

Melonic Radiative Correction in 4D Spinfoam with Cosmological Constant

Qiaoyin Pan
Based on collaboration with Muxin Han, [arXiv: 2307.xxxx]

Quantum Gravity 2023

Spinfoam model of quantum gravity

- Loop quantum gravity (LQG) - a background-independent, non-perturbative approach to quantum gravity \Longrightarrow quantize spacetime geometry

- A promising research area in LQG - inclusion of cosmological constant $\Lambda \longrightarrow$ completeness, apply to cosmology
- Spinfoam - a covariant LQG approach: to construct the transition amplitude of quantum gravity \longrightarrow regularized path integral/sum over history
- Divergence in spinfoam - have no ultraviolet divergence due to fundamental "area gaps" $\propto \ell_{\mathrm{pl}}^{2}$
- but have infrared divergence when $\Lambda=0$
- Self-energy/radiative correction in spinfoam [Perini, Rovelli, Speziale '08]

Melonic radiative correction \longrightarrow first-order correction of propagator

Melonic radiative correction in spinfoam

- $\Lambda=0 \longrightarrow$ the Engle-Pereira-Rovelli-Livine-Freidel-Krasnov (EPRL-FK) spinfoam model [Engle, Livine, Roveill, Pereira '07, Freidel, Krasnov '08]
- Introduce a cut-off for representation label by hand $\sum_{j=0}^{\infty} \rightarrow \sum_{j=0}^{k}$ and consider large k
- Melonic radiative correction: $\mathcal{A}_{\Gamma_{\text {melon }}} \sim k \quad$ [Frisoni, Gozzini, Vidotto '22]
consistent with $\left\{\begin{array}{lll}\text { the lower bound (analytic): } & \mathcal{A}_{\Gamma_{\text {melon }}} \sim \ln k & \text { [Riello '13] } \\ \text { the upper bound (numerical): } & \mathcal{A}_{\Gamma_{\text {melon }}} \sim k^{9} & \text { [Donà '18] }\end{array}\right.$

Melonic radiative correction in spinfoam

- $\Lambda=0 \longrightarrow$ the Engle-Pereira-Rovelli-Livine-Freidel-Krasnov (EPRL-FK) spinfoam model [Engle, Livine, Roveill, Pereira '07, Freidel, Krasnov '08]
- Introduce a cut-off for representation label by hand $\sum_{j=0}^{\infty} \rightarrow \sum_{j=0}^{k}$ and consider large k
- Melonic radiative correction: $\mathcal{A}_{\Gamma_{\text {melon }}} \sim k \quad$ [Frisoni, Gozzini, Vidotto '22] \quad consistent with $\left\{\begin{array}{lll}\text { the lower bound (analytic): } & \mathcal{A}_{\Gamma_{\text {melon }}} \sim \ln k & \text { [Riello '13] } \\ \text { the upper bound (numerical): } & \mathcal{A}_{\Gamma_{\text {melon }}} \sim k^{9} & \text { [Donà '18] }\end{array}\right.$
- Another promising way to consider the radiative correction is to start from a spinfoam model with a $\Lambda \neq 0$

Melonic radiative correction in spinfoam

- $\Lambda=0 \longrightarrow$ the Engle-Pereira-Rovelli-Livine-Freidel-Krasnov (EPRL-FK) spinfoam model [Engle, Livine, Roveill, Pereira '07, Freidel, Krasnov '08]
- Introduce a cut-off for representation label by hand $\sum_{j=0}^{\infty} \rightarrow \sum_{j=0}^{k}$ and consider large k
- Melonic radiative correction: $\mathcal{A}_{\Gamma_{\text {melon }}} \sim k \quad$ [Frisoni, Gozzini, Vidotto '22] \quad consistent with $\left\{\begin{array}{lll}\text { the lower bound (analytic): } & \mathcal{A}_{\Gamma_{\text {melon }}} \sim \ln k & \text { [Riello '13] } \\ \text { the upper bound (numerical): } & \mathcal{A}_{\Gamma_{\text {melon }}} \sim k^{9} & \text { [Donà '18] }\end{array}\right.$
- Another promising way to consider the radiative correction is to start from a spinfoam model with a $\Lambda \neq 0$
- Spinfoam model based on $\operatorname{SL}(2, \mathbb{C})$ Chern-Simons theory on the boundary [Han '21]
- The amplitude is finite by construction - cut-off given by $|\Lambda|: \sum_{j=0}^{(k-1) / 2} \quad k=\frac{12 \pi}{|\Lambda| \ell_{\rho \mid}^{2} \gamma} \in \mathbb{Z}_{+} ; \quad \gamma \in \mathbb{R}$: Barbero-Immirzi parameter
- Correct semi-classical limit \longrightarrow 4D Regge calculus with $\Lambda>0$ or $\Lambda<0$ [Haggard, Han, Kaminski, Riello '14-15]

