dual to Feynman diagram
basic guideline for choosing action: quantum geometric input from canonical LQG, simplicial geometry
- GFT Feynman amplitudes = lattice gravity path integrals = spin foam models

Reisenberger,Rovelli, '00
A. Baratin, DO, ' 11
M. Finocchiaro, DO, '18

- GFT quanta \sim quantum tetrahedra \sim spin network vertices
- entangled GFT many-body states \sim (2nd quantized) spin networks
- GFT (perturbative) amplitudes = spin foam amplitudes \sim simplicial gravity path integrals

GFT (condensate) cosmology: general strategy

from perspective of fundamental QG atoms of space:
continuum geometry = coarse-grained description of discrete geometry of many (infinite) QG atoms
GR dynamics = approximate description of collective quantum dynamics of many (infinite) QG atoms

GFT (condensate) cosmology: general strategy

from perspective of fundamental QG atoms of space:
continuum geometry = coarse-grained description of discrete geometry of many (infinite) QG atoms
GR dynamics = approximate description of collective quantum dynamics of many (infinite) QG atoms

extracting effective continuum dynamics from QG ~ typical problem of quantum many-body physics
GFT: similar QFT language and tools as in quantum many-body physics

GFT (condensate) cosmology: general strategy

from perspective of fundamental QG atoms of space:
continuum geometry = coarse-grained description of discrete geometry of many (infinite) QG atoms
GR dynamics = approximate description of collective quantum dynamics of many (infinite) QG atoms

extracting effective continuum dynamics from QG ~ typical problem of quantum many-body physics
GFT: similar QFT language and tools as in quantum many-body physics
note: this is main outstanding issue of all non-perturbative QG approaches

GFT (condensate) cosmology: general strategy

from perspective of fundamental QG atoms of space:
continuum geometry = coarse-grained description of discrete geometry of many (infinite) QG atoms
GR dynamics = approximate description of collective quantum dynamics of many (infinite) QG atoms

extracting effective continuum dynamics from QG ~ typical problem of quantum many-body physics
GFT: similar QFT language and tools as in quantum many-body physics
note: this is main outstanding issue of all non-perturbative QG approaches

cosmology expected to correspond to "most coarse-grained" dynamics

\square

GFT (condensate) cosmology: general strategy

- hypothesis: universe as QG quantum fluid (condensate)
- extract approximate hydrodynamic eqns for QG fluid (density and phase)
- compute relational cosmological observables in hydrodynamic approximation
- translate hydrodynamic eqns into eqns for cosmological observables

GFT (condensate) cosmology: general strategy

- hypothesis: universe as QG quantum fluid (condensate)
- extract approximate hydrodynamic eqns for QG fluid (density and phase)
- compute relational cosmological observables in hydrodynamic approximation
- translate hydrodynamic eqns into eqns for cosmological observables

$$
\begin{aligned}
& S(\varphi, \bar{\varphi})= \frac{1}{2} \int\left[d g_{i}\right] \overline{\varphi\left(g_{i}\right)} \mathcal{K}\left(g_{i}\right) \varphi\left(g_{i}\right)+\frac{\lambda}{D!} \int\left[d g_{i a}\right] \varphi\left(g_{i 1}\right) \ldots . \varphi\left(\bar{g}_{i D}\right) \mathcal{V}\left(g_{i a}, \bar{g}_{i D}\right) \quad+\quad \text { c.c. } \\
& \mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{i S_{\lambda}(\varphi, \bar{\varphi})}=\sum_{\Gamma} \frac{\lambda^{N_{\Gamma}}}{\operatorname{sym}(\Gamma)} \mathcal{A}_{\Gamma}
\end{aligned}
$$

$$
F_{\lambda}(J)=\ln Z_{\lambda}[J] \quad \Gamma[\phi]=\sup _{J}(J \cdot \phi-F(J)) \quad\langle\varphi\rangle=\phi
$$

* simplest approximation: mean field hydrodynamics
$\Gamma[\phi] \approx S_{\lambda}(\phi)$
mean field \sim condensate wavefunction
- corresponding quantum states:
(simplest): GFT field coherent state

$$
\begin{gathered}
|\sigma\rangle:=\exp (\hat{\sigma})|0\rangle \\
\hat{\sigma}:=\int d^{4} g \underbrace{\sigma\left(g_{I}\right) \hat{\varphi}^{\dagger}\left(g_{I}\right) \quad \sigma\left(g_{I} k\right)=\sigma\left(g_{I}\right)}_{\text {condensate wavefunction (also incl. scalar dofs) }}
\end{gathered}
$$

GFT (condensate) cosmology: general features

- immediate cosmological interpretation of (domain of) condensate wavefunction:

isomorphism between domain of TGFT condensate wavefunction and minisuperpsace			
$\sigma(\mathcal{D})$	\mathcal{D}	\simeq	
	\simeq	\{continuum spatial geometries at a point $\}$	\simeq
	\simeq	minisuperspace of homogeneous geometries	

