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What is Quantum Geometrodynamics ...

Wheeler, DeWitt, Bergmann, Dirac,... see also Arnowitt et al. '08, and Kiefer '07

® Einstein GR in its Hamiltonian (ADM) form.

e Spatial metric g,5 and momentum p<.

¢ Constrained system D;(q,p) =0, H(q,p) = 0.

® Quantization a la Dirac D;(g, p)v» =0, H(g,p)v = 0.
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What is Quantum Geometrodynamics ...

Wheeler, DeWitt, Bergmann, Dirac,... see also Arnowitt et al. '08, and Kiefer '07
® Einstein GR in its Hamiltonian (ADM) form.
e Spatial metric g,, and momentum p<.
¢ Constrained system D;(q,p) =0, H(q,p) = 0.
® Quantization a la Dirac D;(g, p)v» =0, H(g,p)v = 0.

... and why does it need to be reanimated?

e Constraints yield ill-defined QFT expressions.

Operator-ordering and Dirac consistency.
Tsamis & Woodard '87

No Hilbert space available.

Positive definiteness? Kiauder 99', Isham & Kakas '84

Problem of time, ... Kiefer 07, Isham '91
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Forward Solution: Discretization
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Forward Solution: Discretization

@ Restrict phase space to piecewise
constant fields
®
Ga6(x) = > a2 xx(x)
® @ @ @ X
PN @ po @ with periodic boundary conditions.
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Forward Solution: Discretization

Restrict phase space to piecewise
constant fields

qab(x Z o Xx (X

_F¢ o _{,____f*___ ‘ with periodic boundary conditions.

Calculate constraints on the lattice (Ambiguous!)
X
1
= 63 Z NX ( (qacqbd n— 1qachd> ab cd fR>
3 bc X
=€ ZNX < 2Ab GacpP” )"‘ (Aaqbc)p >

Other discretization schemes include Regge calc., CDT and spinfoams (among others),
see e.g., Williams '09, Loll '98, '17, Ambjgrn '22, Perez '13, Rovelli & Vidotto '20



Constraint Algebra on the Lattice

{D(V), D(W)}= D(LyW) + € App(V, W),
{H(f), H(g)}= D(V) + € Ann(f, &),
{D(V), H(f)}= H(Lyf) + € Apn(f, V),

where Ly - is the Lie derivative represented on the lattice with respect to V,

and the lattice vector V is given by Vi(q,f,g) = q¥ (FArg — gAuf)* .*
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Constraint Algebra on the Lattice

{D(V), D(W)}= D(LyW) + € App(V, W),
{H(f), H(g)}= D(V) + € Ann(f, &),

H
{D(V), H(f)}= H(Lyf) + € Apn(f, V),

where Ly - is the Lie derivative represented on the lattice with respect to V,

and the lattice vector V is given by Vi(q,f,g) = q¥ (FArg — gAuf)* .*

Anomalies appear: App, AxH, ApH
e Unsurprising and expected — we break general covariance.
® Proportional to e.
® New degrees of freedom.

® Need to examine continuum limit.

*Discrete constrained algebra in other approaches to quantum gravity: Bander '87,

Bonzom & Dittrich '13, Friedman & Jack 86, Loll ‘98, Piran & Williams '86, and
references therein.
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Quantum Theory at a Point

Schrédinger representation
e Standard CCR [§%, Y] = 6_35‘2(:(52)5)\5

® States with support on non—positive definite metrics!
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Quantum Theory at a Point

Schrédinger representation
e Standard CCR [§%%, pY¢] = 7352252)5)\5

® States with support on non—positive definite metrics!
A new representation using the Cholesky decomposition

g=u'u, wueUTL(3,R),

where UT (3, R) is the Lie group of upper triangular matrices with
pos. diagonal elements.*
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Quantum Theory at a Point

Schrédinger representation
e Standard CCR [§%%, pY¢] = 7352252)5)\5

® States with support on non—positive definite metrics!
A new representation using the Cholesky decomposition

g=u'u, wueUTL(3,R),

where UT (3, R) is the Lie group of upper triangular matrices with
pos. diagonal elements.*

® Hilbert space: Hx = L2(UT,(3,R), p(u)du).
 Representation of dup: (dasth)(1) = Gas()e(1)

*Thiemann 23 independently used this triangular gauge.
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Quantum Theory at a Point

Representation of Momenta

First, define generators of shifts in positive g—directions

U(S)aab U(S)Jf = aab + Sap.
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Quantum Theory at a Point

Representation of Momenta

First, define generators of shifts in positive g—directions

U(5)GabU(s)T = dab + Sap.

The following U(s) does the job:

(U(s))(u) = \/ A R

where g is a diffeo on UT (3, R) with gs(u) = g7 1(q(u) + s).
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Quantum Theory at a Point

Representation of Momenta

First, define generators of shifts in positive g—directions

U(5)GabU(s)T = dab + Sap.

The following U(s) does the job:

(U(s))(u) = \/ A R

where g is a diffeo on UT (3, R) with gs(u) = g7 1(q(u) + s).

{U(s) € B(H),s € R®} forms a strongly continuous contraction
semigroup.
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Quantum Theory on the Lattice

This contraction semigroup admits the infinitesimal generators

(Hille-Yosida) i < . U(SW)

dSCd

SCdZO

With these definitions: [§%}, p¢] = 6*365,65?6)\5.

Total lattice Hilbert space

Heor = (X) L*(UT (3, R), p(ux) dux)
X
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Quantum Theory on the Lattice

This contraction semigroup admits the infinitesimal generators

(Hille-Yosida) d
- ~ncd .
ip Y = (dscd U(S)?/})

Sca=0

With these definitions: [6%, p] = ¢ 354 67)5%.

Total lattice Hilbert space

Heor = (X) L*(UT (3, R), p(ux) dux)
X

e All results also apply to n # 3 dimensions!

e Construction scheme applies to other physical systems.
® Coupling of fermions easily possible.

® Generalized Weyl quantization scheme available.*

*Thorsten’s talk.
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Summary and Outlook

Summary

® Progress in quantum geometrodynamics stalled...
® ..we suggest some solutions:

® Discretization of geometrodynamics,

® Including the constraints and their algebra.

® Construction of a separable lattice Hilbert space
® that ensures positive—definiteness of g.
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Summary and Outlook

Summary

® Progress in quantum geometrodynamics stalled...
® ..we suggest some solutions:

® Discretization of geometrodynamics,

® Including the constraints and their algebra.

® Construction of a separable lattice Hilbert space
® that ensures positive—definiteness of g.

Outlook

e Examine continuum limit (work in progress).

See arXiv:2305:09650 and arXiv:2305.10097, and Thorsten's talk.
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Thank you for your attention!