Melonic radiative correction in spinfoam

- $\Lambda=0 \longrightarrow$ the Engle-Pereira-Rovelli-Livine-Freidel-Krasnov (EPRL-FK) spinfoam model [Engle, Livine, Roveill, Pereira '07, Freidel, Krasnov '08]
- Introduce a cut-off for representation label by hand $\sum_{j=0}^{\infty} \rightarrow \sum_{j=0}^{k}$ and consider large k
- Melonic radiative correction: $\mathcal{A}_{\Gamma_{\text {melon }}} \sim k \quad$ [Frisoni, Gozzini, Vidotto '22] \quad consistent with $\left\{\begin{array}{lll}\text { the lower bound (analytic): } & \mathcal{A}_{\Gamma_{\text {melon }}} \sim \ln k & \text { [Riello '13] } \\ \text { the upper bound (numerical): } & \mathcal{A}_{\Gamma_{\text {melon }}} \sim k^{9} & \text { [Donà '18] }\end{array}\right.$
- Another promising way to consider the radiative correction is to start from a spinfoam model with a $\Lambda \neq 0$
- Spinfoam model based on $\operatorname{SL}(2, \mathbb{C})$ Chern-Simons theory on the boundary [Han '21]
- The amplitude is finite by construction - cut-off given by $|\Lambda|: \sum_{j=0}^{(k-1) / 2} \quad k=\frac{12 \pi}{|\Lambda| \ell_{\rho \mid}^{2} \gamma} \in \mathbb{Z}_{+} ; \quad \gamma \in \mathbb{R}$: Barbero-Immirzi parameter
- Correct semi-classical limit \longrightarrow 4D Regge calculus with $\Lambda>0$ or $\Lambda<0$ [Haggard, Han, Kaminski, Riello '14-15]

Analytic Result for the melonic radiative correction - power law $\mathcal{A}_{\text {melon }} \sim k^{p}$

In this talk

- Review on the spinfoam model with $\Lambda \neq 0$
- Spinfoam amplitude for melonic graph
- Melonic radiative correction

4D spinfoam with $\Lambda \neq 0$

- Local amplitude ansatz defined on a spinfoam 2-complex:

Goal of the spinfoam program: construct suitable and consistent $\mathcal{A}_{f}, \mathcal{A}_{e}, \mathcal{A}_{v}$ to implement quantum dynamics of LQG

4D spinfoam with $\Lambda \neq 0-$ cont.

- Starting point - Plebanski formulation of 4D gravity: BF theory + simplicity constraint

$$
\left.S_{\mathrm{BF}}=-\frac{1}{2} \int_{M_{4}} \operatorname{Tr}\left[\left(\star B+\frac{1}{\gamma} B\right) \wedge \mathcal{F}(\mathcal{A})\right]-\frac{|\Lambda|}{12} \int_{M_{4}} \operatorname{Tr}\left[\left(\star B+\frac{1}{\gamma} B\right) \wedge B\right] \quad \right\rvert\, \begin{array}{ll}
B: \mathfrak{s l}(2, \mathbb{C}) 2 \text {-form; } & A: \mathfrak{s l}(2, \mathbb{C}) \text { connection; } \\
\gamma \in \mathbb{R}: \text { Barbero-Immirzi parameter; } & \star: \text { Hodge operator }
\end{array}
$$

simplicity constraint: $B= \pm e \wedge e$ (encode the sign of Λ)

