Understanding Ryu-Takayanagi as Entropy without invoking Holography

Upcoming work with Zhencheng Wang and Donald Marolf

Eugenia Colafranceschi
University of California, Santa Barbara

Outline

1. The problem of defining an entropy for spacetime regions
2. Holography and the Ryu-Takayanagi formula

3. Our work: understanding gravitational entropy without holography

The problem of defining an entropy for spacetime regions

Gravitational path integral

Spacetime boundary

The path integral and the Hilbert space

The path integral and the Hilbert space

$\zeta(M)=\int_{\Phi \sim M} \mathcal{D} \Phi e^{-S[\Phi]}=\langle\varphi \mid \psi\rangle \quad$ on $\quad \mathcal{H}_{\partial \Sigma}$

The path integral and the Hilbert space

The path integral and the Hilbert space

The path integral and the Hilbert space

$$
\mathcal{H}_{\partial \Sigma=\emptyset}=\mathcal{H}_{\mathrm{BU}}
$$

Baby universe Hilbert space [Giddings, Strominger, Coleman...]

Notion of gravitational subsystem?

A priori $\mathcal{H}_{R \bar{R}}$ does not factorize over R and \bar{R}
Notion of subsystem $\sim \mathcal{H}_{R}$? Entropy associated to it?

An interesting scenario: the information paradox

Holography and the Ryu-Takayanagi formula

The Ryu-Takayanagi formula

If the (bulk) gravitational theory has a holographic dual (boundary) theory, the Hilbert space takes the form

$$
\mathcal{H}_{R \bar{R}}=\bigoplus \mathcal{H}_{R}^{\alpha} \otimes \mathcal{H}_{\bar{R}}^{\alpha}
$$

Ryu-Takayanagi formula

$$
S\left(\rho_{R}\right)=\operatorname{ext}_{\gamma}\left(\frac{A_{\gamma}}{4 G}+S_{\mathrm{matter}}\right)
$$

Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)

- Replica trick $S\left(\rho_{R}\right)=\lim _{n \rightarrow 1} \frac{1}{n-1} \log \operatorname{Tr} \rho_{R}^{n}$
- Gravitational path integral
- Holography $\mathcal{H}_{R \bar{R}}=\bigoplus_{\alpha} \mathcal{H}_{R}^{\alpha} \otimes \mathcal{H}_{\bar{R}}^{\alpha}$

Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)

- Replica trick $S\left(\rho_{R}\right)=\lim _{n \rightarrow 1} \frac{1}{n-1} \log \operatorname{Tr} \rho_{R}^{n}$
- Gravitational path integral
- Holography $\mathcal{H}_{R \bar{R}}=\bigoplus_{\mathcal{H}}^{\alpha} \otimes \mathcal{H}_{\bar{R}}^{\alpha}$

Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)

- Replica trick $S\left(\rho_{R}\right)=\lim _{n \rightarrow 1} \frac{1}{n-1} \log \operatorname{Tr} \rho_{R}^{n}$
- Gravitational path integral
- Holography $\mathcal{H}_{R \bar{R}}=\bigoplus_{\alpha} \mathcal{H}_{R}^{\alpha} \otimes \mathcal{H}_{\bar{R}}^{\alpha}$

semiclassical limit
(assuming bulk replica symmetry)

Without holography?

$$
\mathcal{H}_{R \bar{R}} \stackrel{?}{=} \bigoplus_{\alpha} \mathcal{H}_{R}^{\alpha} \otimes \mathcal{H}_{\bar{R}}^{\alpha}
$$

Is the Ryu-Takayanagi formula computing an entropy for a gravitational subsystem associated to R ?