S. Gielen, DO, L. Sindoni, '13
S. Gielen, '15
A. Jercher, DO, A. Pithis, '21

GFT (condensate) cosmology: general features

- immediate cosmological interpretation of (domain of) condensate wavefunction:

$$
\begin{aligned}
& \text { isomorphism between domain of TGFT condensate wavefunction and minisuperpsace } \\
& \qquad \begin{aligned}
\mathcal{D}(\mathcal{D}) & \simeq \\
& \simeq \\
& \simeq
\end{aligned} \quad\left\{\begin{array}{c}
\text { continuum spatial geometries at a point }\} \\
\simeq
\end{array}\right. \\
& \\
& \\
&
\end{aligned}
$$

S. Gielen, DO, L. Sindoni, '13
S. Gielen, '15
A. Jercher, DO, A. Pithis, '21

- general form of resulting (Gross-Pitaevskii) equations of motion for condensate wavefunction (mean field):

$$
\int\left[d g^{\prime}\right] d \chi^{\prime} K\left(g, \chi ; g^{\prime}, \chi^{\prime}\right) \sigma\left(g^{\prime}, \chi^{\prime}\right)+\left.\lambda \frac{\delta}{\delta \varphi} \mathcal{V}(\varphi)\right|_{\varphi \equiv \sigma}=0
$$

GFT (condensate) cosmology: general features

- immediate cosmological interpretation of (domain of) condensate wavefunction:

$$
\begin{aligned}
& \text { isomorphism between domain of TGFT condensate wavefunction and minisuperpsace } \\
& \qquad \begin{array}{rlr}
\sigma(\mathcal{D}) & \simeq & \text { geometries of tetrahedron }\} \simeq \\
& \simeq & \{\text { continuum spatial geometries at a point }\} \simeq \\
& \simeq & \text { minisuperspace of homogeneous geometries }
\end{array}
\end{aligned}
$$

S. Gielen, DO, L. Sindoni, '13
S. Gielen, '15
A. Jercher, DO, A. Pithis, '21

- general form of resulting (Gross-Pitaevskii) equations of motion for condensate wavefunction (mean field):

$$
\int\left[d g^{\prime}\right] d \chi^{\prime} \mathcal{K}\left(g, \chi ; g^{\prime}, \chi^{\prime}\right) \sigma\left(g^{\prime}, \chi^{\prime}\right)+\left.\lambda \frac{\delta}{\delta \varphi} \mathcal{V}(\varphi)\right|_{\varphi \equiv \sigma}=0
$$

cosmology as QG hydrodynamics ~ non-linear extension of (loop) quantum cosmology

GFT (condensate) cosmology: general features

- immediate cosmological interpretation of (domain of) condensate wavefunction:

$$
\begin{aligned}
& \text { isomorphism between domain of TGFT condensate wavefunction and minisuperpsace } \\
& \qquad \begin{array}{rlr}
\sigma(\mathcal{D}) & \simeq & \text { geometries of tetrahedron }\} \simeq \\
& \simeq & \{\text { continuum spatial geometries at a point }\} \simeq \\
& \simeq & \text { minisuperspace of homogeneous geometries }
\end{array}
\end{aligned}
$$

S. Gielen, DO, L. Sindoni, '13
S. Gielen, '15
A. Jercher, DO, A. Pithis, '21

- general form of resulting (Gross-Pitaevskii) equations of motion for condensate wavefunction (mean field):

$$
\int\left[d g^{\prime}\right] d \chi^{\prime} K\left(g, \chi ; g^{\prime}, \chi^{\prime}\right) \sigma\left(g^{\prime}, \chi^{\prime}\right)+\left.\lambda \frac{\delta}{\delta \varphi} \mathcal{V}(\varphi)\right|_{\varphi \equiv \sigma}=0
$$

cosmology as QG hydrodynamics ~ non-linear extension of (loop) quantum cosmology
that is, in isotropic restriction and with just one matter field:

$\sigma(a, \phi)$	"wavefunction" on minisuperspace
$\mathcal{K}\left(a, \partial_{a}, \phi, \partial_{\phi}\right) \sigma(a, \phi)+\mathcal{V}^{\prime \prime}[\sigma(a, \phi)]=0 \quad$ hydrodynamic (non-linear, possibly non-local) eqn on minisuperspace	

GFT (condensate) cosmology: general features

- immediate cosmological interpretation of (domain of) condensate wavefunction:

$$
\begin{aligned}
& \text { isomorphism between domain of TGFT condensate wavefunction and minisuperpsace } \\
& \qquad \begin{array}{rlr}
\sigma(\mathcal{D}) & \simeq & \text { geometries of tetrahedron }\} \simeq \\
& \simeq & \{\text { continuum spatial geometries at a point }\} \simeq \\
& \simeq & \text { minisuperspace of homogeneous geometries }
\end{array}
\end{aligned}
$$

S. Gielen, DO, L. Sindoni, '13
S. Gielen, '15
A. Jercher, DO, A. Pithis, '21

- general form of resulting (Gross-Pitaevskii) equations of motion for condensate wavefunction (mean field):

$$
\int\left[d g^{\prime}\right] d \chi^{\prime} \mathcal{K}\left(g, \chi ; g^{\prime}, \chi^{\prime}\right) \sigma\left(g^{\prime}, \chi^{\prime}\right)+\left.\lambda \frac{\delta}{\delta \varphi} \mathcal{V}(\varphi)\right|_{\varphi \equiv \sigma}=0
$$

cosmology as QG hydrodynamics ~ non-linear extension of (loop) quantum cosmology
that is, in isotropic restriction and with just one matter field:

