Gaussian states in group field theory and semiclassical properties

Wednesday 12th July, 2023

Andrea Calcinari

Quantum Gravity 2023, Nijmegen

1 GFT Cosmology: Emergence of Bouncing FLRW

② SEMICLASSICAL PROPERTIES OF QUANTUM STATES Coherent and squeezed states

- **3** Gaussian states for GFT
- **4** Algebraic Approach and GS

5 CONCLUSIONS

GFT canonical quantisation [Oriti, Gielen, Sindoni, Wilson-Ewing, ...]

▲ Simplicial (discrete) gravity coupled to a massless scalar χ as matter ▲ Quantise free (single-mode) GFT using χ as clock: deparametrisation ▲ Construct Fock space (with $[\hat{a}(\chi), \hat{a}^{\dagger}(\chi)] = 1$)

$$\hat{a}(\chi)|0
angle = 0$$
, $|\diamondsuit\rangle = \hat{a}^{\dagger}(\chi)|0
angle$

A <u>Relational</u> Hamiltonian \hat{H} evolves the volume operator \hat{V}

$$\hat{H} = -\frac{1}{2}\omega \left(\hat{a}^{\dagger 2} + \hat{a}^2 \right) , \qquad \qquad \hat{V}(\chi) = v \, \hat{N}(\chi) = v \, \hat{a}^{\dagger}(\chi) \hat{a}(\chi)$$

 ω GFT coupling and v volume of one GFT quantum

Bouncing FLRW cosmology

(what states for $\langle \hat{V} \rangle$?)

$$\left(\frac{1}{\langle \hat{V}(\chi) \rangle} \frac{\mathrm{d}\langle \hat{V}(\chi) \rangle}{\mathrm{d}\chi}\right)^2 = 4\omega^2 \left(1 + \frac{v}{\langle \hat{V}(\chi) \rangle} - \frac{v^2}{\langle \hat{V}(\chi) \rangle^2} \mathcal{I}(0)\right)$$

Agreement with GR $(\,V'/\,V)^2 = 12\pi\,G$ at late times requires identification $\omega^2 = 3\pi\,G$

with $\mathcal{I}(0)$ initial conditions

Andrea Calcinari

Semiclassical properties of quantum states

We demand semiclassical states to have small quantum fluctuations

$$\frac{(\Delta \hat{V}_{\chi})^2}{\langle \hat{V}_{\chi} \rangle^2} \quad \text{and} \quad \frac{(\Delta \hat{H})^2}{\langle \hat{H} \rangle^2} \qquad \qquad \textbf{Can be made} \\ \textbf{arbitrarily small}$$

Saturation of the Robertson–Schrödinger (RS) uncertainty principle is sometimes also invoked as a semiclassical feature

$$(\Delta \hat{V}_{\chi})^2 (\Delta \hat{H})^2 \ge |\Delta (\hat{V}_{\chi} \hat{H})|^2 + \omega^2 \langle \hat{C}_{\chi} \rangle^2$$

where $(\Delta \hat{A})^2 = \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2$ and $\Delta (\hat{A}\hat{B}) = \frac{1}{2} \langle \{\hat{A}, \hat{B}\} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle$

Candidate states

where
$$\hat{D}(\alpha) = \exp\left(\alpha \hat{a}^{\dagger} - \overline{\alpha} \hat{a}\right)$$
 and $\hat{S}(z) = \exp\left(\frac{1}{2}(z\hat{a}^{\dagger 2} - \overline{z}\hat{a}^{2})\right)$

We demand semiclassical states to have small quantum fluctuations

$$\frac{(\Delta \hat{V}_{\chi})^2}{\langle \hat{V}_{\chi} \rangle^2} \quad \text{and} \quad \frac{(\Delta \hat{H})^2}{\langle \hat{H} \rangle^2} \qquad \qquad \textbf{Can be made} \\ \text{arbitrarily small}$$