Our work: understanding gravitational entropy without holography

Our results

Goal: understanding Ryu-Takayanagi as computing an entropy for gravitational subsystem without assuming holography

$$
\partial \Sigma=\text { union of spatially-compact boundaries }
$$

We define von Neumann algebras of observables $\mathcal{A}_{R}, \mathcal{A}_{\bar{R}}$ acting on the Hilbert space $\mathcal{H}_{R \bar{R}}$ and show that, for a path integral satisfying a set of axioms, $\mathcal{A}_{R}, \mathcal{A}_{\bar{R}}$ decompose into type I factors.

$$
\Longrightarrow \mathcal{H}_{R \bar{R}}=\bigoplus_{i} \mathcal{H}_{R}^{i} \otimes \mathcal{H}_{\bar{R}}^{i}
$$

Trace operation tr on $\mathcal{A}_{R}, \mathcal{A}_{\bar{R}}$ defined as the evaluation of the gravitational path integral.
$\Longrightarrow \operatorname{tr} \rho_{R}^{n} \quad$ where $\quad \rho_{R}=\operatorname{tr}_{\bar{R}}\left(\rho_{R \bar{R}}\right) \in \mathcal{A}_{R} \quad \Longrightarrow S\left(\rho_{R}\right)=$ Ryu-Takayanagi formula

Axioms for the gravitational path integral

Finiteness: $\zeta(M)$ is well-defined and finite for every smooth M
Reality: $[\zeta(M)]^{*}=\zeta\left(M^{*}\right)$
Reflection Positivity: $\quad \zeta\left(M M^{*}\right) \geq 0$
Continuity: $\zeta\left(M_{\epsilon}\right)$ is a continuous function of ϵ

Factorization: $\zeta\left(M_{1} \sqcup M_{2}\right)=\zeta\left(M_{1}\right) \zeta\left(M_{2}\right)$

Trace inequality: $\quad \zeta(M) \leq \zeta\left(M_{1}\right) \zeta\left(M_{2}\right)$

The trace inequality is not an independent axiom, it follows from the other axioms! [Dong, Marolf, to appear]

Surface algebras

Rimmed surfaces

$B=(d-2)$-dim surface
$X^{B}=$ set of $(d-1)$-dim rimmed surfaces with two B boundaries

Cylinder element: $C(\beta)=B \times[0, \beta]$

Multiplication = gluing

\Longrightarrow surface algebras A_{R}^{B} and A_{L}^{B}

Surface algebras

Conjugation map

acts by reversing the orientation, conjugating sources and exchanging the R and L labels

$$
a=\square
$$

Trace operation

$\operatorname{tr}: A_{L / R}^{B} \rightarrow \mathbb{R} \quad$ gluing + evaluation of the path integral

Reflection positivity: $\operatorname{tr}\left(a a^{*}\right) \geq 0$

The von Neumann Algebras

Representation on the Hilbert space $\mathcal{H}_{R L}$

Quotient by null states and closure \Longrightarrow von Neumann Algebras $\mathcal{A}_{L / R}$

$$
\operatorname{tr}(a)=\lim _{\beta \rightarrow 0}\langle C(\beta)| a|C(\beta)\rangle
$$

- Faithful $\operatorname{tr}(a)=0$ iff $a=0$
- Normal for any bounded increasing sequence $a_{n}, \operatorname{tr} \sup a_{n}=\sup \operatorname{tr} a_{n}$

- Semifinite $\forall a \in \mathcal{A}^{+}, \exists b<a$ such that $\operatorname{tr}(b)<\infty$

For a type I or type II factor, a faithful, normal, semifinite trace is unique up to an overall coefficient.
For type III such a trace does not exist

Type I factors and entropy

$\mathcal{A}_{L / R}$ non-trivial center $\longrightarrow \mathcal{A}_{L / R}=\bigoplus_{i}^{\bigoplus} \underbrace{\mathcal{A}_{L / R}^{i}}_{\text {trivial center }}$
direct sum over the spectrum of the center operators as represented on $\mathcal{H}_{L R}$

Trace inequality $\operatorname{tr}(a b) \leq \operatorname{tr}(a) \operatorname{tr}(b)$ for $a=b=P_{i}$ projector $\Longrightarrow \operatorname{tr}\left(P_{i}\right) \geq 1 \Longrightarrow \mathcal{A}_{R}^{i} \quad$ type I factor! Therefore,

$$
\mathcal{H}_{L R}=\bigoplus_{i} \mathcal{H}_{L}^{i} \otimes \mathcal{H}_{R}^{i}
$$

and

operators in the von Neuman algebra!

The Lewkowycz-Maldacena procedure then computes the entropy $-\operatorname{tr}\left(\rho_{R} \log \rho_{R}\right)$ which, in the semiclassical limit, is given by the Ryu-Takayanagi formula.

Thanks for the attention!