$\sigma(a, \phi)$	"wavefunction" on minisuperspace
$\mathcal{K}\left(a, \partial_{a}, \phi, \partial_{\phi}\right) \sigma(a, \phi)+\mathcal{V}^{\prime}[\sigma(a, \phi)]=0 \quad$ hydrodynamic (non-linear, possibly non-local) eqn on minisuperspace	

like in minisuperspace 3rd quantization, but:

- kinetic term is not WdW operator
- interaction term dictated by simplicial quantum geometry, not continuum topology change or separate universe cosmology

Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock +3 rods +1 matter scalar field)

$$
\begin{aligned}
S_{\mathrm{GFT}} & =K+U+U^{*} \\
K & =\int \mathrm{d} g_{I} \mathrm{~d} h_{I} \int \mathrm{~d}^{d} \chi \mathrm{~d}^{d} \chi^{\prime} \mathrm{d} \phi \mathrm{~d} \phi^{\prime} \bar{\varphi}\left(g_{I}, \chi\right) \mathcal{K}\left(g_{I}, h_{I} ;\left(\chi-\chi^{\prime}\right)_{\lambda}^{2},\left(\phi-\phi^{\prime}\right)^{2}\right) \varphi\left(h_{I},\left(\chi^{\prime}\right)^{\mu}, \phi^{\prime}\right) \\
U & =\int \mathrm{d}^{d} \chi \mathrm{~d} \phi \int\left(\prod_{a=1}^{5} \mathrm{~d} g_{I}^{a}\right) \mathcal{U}\left(g_{I}^{1}, \ldots, g_{I}^{5}\right) \prod_{\ell=1}^{5} \varphi\left(g_{I}^{\ell}, \chi^{\mu}, \phi\right)
\end{aligned}
$$

Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock +3 rods +1 matter scalar field)

$$
\begin{aligned}
S_{\mathrm{GFT}} & =K+U+U^{*} \\
K & =\int \mathrm{d} g_{I} \mathrm{~d} h_{I} \int \mathrm{~d}^{d} \chi \mathrm{~d}^{d} \chi^{\prime} \mathrm{d} \phi \mathrm{~d} \phi^{\prime} \bar{\varphi}\left(g_{I}, \chi\right) \mathcal{K}\left(g_{I}, h_{I} ;\left(\chi-\chi^{\prime}\right)_{\lambda}^{2},\left(\phi-\phi^{\prime}\right)^{2}\right) \varphi\left(h_{I},\left(\chi^{\prime}\right)^{\mu}, \phi^{\prime}\right) \\
U & =\int \mathrm{d}^{d} \chi \mathrm{~d} \phi \int\left(\prod_{a=1}^{5} \mathrm{~d} g_{I}^{a}\right) \mathcal{U}\left(g_{I}^{1}, \ldots, g_{I}^{5}\right) \prod_{\ell=1}^{5} \varphi\left(g_{I}^{\ell}, \chi^{\mu}, \phi\right)
\end{aligned}
$$

restriction to "good clock+rods" condensate states - peakedness properties on clock/rod values

$$
\begin{array}{lc}
\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x} ; x^{\mu}}\left(g_{I}, \chi^{\mu}, \phi\right)=\eta_{\epsilon}\left(\chi^{0}-x^{0} ; \pi_{0}\right) \eta_{\delta}\left(|\chi-\mathbf{x}| ; \pi_{x}\right) \tilde{\sigma}\left(g_{I}, \chi^{\mu}, \phi\right) & \text { L. Marchetti, DO, '20, '21 } \\
& |\chi-\mathbf{x}|^{2}=\sum_{i=1}^{d}\left(\chi^{i}-x^{i}\right)^{2} \\
\mathbb{C} \ni \delta=\delta_{r}+i \delta_{i} \quad \delta_{r}>0 \quad \epsilon,|\delta| \ll 1 & z_{0} \equiv \epsilon \pi_{0}^{2} / 2 \quad z \equiv \delta \pi_{x}^{2} / 2
\end{array}
$$

Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock +3 rods +1 matter scalar field)

$$
\begin{aligned}
S_{\mathrm{GFT}} & =K+U+U^{*} \\
K & =\int \mathrm{d} g_{I} \mathrm{~d} h_{I} \int \mathrm{~d}^{d} \chi \mathrm{~d}^{d} \chi^{\prime} \mathrm{d} \phi \mathrm{~d} \phi^{\prime} \bar{\varphi}\left(g_{I}, \chi\right) \mathcal{K}\left(g_{I}, h_{I} ;\left(\chi-\chi^{\prime}\right)_{\lambda}^{2},\left(\phi-\phi^{\prime}\right)^{2}\right) \varphi\left(h_{I},\left(\chi^{\prime}\right)^{\mu}, \phi^{\prime}\right) \\
U & =\int \mathrm{d}^{d} \chi \mathrm{~d} \phi \int\left(\prod_{a=1}^{5} \mathrm{~d} g_{I}^{a}\right) \mathcal{U}\left(g_{I}^{1}, \ldots, g_{I}^{5}\right) \prod_{\ell=1}^{5} \varphi\left(g_{I}^{\ell}, \chi^{\mu}, \phi\right)
\end{aligned}
$$

