Macroscopic Microscopic Effects

Quantum Gravity and the Event Horizon Telescope

Jesse Daas Supervisors: F. Saueressig, H. Falcke

Radboud University

Quadratic Gravity

 $S_{QG} = \int d^4 x \sqrt{g} \left[\frac{1}{16\pi G} R - \alpha \, C_{\alpha\beta\mu\nu} C^{\alpha\beta\mu\nu} + \, \beta \, R^2 \, \right]$

Quadratic Gravity

 $S_{QG} = \int d^4 x \sqrt{g} \left[\frac{1}{16\pi G} R - \alpha C_{\alpha\beta\mu\nu} C^{\alpha\beta\mu\nu} + \beta R^2 \right]$

- Generic action for all terms quadratic in curvature
- These terms are predicted to be there by several Quantum Gravity theories
- Provides Leading order correction to GR
- Is itself Perturbatively Renormalizable

Quadratic Gravity

 $S_{QG} = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G} R - \alpha C_{\alpha\beta\mu\nu} C^{\alpha\beta\mu\nu} + \beta R^2 \right]$

- Generic action for all terms quadratic in curvature
- These terms are predicted to be there by several Quantum Gravity theories
- Provides Leading order correction to GR
- Is itself Perturbatively Renormalizable

The motivation is Quantum, but the treatment is Classical

The Planck scale regime: $M = 10 m_{\rm pl}$

• Parameters: $\alpha, \beta, S_0, S_2, M$

The Planck scale regime: $M = 10 m_{\rm pl}$

• Parameters: $\alpha, \beta, S_0, S_2, M$

Naked Singularity

Wormhole

$$ds^{2} = -h(r) dt^{2} + rac{1}{f(r)} dr^{2} + r^{2} d\Omega^{2}$$

The Planck scale regime: $M = 10m_{\rm pl}$

$$rac{r_{
m sh}^{
m QG} - r_{
m sh}^{
m GR}}{r_{
m sh}^{
m GR}} \, = \, 2 \, \, e^{- \, 6.5 imes 10^{50}}$$

$$rac{r_{
m sh}^{
m QG} - r_{
m sh}^{
m GR}}{r_{
m sh}^{
m GR}} \, = \, 2 \, \, e^{- \, 6.5 imes 10^{50}}$$

...

Potential claim: Corrections of this size are enough to prevent event horizon from being formed

Think like numerical integrator:

Think like numerical integrator:

Initial condition

 $f(r) = 1 - \frac{2M}{r} + \text{tiny correction}$

Think like numerical integrator:

Initial condition

 $f(r) = 1 - \frac{2M}{r} + \text{tiny correction}$

2 Solve EoM for highest order derivative

 $f^{(3)}(r) = \frac{12 M}{r^4} + \text{tiny correction}$

Think like numerical integrator:

Initial condition

 $f(r) = 1 - \frac{2M}{r} + \text{tiny correction}$

2 Solve EoM for highest order derivative

 $f^{(3)}(r) = \frac{12 M}{r^4} + \text{ tiny correction}$

 \bigcirc Update, decrease *r*, and repeat

Think like numerical integrator:

Initial condition

 $f(r) = 1 - \frac{2M}{r} + \text{tiny correction}$

2 Solve EoM for highest order derivative

$$f^{(3)}(r) = \frac{12M}{r^4} + \frac{1}{(r-2M)^4} * \text{tiny factor}$$

 \bigcirc Update, decrease *r*, and repeat

Think like numerical integrator:

1 f(r) close to Schwarzschild

 $f(r) = 1 - \frac{2M}{r} + \text{tiny correction}$

2 Solve EoM for highest order derivative

$$f^{(3)}(r) = \frac{12M}{r^4} + \frac{1}{(r-2M)^4} * \text{tiny factor}$$

3 Update, decrease *r*, and go to step one if correction term is small

Prediction

 Based on tiny factor = tiny factor (α, β, S₀, S₂, M), can predict the type of the solution!

Sign $(f^{(3)}) = + :$

Sign $(f^{(3)}) = -:$

Prediction

 Based on tiny factor = tiny factor (α, β, S₀, S₂, M), can predict the type of the solution!

 $Sign(f^{(3)}) = + :$

Sign $(f^{(3)}) = -:$

• Planck scale regime, $M = 10 m_{\rm pl}$, also effected by Blow-up Mechanism ($e^{-2M} \approx 10^{-9}$)

Prediction

 Based on tiny factor = tiny factor (α, β, S₀, S₂, M), can predict the type of the solution!

Sign $(f^{(3)}) = + :$

Sign $(f^{(3)}) = -:$

• Planck scale regime, $M = 10 m_{\rm pl}$, also effected by Blow-up Mechanism ($e^{-2M} \approx 10^{-9}$)

ightarrow :) ightarrow :(

н. н	- 94				414	el-	5	1	£ (-	1	÷	£ (+	1.	 £ (=				
6																		
1																		
8																		
1.1																		
1																		
4																		
4																		
÷.																		
÷.																		
÷.																		
=																		
12																		
1																		
-																		
-																		
-																		
-																		
1																		
4																		
÷																		
-																		
-18																		

54.34	- 98					1	1	1	1	4	1	1					м
1																	
1																	
1																	
1																	
2																	
4																	
2																	
4																	
4																	
1																	
슬																	
1																	
12																	
14																	
14																	
14																	
12																	
1																	
12																	
-1																	
-4																	
-9																	
- 28																	

N. M	- 34					5	1	1	-	£ (-	-	-					ж
1																	
1																	
1.1																	
2																	
2																	
-																	
- <u>2</u> -																	
÷.																	
÷.																	
÷.																	
- 2																	
- 10																	
12																	
1																	
14																	
12																	
12																	
1																	
1																	
-1																	
-4																	
-9																	
-34															Ľ		

Upshot

Of the parameters α , β , S_2 , S_0 the EHT images can potentially rule out the parameters for which

$$(6 \beta - 1) \left[m_0^2 S_0 e^{-2 m_0 M} - S_2 e^{-2 M} \right] < 0$$

Upshot

Of the parameters α , β , S_2 , S_0 the EHT images can potentially rule out the parameters for which

$$(6\beta - 1) \left[m_0^2 S_0 e^{-2m_0 M} - S_2 e^{-2M} \right] < 0$$

• If ... and if ...

... then the EHT may be able to rule out Planck-sized, Quantum Gravity induced parameters

Open Questions

- What about stability?
- Do images of these spacetimes really not posses a shadow?
- How general is this blow-up mechanism?

 \rightarrow Interesting enough to find out for sure!

Shadow

The shadow is a consequence of General Relativity!