<u>Saturation</u> of the Robertson–Schrödinger (RS) uncertainty principle is sometimes also invoked as a semiclassical feature

$$(\Delta \hat{V}_{\chi})^2 (\Delta \hat{H})^2 \geq |\Delta (\hat{V}_{\chi} \hat{H})|^2 + \omega^2 \langle \hat{C}_{\chi} \rangle^2$$

where
$$(\Delta \hat{A})^2 = \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2$$
 and $\Delta (\hat{A}\hat{B}) = \frac{1}{2} \langle \{\hat{A}, \hat{B}\} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle$

Candidate states

where
$$\hat{D}(\alpha) = \exp\left(\alpha \hat{a}^{\dagger} - \overline{\alpha} \hat{a}\right)$$
 and $\hat{S}(z) = \exp\left(\frac{1}{2}(z\hat{a}^{\dagger 2} - \overline{z}\hat{a}^{2})\right)$

Robertson–Schrödinger inequality (CS and SS)

A Coherent states do not minimize the RS relation at any time

A Squeezed states do minimize the RS relation at all times

Relative uncertainties (CS and SS)

Can the state parameters $\alpha=|\alpha|e^{{\rm i}\vartheta}$, $z=re^{{\rm i}\psi}$ make fluctuations small? At $\chi=0$

$$\frac{(\Delta \hat{V})_{\mathsf{C}}^2}{\langle \hat{V} \rangle_{\mathsf{C}}^2} = \frac{1}{|\alpha|^2}, \qquad \frac{(\Delta \hat{H})_{\mathsf{C}}^2}{\langle \hat{H} \rangle_{\mathsf{C}}^2} = \frac{4|\alpha|^2 + 2}{4|\alpha|^4 \cos(2\vartheta)^2} \checkmark$$
$$\frac{(\Delta \hat{V})_{\mathsf{S}}^2}{\langle \hat{V} \rangle_{\mathsf{S}}^2} = 2 \coth^2 r, \qquad \frac{(\Delta \hat{H})_{\mathsf{S}}^2}{\langle \hat{H} \rangle_{\mathsf{S}}^2} = 2 + 2 \sec^2 \psi \operatorname{csch}^2(2r) \checkmark$$

Turning on time evolution

$$\frac{(\Delta \hat{V}_{\chi})_{\mathsf{C}}^2}{\langle \hat{V}_{\chi} \rangle_{\mathsf{C}}^2} \sim \frac{1}{|\alpha|^2} \frac{\sin_{2\vartheta} \sinh_{4\omega\chi} + \cosh_{4\omega\chi}}{(\sin_{2\vartheta} \sinh_{2\omega\chi} + \cosh_{2\omega\chi})^2} \xrightarrow{\chi \to \pm \infty} \frac{2}{|\alpha|^2 |(1 \pm \sin_{2\vartheta})} \checkmark$$
$$\frac{(\Delta \hat{V}_{\chi})_{\mathsf{S}}^2}{\langle \hat{V}_{\chi} \rangle_{\mathsf{S}}^2} = 2 \frac{\sin_{\psi} \sinh_{2r} \sinh_{2\omega\chi} + \cosh_{2r} \cosh_{2\omega\chi} + 1}{\sin_{\psi} \sinh_{2r} \sinh_{2\omega\chi} + \cosh_{2r} \cosh_{2\omega\chi} - 1} \xrightarrow{\chi \to \pm \infty} 2 \checkmark$$

Relative uncertainties (CS and SS)

Relative uncertainties (CS and SS)

So we still only rely on Fock coherent states!