restriction to "good clock+rods" condensate states - peakedness properties on clock/rod values

$$
\begin{aligned}
& \sigma_{\epsilon, \delta, \pi_{0}, \pi_{x} ; x^{\mu}\left(g_{I}, \chi^{\mu}, \phi\right)=\eta_{\epsilon}\left(\chi^{0}-x^{0} ; \pi_{0}\right) \eta_{\delta}\left(|\chi-\mathbf{x}| ; \pi_{x}\right) \tilde{\sigma}\left(g_{I}, \chi^{\mu}, \phi\right) \text { peaked functions (e.g. Gaussians) }}^{\text {p }} \\
& \text { L. Marchetti, DO, '20, '21 } \\
& |\chi-\mathbf{x}|^{2}=\sum_{i=1}^{d}\left(\chi^{i}-x^{i}\right)^{2} \quad \mathbb{C} \ni \delta=\delta_{r}+i \delta_{i} \quad \delta_{r}>0 \quad \epsilon,|\delta| \ll 1 \quad z_{0} \equiv \epsilon \pi_{0}^{2} / 2 \quad z \equiv \delta \pi_{x}^{2} / 2
\end{aligned}
$$

simplifying assumptions:

- subdominant GFT interactions: $U \ll K$ (consistent with LQG/spin foam and discrete gravity interpretation)
- isotropy: condensate wavefunction depends on single j (plus clock/rods/matter)

Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock +3 rods +1 matter scalar field)

$$
\begin{aligned}
S_{\mathrm{GFT}} & =K+U+U^{*} \\
K & =\int \mathrm{d} g_{I} \mathrm{~d} h_{I} \int \mathrm{~d}^{d} \chi \mathrm{~d}^{d} \chi^{\prime} \mathrm{d} \phi \mathrm{~d} \phi^{\prime} \bar{\varphi}\left(g_{I}, \chi\right) \mathcal{K}\left(g_{I}, h_{I} ;\left(\chi-\chi^{\prime}\right)_{\lambda}^{2},\left(\phi-\phi^{\prime}\right)^{2}\right) \varphi\left(h_{I},\left(\chi^{\prime}\right)^{\mu}, \phi^{\prime}\right) \\
U & =\int \mathrm{d}^{d} \chi \mathrm{~d} \phi \int\left(\prod_{a=1}^{5} \mathrm{~d} g_{I}^{a}\right) \mathcal{U}\left(g_{I}^{1}, \ldots, g_{I}^{5}\right) \prod_{\ell=1}^{5} \varphi\left(g_{I}^{\ell}, \chi^{\mu}, \phi\right)
\end{aligned}
$$

restriction to "good clock+rods" condensate states - peakedness properties on clock/rod values

$$
\begin{array}{ll}
\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x} ; x^{\mu}}\left(g_{I}, \chi^{\mu}, \phi\right)=\eta_{\epsilon}\left(\chi^{0}-x^{0} ; \pi_{0}\right) \eta_{\delta}\left(|\chi-\mathbf{x}| ; \pi_{x}\right) \tilde{\sigma}\left(g_{I}, \chi^{\mu}, \phi\right) & \text { L. Marchetti, DO, '20, '21 } \\
& |\chi-\mathbf{x}|^{2}=\sum_{i=1}^{d}\left(\chi^{i}-x^{i}\right)^{2} \\
\mathbb{C} \ni \delta=\delta_{r}+i \delta_{i} \quad \delta_{r}>0 \quad \epsilon,|\delta| \ll 1 \quad z_{0} \equiv \epsilon \pi_{0}^{2} / 2 \quad z \equiv \delta \pi_{x}^{2} / 2
\end{array}
$$

simplifying assumptions:

- subdominant GFT interactions: U << K (consistent with LQG/spin foam and discrete gravity interpretation)
- isotropy: condensate wavefunction depends on single j (plus clock/rods/matter)

resulting (free) mean field hydrodynamics eqn:		Fourier mode of matter field variable
$\qquad \partial_{0}^{2} \tilde{\sigma}_{j}\left(x, \pi_{\phi}\right)-i \gamma \partial_{0} \tilde{\sigma}_{j}\left(x, \pi_{\phi}\right)-{ }^{(\lambda)} E_{j}^{2}\left(\pi_{\phi}\right) \tilde{\sigma}_{j}\left(x, \pi_{\phi}\right)+\alpha^{2} \nabla^{2} \tilde{\sigma}_{j}\left(x, \pi_{\phi}\right)=0$		

Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock +3 rods +1 matter scalar field)
using: $\quad \tilde{\sigma}_{j} \equiv \rho_{j} \exp \left[i \theta_{j}\right] \quad$ rewrite in standard hydrodynamic form (fluid density, phase)
homogeneous background + inhomogeneous perturbations (spacetime localization defined in relational terms)

$$
\rho_{j}=\bar{\rho}_{j}+\delta \rho_{j} \quad \theta_{j} \equiv \bar{\theta}_{j}+\delta \theta_{j} \quad \bar{\rho}=\bar{\rho}\left(x^{0}, \pi_{\phi}\right) \quad \bar{\theta}=\bar{\theta}\left(x^{0}, \pi_{\phi}\right)
$$

Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock +3 rods +1 matter scalar field)
using: $\quad \tilde{\sigma}_{j} \equiv \rho_{j} \exp \left[i \theta_{j}\right] \quad$ rewrite in standard hydrodynamic form (fluid density, phase)
homogeneous background + inhomogeneous perturbations (spacetime localization defined in relational terms)

$$
\rho_{j}=\bar{\rho}_{j}+\delta \rho_{j} \quad \theta_{j} \equiv \bar{\theta}_{j}+\delta \theta_{j} \quad \bar{\rho}=\bar{\rho}\left(x^{0}, \pi_{\phi}\right) \quad \bar{\theta}=\bar{\theta}\left(x^{0}, \pi_{\phi}\right)
$$

background eqns: \quad	$\bar{\rho}_{j}^{\prime \prime}\left(x^{0}, \pi_{\phi}\right)-\left[\left(\bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)\right)^{2}+{ }^{(\lambda)} \eta_{j}^{2}\left(\pi_{\phi}\right)-\gamma \bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)\right] \bar{\rho}_{j}\left(x^{0}, \pi_{\phi}\right)=0$
	$\bar{\theta}_{j}^{\prime \prime}\left(x^{0}, \pi_{\phi}\right)+\left(\bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)-\gamma / 2\right) \frac{\left(\bar{\rho}_{j}^{2}\right)^{\prime}\left(x^{0}, \pi_{\phi}\right)}{\bar{\rho}_{j}^{2}\left(x^{0}, \pi_{\phi}\right)}-{ }^{(\lambda)} \beta_{j}^{2}=0$

Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock +3 rods +1 matter scalar field)
using: $\quad \tilde{\sigma}_{j} \equiv \rho_{j} \exp \left[i \theta_{j}\right] \quad$ rewrite in standard hydrodynamic form (fluid density, phase)
homogeneous background + inhomogeneous perturbations (spacetime localization defined in relational terms)

$$
\rho_{j}=\bar{\rho}_{j}+\delta \rho_{j} \quad \theta_{j} \equiv \bar{\theta}_{j}+\delta \theta_{j} \quad \bar{\rho}=\bar{\rho}\left(x^{0}, \pi_{\phi}\right) \quad \bar{\theta}=\bar{\theta}\left(x^{0}, \pi_{\phi}\right)
$$

background eqns: \quad	$\bar{\rho}_{j}^{\prime \prime}\left(x^{0}, \pi_{\phi}\right)-\left[\left(\bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)\right)^{2}+{ }^{(\lambda)} \eta_{j}^{2}\left(\pi_{\phi}\right)-\gamma \bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)\right] \bar{\rho}_{j}\left(x^{0}, \pi_{\phi}\right)=0$
	$\bar{\theta}_{j}^{\prime \prime}\left(x^{0}, \pi_{\phi}\right)+\left(\bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)-\gamma / 2\right) \frac{\left(\bar{\rho}_{j}^{2}\right)^{\prime}\left(x^{0}, \pi_{\phi}\right)}{\bar{\rho}_{j}^{2}\left(x^{0}, \pi_{\phi}\right)}-{ }^{(\lambda)} \beta_{j}^{2}=0$

now, need to obtain equations for physical observables

Derivation of effective cosmological dynamics: main steps

quantum geometric EPRL model with 4 scalar dofs (1 clock +3 rods +1 matter scalar field)
using: $\quad \tilde{\sigma}_{j} \equiv \rho_{j} \exp \left[i \theta_{j}\right] \quad$ rewrite in standard hydrodynamic form (fluid density, phase)
homogeneous background + inhomogeneous perturbations (spacetime localization defined in relational terms)

$$
\rho_{j}=\bar{\rho}_{j}+\delta \rho_{j} \quad \theta_{j} \equiv \bar{\theta}_{j}+\delta \theta_{j} \quad \bar{\rho}=\bar{\rho}\left(x^{0}, \pi_{\phi}\right) \quad \bar{\theta}=\bar{\theta}\left(x^{0}, \pi_{\phi}\right)
$$

background eqns:

$$
\begin{aligned}
& \bar{\rho}_{j}^{\prime \prime}\left(x^{0}, \pi_{\phi}\right)-\left[\left(\bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)\right)^{2}+{ }^{(\lambda)} \eta_{j}^{2}\left(\pi_{\phi}\right)-\gamma \bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)\right] \bar{\rho}_{j}\left(x^{0}, \pi_{\phi}\right)=0 \\
& \bar{\theta}_{j}^{\prime \prime}\left(x^{0}, \pi_{\phi}\right)+\left(\bar{\theta}_{j}^{\prime}\left(x^{0}, \pi_{\phi}\right)-\gamma / 2\right) \frac{\left(\bar{\rho}_{j}^{2}\right)^{\prime}\left(x^{0}, \pi_{\phi}\right)}{\bar{\rho}_{j}^{2}\left(x^{0}, \pi_{\phi}\right)}-{ }^{(\lambda)} \beta_{j}^{2}=0
\end{aligned}
$$

now, need to obtain equations for physical observables

- universe volume

$$
\hat{V}=\int \mathrm{d}^{n} \chi \int \mathrm{~d} g_{I} \mathrm{~d} g_{I}^{\prime} \hat{\varphi}^{\dagger}\left(g_{I}, \chi^{a}\right) V\left(g_{I}, g_{I}^{\prime}\right) \hat{\varphi}\left(g_{I}^{\prime}, \chi^{a}\right)
$$

