Understanding Ryu-Takayanagi as Entropy without invoking Holography

Upcoming work with Zhencheng Wang and Donald Marolf

Eugenia Colafranceschi University of California, Santa Barbara

> Quantum Gravity 2023 Radboud University, Nijmegen 13 July 2023

Outline

1. The problem of defining an **entropy for spacetime regions**

2. Holography and the **Ryu-Takayanagi formula**

3. Our work: understanding gravitational entropy **without holography**

1

The problem of defining an **entropy for spacetime regions**

Gravitational path integral

Spacetime boundary

 $\mathcal{H}_{\partial\Sigma=\emptyset}=\mathcal{H}_{
m BU}$ Baby universe Hilbert space [Giddings, Strominger, Coleman...]

Notion of gravitational subsystem?

A priori $\mathcal{H}_{R\bar{R}}$ does not factorize over R and \bar{R} Notion of subsystem $\sim \mathcal{H}_R$? Entropy associated to it?

An interesting scenario: the information paradox

2

Holography and the **Ryu-Takayanagi formula**

The Ryu-Takayanagi formula

If the (bulk) gravitational theory has a holographic dual (boundary) theory, the Hilbert space takes the form

Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)

- Replica trick $S(\rho_R) = \lim_{n \to 1} \frac{1}{n-1} \log \operatorname{Tr} \rho_R^n$
- Gravitational path integral
- Holography $\mathcal{H}_{R\bar{R}} = \bigoplus_{\alpha} \mathcal{H}^{\alpha}_{R} \otimes \mathcal{H}^{\alpha}_{\bar{R}}$

Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)

- Replica trick $S(\rho_R) = \lim_{n \to 1} \frac{1}{n-1} \log \operatorname{Tr} \rho_R^n$
- Gravitational path integral
- Holography $\mathcal{H}_{R\bar{R}} = \bigoplus_{\alpha} \mathcal{H}^{\alpha}_{R} \otimes \mathcal{H}^{\alpha}_{\bar{R}}$

Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)

- Replica trick $S(\rho_R) = \lim_{n \to 1} \frac{1}{n-1} \log \operatorname{Tr} \rho_R^n$
- Gravitational path integral

Without holography?

Is the Ryu-Takayanagi formula computing an entropy for a *gravitational subsystem* associated to R ?

3

Our work: understanding gravitational entropy without holography

Our results

Goal: understanding Ryu-Takayanagi as computing an entropy for gravitational subsystem without assuming holography

 $\mathcal{A}_R \bigcap_{i \neq j} \mathcal{A}_{\bar{R}}$ $\partial \Sigma =$ union of spatially-compact boundaries

We define von Neumann algebras of observables $\mathcal{A}_R, \mathcal{A}_{\bar{R}}$ acting on the Hilbert space $\mathcal{H}_{R\bar{R}}$ and show that, for a path integral satisfying a set of axioms, $\mathcal{A}_R, \mathcal{A}_{\bar{R}}$ decompose into type I factors.

$$\implies \mathcal{H}_{R\bar{R}} = \bigoplus_i \mathcal{H}^i_R \otimes \mathcal{H}^i_{\bar{R}}$$

Trace operation tr on $\mathcal{A}_R, \mathcal{A}_{ar{R}}$ defined as the evaluation of the gravitational path integral.

Axioms for the gravitational path integral

Finiteness: $\zeta(M)$ is well-defined and finite for every smooth M

Reality: $[\zeta(M)]^* = \zeta(M^*)$

Reflection Positivity: $\zeta(MM^*) \geq 0$

Continuity: $\zeta(M_\epsilon)$ is a continuous function of ϵ

Factorization: $\zeta(M_1 \sqcup M_2) = \zeta(M_1)\zeta(M_2)$

Trace inequality: $\zeta(M) \leq \zeta(M_1)\zeta(M_2)$

The trace inequality is *not* an independent axiom, it follows from the other axioms! [Dong, Marolf, to appear]

Surface algebras

Rimmed surfaces

Surface algebras

Conjugation map

acts by reversing the orientation, conjugating sources and exchanging the R and L labels

Trace operation

 $\operatorname{tr}: A^B_{L/R} \to \mathbb{R}$ gluing + evaluation of the path integral

Reflection positivity: $tr(aa^*) \ge 0$

The von Neumann Algebras

Representation on the Hilbert space $\, \mathcal{H}_{RL} \,$

Quotient by null states and **closure** \implies von Neumann Algebras $\mathcal{A}_{L/R}$

$$\operatorname{tr}(a) = \lim_{\beta \to 0} \langle C(\beta) | a | C(\beta) \rangle$$

• Faithful tr(a) = 0 iff a = 0

- Normal for any bounded increasing sequence a_n , tr $sup \ a_n = sup$ tr a_n
- Semifinite $\forall a \in \mathcal{A}^+, \exists b < a \text{ such that } \operatorname{tr}(b) < \infty$

For a type I or type II factor, a *faithful, normal, semifinite trace* is **unique** up to an overall coefficient. For type III such a trace does not exist

Type I factors and entropy

$$\mathcal{A}_{L/R}$$
 non-trivial center $\longrightarrow \mathcal{A}_{L/R} = \bigoplus_{i} \mathcal{A}_{L/R}^{i}$

direct sum over the spectrum of the center operators as represented on \mathcal{H}_{LR}

trivial center

Trace inequality $\operatorname{tr}(ab) \leq \operatorname{tr}(a)\operatorname{tr}(b)$ for $a = b = P_i$ projector $\implies \operatorname{tr}(P_i) \geq 1 \implies \mathcal{A}_R^i$ type I factor!

Therefore,

and

operators in the von Neuman algebra!

The Lewkowycz-Maldacena procedure then computes the entropy $-tr(\rho_R \log \rho_R)$ which, in the semiclassical limit, is given by the **Ryu-Takayanagi formula**.

Thanks for the attention!