- Step 1: Construct the path integral: integrating out B field $\xrightarrow{\text { Gaussian integral }}$ constraint $\mathcal{F}[\mathcal{A}]=\frac{|\Lambda|}{3} B$

$$
\int \mathrm{d} B \int \mathrm{~d} \mathcal{A} e^{i S_{\mathrm{BF}}}=\int \mathrm{d} \mathcal{A} e^{\frac{3 i}{4|\Lambda|} \int_{M_{4}} \operatorname{Tr}\left[\left(\star+\frac{1}{\gamma}\right) \mathcal{F} \wedge \mathcal{F}\right]}
$$

- $\longrightarrow \mathrm{SL}(2, \mathbb{C})$ Chern-Simons theory on the boundary

$$
\begin{gathered}
\left.\frac{t}{8 \pi} \int_{\partial M_{4}} \operatorname{Tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)+\frac{\bar{t}}{8 \pi} \int_{\partial M_{4}} \operatorname{Tr}\left(\bar{A} \wedge \mathrm{~d} \bar{A}+\frac{2}{3} \bar{A} \wedge \bar{A} \wedge \bar{A}\right) \quad \right\rvert\, \begin{array}{l}
t=k(1+i \gamma): \text { complex coupling constant } \\
k=\frac{12 \pi}{|\Lambda| \ell_{p}^{2} \gamma} \in \mathbb{Z}_{+}
\end{array} \\
A: \text { self-dual part of } \mathcal{A} ; \quad \bar{A} \text { : anti-self-dual part of } \mathcal{A}
\end{gathered}
$$

- Step 2: Quantize the simplicity constraint and impose it to the quantum theory

4D spinfoam with $\Lambda \neq 0-$ cont.

- Starting point - Plebanski formulation of 4D gravity: BF theory + simplicity constraint

$$
S_{\mathrm{BF}}=-\frac{1}{2} \int_{M_{4}} \operatorname{Tr}\left[\left(\star B+\frac{1}{\gamma} B\right) \wedge \mathcal{F}(\mathcal{A})\right]-\frac{|\Lambda|}{12} \int_{M_{4}} \operatorname{Tr}\left[\left(\star B+\frac{1}{\gamma} B\right) \wedge B\right]
$$

simplicity constraint: $B= \pm e \wedge e$ (encode the sign of Λ)

- Step 1: Construct the path integral: integrating out B field $\xrightarrow{\text { Gaussian integral }}$ constraint $\mathcal{F}[\mathcal{A}]=\frac{|\Lambda|}{3} B$

$$
\int \mathrm{d} B \int \mathrm{~d} \mathcal{A} e^{i S_{\mathrm{BF}}}=\int \mathrm{d} \mathcal{A} e^{\frac{3 i}{4|\Lambda|} \int_{M_{4}} \operatorname{Tr}\left[\left(\star+\frac{1}{\gamma}\right) \mathcal{F} \wedge \mathcal{F}\right]}
$$

- $\longrightarrow \mathrm{SL}(2, \mathbb{C})$ Chern-Simons theory on the boundary

$$
\begin{gathered}
\left.\frac{t}{8 \pi} \int_{\partial M_{4}} \operatorname{Tr}\left(A \wedge \mathrm{~d} A+\frac{2}{3} A \wedge A \wedge A\right)+\frac{\bar{t}}{8 \pi} \int_{\partial M_{4}} \operatorname{Tr}\left(\bar{A} \wedge \mathrm{~d} \bar{A}+\frac{2}{3} \bar{A} \wedge \bar{A} \wedge \bar{A}\right) \quad \right\rvert\, \begin{array}{l}
t=k(1+i \gamma): \text { complex coupling constant } \\
k=\frac{12 \pi}{|\Lambda| \ell_{P}^{2} \gamma} \in \mathbb{Z}_{+}
\end{array} \\
A: \text { self-dual part of } \mathcal{A} ; \quad \bar{A} \text { : anti-self-dual part of } \mathcal{A}
\end{gathered}
$$