Andrea Calcinari

Gaussian states in GFT

Gaussian states (GS) in GFT cosmology

- Associated with Gaussian characteristic functions
- Fully characterised by first and second canonical moments
- A Gibbs states of second order Hamiltonians
- A Can always be expressed as displaced squeezed thermal states

$$\hat{\rho}_G(\alpha, z, \beta) = \hat{D}(\alpha)\hat{S}(z)\hat{\rho}_\beta\hat{S}(z)^\dagger\hat{D}(\alpha)^\dagger$$

where
$$\hat{\rho}_{\beta} = \frac{e^{-\beta \hat{a}^{\dagger} \hat{a}}}{\operatorname{tr}(e^{-\beta \hat{a}^{\dagger} \hat{a}})}$$
 with β "inverse temperature" (or ?)
[Assanioussi, Kotecha, Oriti]

A Compute expectation values (can also use thermofield dynamics)

$$\langle \hat{\mathcal{O}} \rangle_{\mathsf{G}} = \operatorname{tr} \left(\hat{\mathcal{O}} \ \hat{D}(\alpha) \hat{S}(z) \hat{\rho}_{\beta} \hat{S}(z)^{\dagger} \hat{D}(\alpha)^{\dagger} \right) \qquad |\alpha|, \vartheta, r, \psi, \beta \in \mathbb{R}$$

▲ Find variances and covariances too, e.g. $(\Delta \hat{V})_{G}^{2}$, $\Delta (\hat{V}\hat{H})_{G}$, etc ▲ Finally turn on χ -evolution, and we are ready to check **semiclassicality** Much like coherent states, Gaussian states *do not* saturate the RS principle *at any time* (here $N_{\beta} = tr(\hat{\rho}_{\beta} \hat{a}^{\dagger} \hat{a}) = (e^{\beta} - 1)^{-1}$)

Of course, the minimisation can happen by fine tuning $\alpha=0$ and $\beta\to\infty$ which trivially returns the squeezed state case

At $\chi = 0$

$$\frac{(\Delta \hat{V})_{\mathsf{G}}^{2}}{\langle \hat{V} \rangle_{\mathsf{G}}^{2}} \sim \frac{\coth_{\beta/2}}{|\alpha|^{2}} \left[\cosh_{2r} + \sinh_{2r} (\cos_{2\vartheta} \cos_{\psi} + \sin_{2\vartheta} \sin_{\psi}) \right] \checkmark$$
$$\frac{(\Delta \hat{H})_{\mathsf{G}}^{2}}{\langle \hat{H} \rangle_{\mathsf{G}}^{2}} \sim \frac{\coth_{\beta/2}}{|\alpha|^{2} \cos_{2\vartheta}^{2}} \left[\cosh_{2r} + \sinh_{2r} (\cos_{2\vartheta} \cos_{\psi} - \sin_{2\vartheta} \sin_{\psi}) \right] \checkmark$$

 \clubsuit At late times $\chi \to \pm \infty$

$$\frac{\langle \Delta \hat{V} \rangle_{\mathsf{G}}^2}{\langle \hat{V} \rangle_{\mathsf{G}}^2} \sim \frac{2}{|\alpha|^2} \frac{\coth_{\beta/2}(\cosh_{2r} \pm \sinh_{2r} \sin_{\psi})}{(1 \pm \sin_{2\vartheta})} \checkmark$$

All these expressions are expanded for large $|\alpha|$, which indeed is crucial to make quantum fluctuations small and classify **GS** as semiclassical

Relative uncertainties (GS) - Plots

 \triangleleft Generic χ

8 / 10

Algebraic approach and GS

▲ Change quantisation scheme: φ ∈ ℂ and $[φ(χ), φ^{\dagger}(χ')] = δ(χ − χ')$

A Build kinematical Hilbert space via abstract ladder operators $\hat{\varphi}$ and $\hat{\varphi}^{\dagger}$

4 Dynamics is defined *through* quantum states (i.e., $|\Psi
angle$ physical if)

$$\left\langle \Psi \left| \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}^{\dagger}} \right| \Psi \right\rangle = 0 \qquad \text{or stronger} \qquad \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}^{\dagger}} \left| \Psi \right\rangle = 0$$

▲ Imposing either of these gives conditions for state parameters

4 Fock coherent states $|\sigma\rangle = \exp\left(\int d\chi \,\sigma(\chi)\hat{\varphi}^{\dagger}(\chi)\right)|0\rangle$ exact solution