- value of clock/rods scalar fields

$$
\hat{X}^{b} \equiv \int \mathrm{~d}^{n} \chi \int \mathrm{~d} g_{I} \chi^{b} \hat{\varphi}^{\dagger}\left(g_{I}, \chi^{a}\right) \hat{\varphi}\left(g_{I}, \chi^{a}\right)
$$

- momentum of clock/rods scalar fields

$$
\hat{\Pi}_{b}=\frac{1}{i} \int \mathrm{~d}^{n} \chi \int \mathrm{~d} g_{I}\left[\hat{\varphi}^{\dagger}\left(g_{I}, \chi^{a}\right)\left(\frac{\partial}{\partial \chi^{b}} \hat{\varphi}\left(g_{I}, \chi^{a}\right)\right)\right]
$$

- value of matter scalar field

$$
\hat{\Phi}=\frac{1}{i} \int \mathrm{~d} g_{I} \int \mathrm{~d}^{4} \chi \int \mathrm{~d} \pi_{\phi} \hat{\varphi}^{\dagger}\left(g_{I}, \chi^{\mu}, \pi_{\phi}\right) \partial_{\pi_{\phi}} \hat{\varphi}\left(g_{I}, \chi^{\mu}, \pi_{\phi}\right)
$$

- momentum of matter scalar field

$$
\hat{\Pi}_{\phi}=\int \mathrm{d} g_{I} \int \mathrm{~d}^{4} \chi \int \mathrm{~d} \pi_{\phi} \pi_{\phi} \hat{\varphi}^{\dagger}\left(g_{I}, \chi^{\mu}, \pi_{\phi}\right) \hat{\varphi}\left(g_{I}, \chi^{\mu}, \pi_{\phi}\right)
$$

Derivation of effective cosmological dynamics: main steps

- expectation values of fundamental observables in peaked states: relational spacetime-localized interpretation

$$
\begin{array}{ll}
N\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{N} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle} & V\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{V} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle} \\
X^{\mu}\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{V}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle \simeq x^{\mu} \quad \Pi\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \widehat{\Pi}_{\nu}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle \\
\phi\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{\Phi} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle} \quad \Pi_{\phi}\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \widehat{\Pi}_{\phi}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle
\end{array}
$$

observables of effective continum gravitational physics = collective observables, averages in suitable QG states

Derivation of effective cosmological dynamics: main steps

- expectation values of fundamental observables in peaked states: relational spacetime-localized interpretation

$$
\begin{array}{ll}
N\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{N} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle} & V\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{V} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle} \\
X^{\mu}\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{V}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle \simeq x^{\mu} \quad \Pi\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \widehat{\Pi_{\nu}}\left|\sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle}\right\rangle \\
\phi\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{\Phi} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle} \quad \Pi_{\phi}\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \widehat{\Pi}_{\phi} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle}
\end{array}
$$

observables of effective continum gravitational physics = collective observables, averages in suitable QG states

- can now turn GFT hydrodynamic eqns into equations for cosmological observables

Derivation of effective cosmological dynamics: main steps

- expectation values of fundamental observables in peaked states: relational spacetime-localized interpretation

$$
\begin{array}{ll}
N\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{N}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle & V\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{V}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle \\
X^{\mu}\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{V} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle} \simeq x^{\mu} \quad \Pi\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\left|\widehat{\Pi_{\nu}}\right| \sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle}^{\phi\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{\Phi}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle} \quad \Pi_{\phi}\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \widehat{\Pi}_{\phi} \mid \sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle
\end{array}
$$

observables of effective continuum gravitational physics = collective observables, averages in suitable QG states

- can now turn GFT hydrodynamic eqns into equations for cosmological observables
background volume dynamics: L. Marchetti, DO, '21 A. Jercher, DO, A. Pithis, 21

$$
\left.\left(\frac{V^{\prime}}{3 V}\right)^{2} \simeq\left(\frac{2 \sum_{j} \int d \pi_{\phi} V_{j} \operatorname{sgn}\left(\rho^{\prime}\right) \rho_{j} \sqrt{\mathcal{E}_{j}-Q_{j}^{2} / \rho_{j}^{2}+\mu_{j}^{2} \rho_{j}^{2}}}{3 \sum_{j} \int d \pi_{\phi} V_{j} \rho_{j}^{2}}\right)^{2} \quad \frac{V^{\prime \prime}}{V} \simeq \frac{2 \sum_{j} \int d \pi_{\phi} V_{j}\left[\mathcal{E}_{j}+2 \mu_{j}^{2} \rho_{j}^{2}\right]}{\sum_{j} \int d \pi_{\phi} V_{j} \rho_{j}^{2}}\right]
$$

- derivatives with respect to "clock time" = expectation value of "clock scalar field"
- depend on conserved quantities associated to choice of condensate state