- Step 2: Quantize the simplicity constraint and impose it to the quantum theory

4D quantum gravity with $\Lambda \neq 0=$ complex Chern-Simons theory on boundary \backslash graph + simplicity constraints $\mathcal{F}=\frac{\Lambda}{3} e \wedge e$ on the graph

Vertex amplitude for $S^{3} \backslash \Gamma_{5}$

- CS partition function on $S^{3} \backslash \Gamma_{5}$ = finite sum of convergent state integral [Han '21]

$$
\begin{aligned}
& \mathcal{Z}_{S^{3} \backslash \Gamma_{5}}(\vec{\mu} \mid \vec{m})=\frac{4 i}{k^{15}} \sum_{\vec{n} \in(\mathbb{Z} / k \mathbb{Z})^{15}} \int_{\mathcal{C}} \mathbf{d}^{15} \nu e^{S_{0}} \prod_{i=1}^{20} \Psi_{\triangle}(i) \quad \Psi_{\triangle}(i): \text { quantum dilogarithm function } \\
& S_{0}=\frac{\pi i}{k}\left[-2\left(\vec{\mu}-\frac{i Q}{2} \vec{t}\right) \cdot \vec{\nu}+2 \vec{m} \cdot \vec{n}-\vec{\nu} \cdot \mathbf{A} \mathbf{B}^{T} \cdot \vec{\nu}+(k+1) \vec{n} \cdot \mathbf{A B}{ }^{T} \cdot \vec{n}\right]
\end{aligned}
$$

Γ_{5} graph
ideal tetrahedron \triangle (vertices truncated)
[figure from: Han '21]

- Impose the simplicity constraints \longrightarrow The vertex amplitude is defined by the inner product of the CS partition function with 5 coherent states

$$
\mathcal{A}_{v}\left(\left\{e^{i \frac{4 \pi j}{k}}\right\},\left\{\hat{\rho}_{a}\right\}\right)=\left\langle\prod_{a=1}^{5} \bar{\Psi}_{\hat{\rho}_{a}} \mid \mathcal{Z}_{S^{3} \backslash \Gamma_{5}}^{\vec{j}}\right\rangle
$$

Melonic radiative correction - gluing two 3-manifold

- Consider two copies of $S^{3} \backslash \Gamma_{5}$'s and the CS partition function on the $\mathcal{Z}_{M_{+}}, \mathcal{Z}_{M_{-}}$
- Impose the "gluing constraints" on four of the 4-holed spheres $\xrightarrow{\text { discretization }}\left\{\begin{array}{l}\Lambda>0 \rightarrow \text { spherical tetrahedron } \\ \Lambda<0 \rightarrow \text { hyperbolic tetrahedron }\end{array}\right.$

18 gluing constraints $=10$ to match the (quantum) areas +8 to match the (quantum) shapes
\Longrightarrow CS partition function for $M_{+\cup-}: \mathcal{Z}_{M_{+\cup-}}$

Melonic radiative correction - gluing two 3-manifold

- Consider two copies of $S^{3} \backslash \Gamma_{5}$'s and the CS partition function on the $\mathcal{Z}_{M_{+}}, \mathcal{Z}_{M_{-}}$
- Impose the "gluing constraints" on four of the 4-holed spheres $\xrightarrow{\text { discretization }}\left\{\begin{array}{l}\Lambda>0 \rightarrow \text { spherical tetrahedron } \\ \Lambda<0 \rightarrow \text { hyperbolic tetrahedron }\end{array}\right.$

18 gluing constraints $=10$ to match the (quantum) areas +8 to match the (quantum) shapes
\Longrightarrow CS partition function for $M_{+U_{-}}: \mathcal{Z}_{M_{+\cup-}}$

