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▶ Picture of manifold with fields emerges at low energy.

▶ Here: we investigate a mechanism of emergence of
spacetime from path-integral Z with matter/gravity
action S.
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Fluctuations as rods and clocks - 1/1
▶ Motivation to take non-geometric starting point:

Hilbert space H, bosonic ϕ and fermionic ψ
matter fields and associated Laplacian ∆ and
Dirac D operators.

▶ Kac’s question in spectral geometry:
“Can you hear the shape of a drum?”

▶ Is knowing Laplacian ∆ through spectrum {λi}
sufficient to reconstruct M?

▶ No. Yes, if interactions are present using
basis where interactions are diagonal, metric gµν from propagator
GF (x, y):

gµν(x) = −1

2

(
Γ(d/2− 1)

4πd/2

) 2
d−2

lim
x→y

∂

∂xµ
∂

∂yν
(GF (x, y)

2
2−d )

Kempf 2021.
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An action (gravity) - 1/4

▶ We work in Euclidean signature to use tools of spectral geometry
and a UV cut-off Λ (e.g. at Planck scale).

▶ Makes dimension N of H finite with:

N =
1

16π2

∫
d4x

√
g

(
Λ̄2

2
+

Λ̄

6
R+O(R2)

)
▶ Gravity action Sg = µN , contains SEH +O(R2) when µ = 6π

Λ̄
.

Gilkey 1975, Hawking 1978.
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An action (matter) - 2/4

▶ Next, spectral matter actions Sb, Sf .

▶ Spectral form:

Sb =

Nb∑
i

N∑
n

λn(ϕ
(i)
n )2, Sf =

Nf∑
i

N∑
n

√
λnθ

i
nθ̄

i
n

▶ Nb, Nf copies of {ϕ(i)n }, Grassmann components θin, θ̄in of ψ and
eigenvalues {λn}, of (∆ +m2) and D, all mass m.

▶ Note: λn of (∆ +m2) is related to
√
λn of D for simplicity.
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An action (combined) - 3/4

▶ Combined gravity/matter action:

S = Sg + Sb + Sf

▶ Advantages: no modding out diff. group and “pre-geometric”, symmetry
group extended to unitary group.

▶ Next, path-integral Z with action S
▶ Standard matter path-integral, Gravitational path-integral: sum

over dimension N , integral over spectra {λi} with UV cut-off Λ.
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The path-integral - 4/4

▶ Combined gravity/matter path-integral:

Z =

∞∑
N=1

∫ Λ

m2

Dλ
∫

Dϕ
∫

DθDθ̄e−βSΛ
N(

Nf
2

−1)

(N − 1)!

▶ Introduced inverse “temperature” β = 1/T to interpret Z as partition
function.

▶ Note: Wick rotation difficult.
▶ Choice: with or without zero-mode,

here with, to investigate spectral gap.
▶ Note: Z is finite.
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Effective dimension - 1/6

▶ For manifold M, dimension n from Weyl’s law:

lim
λ→∞

ρ(λ) ∝ λn/2−1

▶ We obtain density of eigenvalues ρ(λ) from probability density p(λi).

p(λi) ∝ (λi)
Nf/2−Nb/2

▶ Scaling of p(λi) gives effective dimension deff .

deff (λ) = Nf −Nb + 2

▶ Note, deff > 0 only if Nf > Nb − 2.
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Effective dimension - 2/6
▶ Scale-dependent effective dimension from varying masses:
▶

p(λ) ∝
Nb∏
k

√
(λ+m2

bk
)

Nf∏
l

(
√
λ+mfk)

▶

Typical dimensional reduction
in quantum gravity.
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Density of degrees of freedom - 3/6
▶ Calculate expectation value ⟨N⟩:

⟨N⟩ = −Z−1

β
∂Z
∂µ

▶ Fermions dominant:
→ deff > 0, ⟨N⟩ bounded.
geometric.

Bosons dominant:
→ deff < 0, ⟨N⟩ unbounded.
non-geometric.

physical picture:
Fermions span effective
manifold, but constrain
dimension of H.
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Effective volume - 4/6

▶ Estimate effective volume Veff from expected gap ⟨λ2⟩ from
relation between diameter ℓ and λ2 on a manifold:

λ2 ∼ ℓ−2 ∼ V − 2
n

▶ So we define the effective volume Veff ,

⟨λ2⟩−deff/2 ≡ Veff
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▶ Compare ⟨O⟩ = ⟨N⟩ and ⟨O⟩ = ⟨λ2⟩−deff/2 ≡ Veff .

▶ ⟨N⟩ and Veff match closely, ratio ∼ 1.
▶ No agreement between ⟨N⟩ and Veff when bosons dominate.
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Effective density of degrees of freedom - 6/6

▶ Remember Hawking-Gilkey:

N =
1

16π2

∫
d4x

√
g

(
Λ̄2

2
+

Λ̄

6
R+O(R2)

)

▶ We interpret ⟨N⟩ ∼ Veff as leading order (volume term) of quantum
version of Hawking-Gilkey, effective density of degrees of freedom.

▶ Difference between ⟨N⟩ and Veff is curvature, should be checked
independently.

▶ Remarkable consistent geometric picture when fermions dominate
without initial geometric structure.
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Conclusion & Outlook - 1/1
▶ New mechanism by which spacetime with matter emerges from a

pre-geometric model, no modding out of diff. group.

▶ Emergence of the mathematical representability of abstract degrees of
freedom in terms of quantum fields on a manifold with curvature.

▶ Effective (running) dimension, effective volume, effective density of
degrees of freedom, found special role fermions.

▶ Future: work in Lorentzian signature, include interactions, varying
masses, decouple eigenvalues ∆ and D, etc.
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