Derivation of effective cosmological dynamics: main steps

- expectation values of fundamental observables in peaked states: relational spacetime-localized interpretation

$$
\begin{array}{ll}
N\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{N}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle & V\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{V}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle \\
X^{\mu}\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{V} \mid \sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\right\rangle} \simeq x^{\mu} \quad \Pi\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\left.\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}\left|\widehat{\Pi_{\nu}}\right| \sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle}^{\phi\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \hat{\Phi}\left|\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle} \quad \Pi_{\phi}\left(x^{0}, x^{i}\right) \equiv\left\langle\sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right| \widehat{\Pi}_{\phi} \mid \sigma_{\epsilon, \delta, \pi_{0}, \pi_{x}, x^{\mu}}\right\rangle
\end{array}
$$

observables of effective continuum gravitational physics = collective observables, averages in suitable QG states

- can now turn GFT hydrodynamic eqns into equations for cosmological observables
background volume dynamics: L. Marchetti, DO, '21 A. Jercher, DO, A. Pithis, 21

$$
\left.\left(\frac{V^{\prime}}{3 V}\right)^{2} \simeq\left(\frac{2 \sum_{j} \int d \pi_{\phi} V_{j} \operatorname{sgn}\left(\rho^{\prime}\right) \rho_{j} \sqrt{\mathcal{E}_{j}-Q_{j}^{2} / \rho_{j}^{2}+\mu_{j}^{2} \rho_{j}^{2}}}{3 \sum_{j} \int d \pi_{\phi} V_{j} \rho_{j}^{2}}\right)^{2} \quad \frac{V^{\prime \prime}}{V} \simeq \frac{2 \sum_{j} \int d \pi_{\phi} V_{j}\left[\mathcal{E}_{j}+2 \mu_{j}^{2} \rho_{j}^{2}\right]}{\sum_{j} \int d \pi_{\phi} V_{j} \rho_{j}^{2}}\right]
$$

- derivatives with respect to "clock time" = expectation value of "clock scalar field"
- depend on conserved quantities associated to choice of condensate state
- now we can analyse the emergent cosmological dynamics in different regimes

GFT cosmology

some results
(among many....)
M. Assanioussi, G. Calcagni, A. Calcinari, M. De Cesare, G. Chirco, R. Dekhil, F. Gerhardt, S. Gielen, A. Jercher, I. Kotecha, S. Liberati, L. Marchetti, DO, X. Pang, A. Pithis, A. Polaczek, M. Sakellariadou, L. Sindoni, A. Tomov, Y. Wang, E. Wilson-Ewing,
some results
(among many....)
M. Assanioussi, G. Calcagni, A. Calcinari, M. De Cesare, G. Chirco, R. Dekhil, F. Gerhardt, S. Gielen, A. Jercher, I. Kotecha, S. Liberati, L. Marchetti, DO, X. Pang, A. Pithis, A. Polaczek, M. Sakellariadou, L. Sindoni, A. Tomov, Y. Wang, E. Wilson-Ewing,

- very early times: very small volume - QG interactions subdominant
for large class of states:
$\exists j / \rho_{j}(\chi) \neq 0 \forall \chi \longrightarrow$
$V=\sum_{j} V_{j} \rho_{j}^{2}$
remains positive at all times
(with single turning point)

DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20, '21

- very early times: very small volume - QG interactions subdominant
for large class of states:

$$
V=\sum_{j} V_{j} \rho_{j}^{2}
$$

remains positive at all times (with single turning point)

DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20, '21

- intermediate times: large volume - QG interactions still subdominant
(here written neglecting matter contribution)

$$
\left(\frac{V^{\prime}}{V}\right)^{2}=\frac{V^{\prime \prime}}{V}=12 \pi \tilde{G}
$$

quantum bounce
(no big bang singularity)!

classical Friedmann dynamics in GR (wrt relational clock, with effective Newton constant) - flat FRW

- very early times: very small volume - QG interactions subdominant
for large class of states:
$\exists j / \rho_{j}(\chi) \neq 0 \forall \chi$

DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20, '21

- intermediate times: large volume - QG interactions still subdominant
(here written neglecting matter contribution)

$$
\left(\frac{V^{\prime}}{V}\right)^{2}=\frac{V^{\prime \prime}}{V}=12 \pi \tilde{G}
$$

(no big bang singularity)!

- late times: as universe expands, interactions become more relevant, until they drive evolution
\longrightarrow accelerated cosmological expansion
X. Pang, DO, '21
- "phenomenological" approach (simplified GFT interactions):
- effective cosmological dynamics $\quad w=3-\frac{2 V V^{\prime \prime}}{\left(V^{\prime}\right)^{2}}$

$$
w=3-\frac{2 V V^{\prime \prime}}{\left(V^{\prime}\right)^{2}}
$$

for "emergent matter" з component (of QG origin) order-6 interactions
2 modes \longrightarrow effective phantom-like dark energy (of pure QG origin)

+ asymptotic De Sitter universe
classical Friedmann dynamics in GR (wrt relational clock, with effective Newton constant) - flat FRW

- very early times: very small volume - QG interactions subdominant
for large class of states:
$\exists j / \rho_{j}(\chi) \neq 0 \forall \chi$ \longrightarrow

$$
V=\sum_{j} V_{j} \grave{\rho}_{j}^{2}
$$

remains positive at all times (with single turning point)

DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20, '21

- intermediate times: large volume - QG interactions still subdominant
(no big bang singularity)!