- Impose the simplicity constraints - factorize the amplitude into 2 vertex amplitudes and 4 edge amplitudes
- use the over-completeness of coherent states

$$
\begin{aligned}
\sum_{m \in \mathbb{Z} / k \mathbb{Z}} \int \mathrm{~d} \mu f(\mu \mid m) f^{\prime}(\mu \mid m) & =\sum_{m, n \in \mathbb{Z} / k \mathbb{Z}} \int \mathrm{~d} \mu \mathrm{~d} \nu f(\mu \mid m)\left[\delta(\mu, \nu) \delta_{m, n}\right] f^{\prime}(\nu \mid n) \\
& =\frac{k^{2}}{(2 \pi)^{4}} \sum_{m, n \in \mathbb{Z} / k \mathbb{Z}} \int \mathrm{~d} \mu \mathrm{~d} \nu f(\mu \mid m)\left[\int \mathrm{d} \rho \bar{\Psi}_{\rho}(\mu \mid m) \Psi_{\rho}(\nu \mid n)\right] f^{\prime}(\nu \mid n)
\end{aligned}
$$

Spinfoam amplitude for $M_{+\cup-}$

- We derive the edge amplitude for each gluing sphere :

$$
\mathcal{A}_{e}\left(\hat{\rho}_{e}, \hat{\eta}_{e}\right)=\frac{k^{3}}{(2 \pi)^{8}} \int \mathrm{~d} \mu_{e} e^{\frac{4 \pi Q}{k} \mu_{e}} \bar{\Psi}_{\hat{\rho}_{e}}\left(\mu_{e} \mid m_{e}\right) \bar{\Psi}_{\hat{\eta}_{e}}\left(\mu_{e} \mid m_{e}\right)
$$

- $M_{+U_{-}}$is of genus 6. For each internal loop, we associate a face amplitude

$$
\mathcal{A}_{f}\left(j_{f}\right)=\left(2 j_{f}+1\right)^{\mu}, \quad \mu \text { undetermined, } \quad j_{f}=0, \frac{1}{2}, \cdots, \frac{k-1}{2}
$$

$M_{+\cup-}$

Spinfoam amplitude for $M_{+U_{-}}$

- We derive the edge amplitude for each gluing sphere :

$$
\mathcal{A}_{e}\left(\hat{\rho}_{e}, \hat{\eta}_{e}\right)=\frac{k^{3}}{(2 \pi)^{8}} \int \mathrm{~d} \mu_{e} e^{\frac{4 \pi Q}{k} \mu_{e}} \bar{\Psi}_{\hat{\rho}_{e}}\left(\mu_{e} \mid m_{e}\right) \bar{\Psi}_{\hat{\eta}_{e}}\left(\mu_{e} \mid m_{e}\right)
$$

- $M_{+\mathrm{U}}$ is of genus 6. For each internal loop, we associate a face amplitude

$$
\mathcal{A}_{f}\left(j_{f}\right)=\left(2 j_{f}+1\right)^{\mu}, \quad \mu \text { undetermined, } \quad j_{f}=0, \frac{1}{2}, \cdots, \frac{k-1}{2}
$$

- The spinfoam amplitude for $M_{+\mathrm{U}_{-}}$:

$$
\mathcal{A}_{\text {melon }}\left(\left\{j_{b}\right\}, \hat{\rho}_{5}, \hat{\eta}_{6}\right)=\sum_{\left\{j_{f}\right\}=0}^{(k-1) / 2} \prod_{f=1}^{6} \mathcal{A}_{f}\left(j_{f}\right) \int\left[\boldsymbol{d} \hat{\rho}_{e}\right]\left[\mathbf{d} \hat{\eta}_{e}\right] \prod_{e=1}^{4} \mathcal{A}_{e}\left(\hat{\rho}_{e}, \hat{\eta}_{e}\right) \mathcal{A}_{v},+\left(\left\{j_{f}\right\},\left\{j_{b}\right\},\left\{\hat{\rho}_{a}\right\}\right) \mathcal{A}_{v},-\left(\left\{j_{f}\right\},\left\{j_{b}\right\},\left\{\hat{\eta}_{a}\right\}\right)
$$

Theorem: The amplitude $\mathcal{A}_{\text {melon }}\left(\left\{j_{b}\right\}, \hat{\rho}_{5}, \hat{\eta}_{6}\right)$ for $M_{+\cup-}$ is finite.

