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The problem of defining an entropy for spacetime regions



Gravitational path integral
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The path integral and the Hilbert space
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The path integral and the Hilbert space
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The path integral and the Hilbert space
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The path integral and the Hilbert space
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The path integral and the Hilbert space
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Notion of gravitational subsystem?
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Entropy? _—

A priori H pp does not factorize over I2 and IR

Notion of subsystem ~ H i ? Entropy associated to it?

0



An interesting scenario: the information paradox
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Holography and the Ryu-Takayanagi formula



The Ryu-Takayanagi formula

If the (bulk) gravitational theory has a holographic dual (boundary) theory, the Hilbert space takes the form

Hrr = EPHE @ HE
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Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)
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Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)
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Ryu-Takayanagi from the gravitational path integral

Lewkowycz-Maldacena calculation (2013)
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* Replicatrick S(pr) = lim log Trp
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semiclassical limit
(assuming bulk replica symmetry)



Without holography?
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s the Ryu-Takayanagi formula computing an entropy for a gravitational subsystem associated to [? ?
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Our work: understanding gravitational entropy without holography



Our results

Goal: understanding Ryu-Takayanagi as computing an entropy for gravitational subsystem without assuming holography
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We define von Neumann algebras of observables AR, AR acting on the Hilbert space H 7 and show that, for a

path integral satisfying a set of axioms, AR» AR decompose into type | factors.
_ 1 7}
= %RR — @ %R =y %R
1
Trace operation tI on AR, AR defined as the evaluation of the gravitational path integral.

— trp  where pp =1trp(pre) € Ax = S(pr) = Ryu-Takayanagi formula

K’ =
Lewkowycz-Maldacena computation  ITp’ = \< \



Axioms for the gravitational path integral

Finiteness: ((M )is well-defined and finite for every smooth M
Reality: [((M)]* = ((M™)
Reflection Positivity: (M M™*) >0

Continuity: ((M.) is a continuous function of ¢

Factorization: C(M1 U My) = ((M1)((Ma)

Trace inequality: (M) < ((M7)((Ms)
M M,

The trace inequality is not an independent axiom, it follows from the other axioms! [Dong, Marolf, to appear]



Surface algebras

Rimmed surfaces

_ — N_-di — X
B = (d — 2)-dim surface L (R) R
XB = set of (d — 1)-dim rimmed surfaces with two B boundaries
B x [0, €]
Cylinder element: C(5) = B x [0, §] ( 0
b

Multiplication = gluing

— surface algebras AL and AP



Surface algebras

Conjugation map

acts by reversing the orientation, conjugating sources and exchanging the R and L labels

tr: Af/R —3 R gluing + evaluation of the path integral

Trace operation
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Reflection positivity: tr(aa™) > 0



The von Neumann Algebras

Representation on the Hilbert space H g7,
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Quotient by null states and closure = von Neumann Algebras AL /r

tr(a) = lim (C(8)|a|C
(@) = lim (C(5) alC(8)) o
* Faithful tr(a) =0 iff a =0
* Normal for any bounded increasing sequence a,, tr sup a, = sup tr an,

* Semifinite Va € A", 3b < a such that tr(b) < oo

For a type | or type Il factor, a faithful, normal, semifinite trace is unique up to an overall coefficient.

For type Ill such a trace does not exist




Type | factors and entropy

Apr/r non-trivial center —— Ap/p = @ AZL/R direct sum over the spectrum of the center operators
R as represented on Hrp

trivial center
Trace inequality tr(ab) < tr(a)tr(b) for a = b= P; projector = tr(P;) >1 = A%, typelfactor!

Therefore,

Hir = EPHL @My

and /\\
PR = /\ ﬁ\

u PR = \
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The Lewkowycz-Maldacena procedure then computes the entropy —tr(pg log pr) which, in the semiclassical limit,
is given by the Ryu-Takayanagi formula.

operators in the von Neuman algebra!



Thanks for the attention!
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