> (here written neglecting matter contribution)

$$
\left(\frac{V^{\prime}}{V}\right)^{2}=\frac{V^{\prime \prime}}{V}=12 \pi \tilde{G}
$$

classical Friedmann dynamics in GR (wrt relational clock, with effective Newton constant) - flat FRW

- late times: as universe expands, interactions become more relevant, until they drive evolution
\longrightarrow accelerated cosmological expansion
X. Pang, DO, '21
- "phenomenological" approach (simplified GFT interactions):
- effective cosmological dynamics

$$
w=3-\frac{2 V V^{\prime \prime}}{\left(V^{\prime}\right)^{2}}
$$ order-6 interactions

2 modes \longrightarrow effective phantom-like dark energy (of pure QG origin)

> X. Pang, DO, '21

+ asymptotic De Sitter universe

- value of cosmological constant linked to value of critical density at quantum bounce
(both depending on volume eigenvalue of dominant mode and state-dependent constant)
DO, X. Pang, to appear
- very early times: very small volume - QG interactions subdominant
for large class of states:
$\exists j / \rho_{j}(\chi) \neq 0 \forall \chi$ \longrightarrow

$$
V=\sum_{j} V_{j} \grave{\rho}_{j}^{2}
$$

remains positive at all times (with single turning point)

DO, L. Sindoni, E. Wilson-Ewing, '16; L. Marchetti, DO, '20, '21

- intermediate times: large volume - QG interactions still subdominant
(no big bang singularity)!

> (here written neglecting matter contribution)

$$
\left(\frac{V^{\prime}}{V}\right)^{2}=\frac{V^{\prime \prime}}{V}=12 \pi \tilde{G}
$$

classical Friedmann dynamics in GR (wrt relational clock, with effective Newton constant) - flat FRW

- late times: as universe expands, interactions become more relevant, until they drive evolution
\longrightarrow accelerated cosmological expansion
X. Pang, DO, '21
- "phenomenological" approach (simplified GFT interactions):
- effective cosmological dynamics

$$
w=3-\frac{2 V V^{\prime \prime}}{\left(V^{\prime}\right)^{2}}
$$ order-6 interactions 2 modes \longrightarrow effective phantom-like dark energy (of pure QG origin) X. Pang, DO, '21

+ asymptotic De Sitter universe

- value of cosmological constant linked to value of critical density at quantum bounce
(both depending on volume eigenvalue of dominant mode and state-dependent constant)
DO, X. Pang, to appear
- QG-produced early-time acceleration possible
M. De Cesare, A. Pithis, M. Sakellariadou, '17;
T. Landstätter, L. Marchetti, DO, to appear; P. Fischer, L. Marchetti, DO, to appear
- GFT (deparametrized) quantization wrt scalar field clock
- relation between "frozen" and deparametrized formalism
- cosmological perturbations
- localization fully relational, analysis still in mean field approx.
- dynamics of cosmological perturbations
- cosmological perturbations in GFT models including timelike tetrahedra
- effective field theory for scalar matter (QG signatures?)
R. Dekhil, S. Liberati, DO, to appear
- other approaches to cosmological perturbations
S. Gielen, DO, ' 17
S. Gielen, '18
F. Gerhardt, DO, E. Wilson-Ewing, '18
- reduction to LQC (as special sector of GFT cosmology)

DO, L. Sindoni, E. Wilson-Ewing, '16; S. Gielen, '17; L. Marchetti, DO, '20, '21; G. Calcagni,

- anisotropies A. Pithis, M. Sakellariadou, '16; M. De Cesare, DO, A. Pithis, M. Sakellariadou, '17; A. Calcinari, S. Gielen, '22; Y. Wang, DO, in prog
- thermal fluctuations (of QG observables) during cosmological evolution
- requires extension of GFT formalism to thermal states concrete proposal for covariant quantum statistical mechanics
- cosmological dynamics from generalised (squeezed) GFT states
- analysis of quantum fluctuations of observables during cosmic evolution
- many free scalar fields
S. Gielen, A. Polaczek, '20
M. Assanioussi, I. Kotecha, '19,'20
I. Kotecha, '20; I. Kotecha, DO, '18;
G. Chirco, I. Kotecha, DO, '18
S. Gielen, A. Polaczek, '19
S. Gielen, A. Polaczek, '19; L. Marchetti, DO, '21
\qquad

Main messages

- modern discrete version of 3rd quantization formalism for QG, incorporating topology change, exist
- tensorial group field theory as combinatorial generalization and quantum geometric enrichment of 2 d matrix models
- candidate definition of simplicial gravity path integrals, including their continuum limit
- candidate definition of spin foam models, including their continuum limit
- can be controlled (sum over topologies, renormalizability, etc) - level of control depends on complexity of model
- continuum cosmological dynamics can be extracted from their (mean field) hydrodynamics
- emergent cosmological dynamics shows quantum bounce (and late-time acceleration)

Thank you for your attention