$M_{+\cup-}$

M_{-}

Melonic radiative correction

(e) We fix the boundary data $\left(\left\{j_{b}\right\}, \hat{\rho}_{5}, \hat{\eta}_{6}\right)$ and consider the $\Lambda \rightarrow 0(k \rightarrow \infty)$ for the melonic amplitude $\quad k=\frac{12 \pi}{|\Lambda| \ell_{\mathrm{p} \mid}^{2} \gamma} \in \mathbb{Z}_{+}$

- Use Poisson summation to change from sum to integral

$$
\sum_{m=0}^{k-1} f(m)=\sum_{r \in \mathbb{Z}} \int_{-\delta}^{k-\delta} \mathrm{d} m f(m) e^{2 \pi i r m}
$$

- Change to coordinates $(\vec{\mu}, \vec{m}) \rightarrow(\overrightarrow{\mathfrak{Q}}, \overrightarrow{\mathfrak{P}})$ which do not scale with k and take the large k approximation

$$
\begin{gathered}
\mathcal{A}_{\text {melon }}\left(\overrightarrow{\mathfrak{Q}}_{\text {ext }}\right)=\mathcal{N} \int\left[\mathbf{d} \overrightarrow{\mathfrak{Q}}_{\text {int }}\right]\left[\mathrm{d} \overrightarrow{\mathfrak{P}}_{\text {int }}\right] \prod_{f=1}^{6} \mathcal{A}_{f}\left(\overrightarrow{\mathfrak{Q}}_{\mathrm{int}}\right) \prod_{e=1}^{4} \mathcal{A}_{e}(\overrightarrow{\mathfrak{Q}}, \overrightarrow{\mathfrak{P}}) \mathcal{A}_{v,+}(\overrightarrow{\mathfrak{Q}}, \overrightarrow{\mathfrak{P}}) \mathcal{A}_{v,-}(\overrightarrow{\mathfrak{Q}}, \overrightarrow{\mathfrak{P}}) \\
\stackrel{k \rightarrow \infty}{\longrightarrow} \mathcal{N} \int\left[\mathrm{~d} \overrightarrow{\mathfrak{Q}}_{\mathrm{int}}\right]\left[\mathrm{d} \overrightarrow{\mathfrak{P}}_{\mathrm{int}}\right] e^{S_{\mathrm{tot}}}[1+O(1 / k)]
\end{gathered}
$$

$\xrightarrow{k \rightarrow \infty}$

$M_{+\cup-}$

Result

- The effective action for the final amplitude at large k regime:

$$
S_{\text {tot }}=\sum \mathrm{Li}_{2}\left(e^{\operatorname{Linear}(\overrightarrow{\mathfrak{L}}, \overrightarrow{\mathfrak{F}})}\right)+\sum \operatorname{Poly}(\overrightarrow{\mathfrak{Q}}, \overrightarrow{\mathfrak{P}})+\sum \operatorname{Poly}\left(\left\{\hat{\rho}_{e}\right\},\left\{\hat{\eta}_{e}\right\}\right)
$$

$$
\Psi_{\Delta}(z, \widetilde{z})=\exp \left[-\frac{i k}{2 \pi\left(b^{2}+1\right)} \mathrm{Li}_{2}\left(z^{-1}\right)-\frac{i k}{2 \pi\left(b^{-2}+1\right)} \mathrm{Li}_{2}\left(\widetilde{z}^{-1}\right)\right][1+O(1 / k)]
$$