 $\langle \hat{V}(\chi) \rangle_{\sigma} = v \langle \hat{\varphi}^{\dagger}(\chi) \hat{\varphi}(\chi) \rangle_{\sigma} = v |\sigma(\chi)|^2$ state function (here $\sigma(\chi)$) gives notion of dynamics

 $\langle \hat{V}(\chi) \rangle_{\sigma} \text{ satisfies Friedmann equation as before (or very very similar)}$ $A \text{ Other options (e.g.$ *dipoles*)? Or more generally**Gaussian states?**<math display="block"> A No other exact solution and no condition on the parameters! ▲ We introduced (mixed) **Gaussian states** in GFT cosmology (working in the deparametrised approach)

 \clubsuit GS include every other previously studied state as a subcase

▲ GS are the **most general** family of states preserved under time evolution (for second-order Hamiltonians)

▲ GS have **semiclassical** features according to the small quantum fluctuations criterion

▲ Specifically, both Volume and Hamiltonian can have **small** relative uncertainties at all times (including the late time limit)

▲ Algebraic approach: GS don't seem to work, are we stuck with coherent states? ⇒ Further investigation necessary!

Extra: Thermofield formalism

A Doubling the Fock space one can define a *pure* state $|0_{eta}
angle$ such that

$$\operatorname{tr}\left(\hat{\rho}_{\beta}\hat{\mathcal{O}}\right) = \langle 0_{\beta}|\hat{\mathcal{O}}|0_{\beta}\rangle$$

A Fictitious (tilde) system with $[\hat{\tilde{a}},\hat{\tilde{a}}^{\dagger}]=1$ and $\hat{\tilde{a}}|\tilde{0}
angle=0$, then

$$|0, ilde{0}
angle = |0
angle \otimes | ilde{0}
angle, \qquad \qquad \hat{a}|0, ilde{0}
angle = \hat{ ilde{a}}|0, ilde{0}
angle = 0$$

A Introduce thermality via Bogoliubov transformation

$$|0_{\beta}\rangle = \hat{T}(\theta_{\beta})|0,\tilde{0}\rangle, \qquad \qquad \hat{T}(\theta_{\beta}) = e^{\theta_{\beta}(\hat{a}^{\dagger}\hat{a}^{\dagger} - \hat{a}\hat{a})}$$

4 Link with density matrix formalism

$$\frac{1}{e^{\beta}-1} = \operatorname{tr}\left(\hat{\rho}_{\beta}\hat{a}^{\dagger}\hat{a}\right) = \langle 0_{\beta}|\hat{a}^{\dagger}\hat{a}|0_{\beta}\rangle = \operatorname{sinh}^{2}_{\theta_{\beta}}$$

A Thermofield analogue of Gaussian state

$$|\Psi_G;\beta\rangle = \hat{D}(\alpha)\hat{S}(z)\hat{T}(\theta_\beta)|0,\tilde{0}\rangle = \hat{D}(\alpha)\hat{S}(z)|0_\beta\rangle$$

Extra: "Static" contributions in algebraic approach

4 GS parameters: displacement σ , squeezing ξ and "temperature" β

Algebraic approach: determine evolution of such parameters using

$$\left\langle \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}^{\dagger}} \right\rangle_{\sigma, \xi, \beta} = 0$$

 \clubsuit However only obtain a condition on the displacement parameter since

$$\langle \hat{\varphi} \rangle_{\sigma,\xi,\beta} = \sigma(\chi)$$

The other parameters drop out trivially!

▲ Higher order Schwinger–Dyson equations are hard to solve

$$\left\langle \frac{\delta \hat{\mathcal{O}}}{\delta \hat{\varphi}^{\dagger}} - \hat{\mathcal{O}} \frac{\delta S[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}^{\dagger}} \right\rangle = 0 \,, \qquad \text{e.g. with} \quad \hat{\mathcal{O}} = \hat{\varphi}, \ \hat{\varphi}^{\dagger}$$

▲ One can then only assume other parameters are time-independent \Rightarrow obtain constant contributions to the effective Friedmann equation

Andrea Calcinari