- Stationary phase analysis:

$$
\begin{aligned}
& \mathcal{A}_{\text {melon }}\left(\overrightarrow{\mathfrak{Q}}_{\text {ext }}\right) \xrightarrow{k \rightarrow \infty} \mathcal{N} \int\left[\mathrm{~d} \overrightarrow{\mathfrak{Z}}_{\text {int }}\right]\left[\mathrm{d} \overrightarrow{\mathfrak{P}}_{\text {int }}\right] e^{S_{\text {tot }}[1+O(1 / k)]} \\
& \sim \sum_{\alpha} \frac{\mathcal{N}}{\sqrt{\operatorname{det}\left(H_{\alpha} / 2 \pi\right)}} e^{S_{\text {tot }}^{(\alpha)}}[1+O(1 / k)] \quad \text { stationary points: } \frac{\partial S_{\text {tot }}^{(\alpha)}}{\partial \mathfrak{Z}_{\text {int }}}=\frac{\partial S_{\text {tot }}^{(\alpha)}}{\partial \overrightarrow{\mathfrak{P}}_{\text {int }}^{(1)}}=\frac{\partial S_{\text {tot }}^{(\alpha)}}{\partial \rho_{e}}=\frac{\partial S_{\text {tot }}^{(\alpha)}}{\partial \eta_{e}}=0 \\
& \mathcal{N} \propto k^{63+6 \mu}, \quad \operatorname{det}\left(H_{\alpha}\right) \propto k^{102} \longrightarrow \mathcal{A}_{\text {melon }} \sim k^{12+6 \mu} \quad \mathcal{A}_{\text {melon }} \text { diverges if } \mu>-2
\end{aligned}
$$

- It depends on the technical assumption that $\operatorname{det}\left(H_{\alpha}\right) \neq 0$

■ Pass some numerical experiments

- Strictly speaking, $k^{12+6 \mu}$ is a lower bound for the divergence

Conclusion and outlook

- The melonic radiative correction for the spinfoam model with $\Lambda \neq 0$ based on the $\operatorname{SL}(2, \mathbb{C}) \mathrm{CS}$ theory on the boundary scales as $\frac{1}{|\Lambda|^{12+6 \mu}}$ as the lower bound given the face amplitude $\mathcal{A}_{f}=\left(2 j_{f}+1\right)^{\mu}$
- This result is promising as we start from a spinfoam model truly with a cosmological constant
- We proposed an edge amplitude in terms of CS coherent state consistent with the vertex amplitude
- As a state-integral formalism, this spinfoam model is as computable as the EPRL-FK model

Conclusion and outlook

- The melonic radiative correction for the spinfoam model with $\Lambda \neq 0$ based on the $\mathrm{SL}(2, \mathbb{C}) \mathrm{CS}$ theory on the boundary scales as $\frac{1}{|\Lambda|^{12+6 \mu}}$ as the lower bound given the face amplitude $\mathcal{A}_{f}=\left(2 j_{f}+1\right)^{\mu}$
- This result is promising as we start from a spinfoam model truly with a cosmological constant
e We proposed an edge amplitude in terms of CS coherent state consistent with the vertex amplitude
- As a state-integral formalism, this spinfoam model is as computable as the EPRL-FK model
- Exploration: improve the analysis for the $\operatorname{det}\left(H_{\alpha}\right) \longrightarrow$ numerical method [Han, Liu, Qu '21-23]
connection with the EPRL-FK model \longrightarrow relation between the coherent states
relation to the canonical quantization of 4 D gravity with $\Lambda \neq 0$ - combinatorial quantization
- emergence of quantum groups
etc.

Conclusion and outlook

- The melonic radiative correction for the spinfoam model with $\Lambda \neq 0$ based on the $\mathrm{SL}(2, \mathbb{C}) \mathrm{CS}$ theory on the boundary scales as $\frac{1}{|\Lambda|^{12+6 \mu}}$ as the lower bound given the face amplitude $\mathcal{A}_{f}=\left(2 j_{f}+1\right)^{\mu}$
- This result is promising as we start from a spinfoam model truly with a cosmological constant
e We proposed an edge amplitude in terms of CS coherent state consistent with the vertex amplitude
- As a state-integral formalism, this spinfoam model is as computable as the EPRL-FK model
- Exploration: improve the analysis for the $\operatorname{det}\left(H_{\alpha}\right) \longrightarrow$ numerical method [Han, Liu, Qu'21-23]
connection with the EPRL-FK model \longrightarrow relation between the coherent states
relation to the canonical quantization of 4D gravity with $\Lambda \neq 0-$ combinatorial quantization
- emergence of quantum groups
etc.

Thank you for your attention!

