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Motivation: lesson of quantum gravity - 1/1

» QG approaches agree: no manifold M at high energies.
» Picture of manifold with fields emerges at low energy.

> Here: we investigate a mechanism of emergence of
spacetime from path-integral Z with matter/gravity
action S.
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> Motivation to take non-geometric starting point:
Hilbert space H, bosonic ¢ and fermionic v Iﬁ g e
matter fields and associated Laplacian A and A

Dirac D operators. S"f‘@’ NoPE '
> Kac’s question in spectral geometry: WRO NGL

“Can you hear the shape of a drum?” P\G\A\N |
» Is knowing Laplacian A through spectrum {\;} :

?ab? '

sufficient to reconstruct M?

> No. Yes, if interactions are present using
basis where interactions are diagonal, metric g, from propagator

Gr(z,y):

2
1 /I(d/2-1)\da=2_ 9 0 2
ele) =5 (M)t o Gl )

Kempf 2021.
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» We work in Euclidean signature to use tools of spectral geometry
and a UV cut-off A (e.g. at Planck scale).

» Makes dimension N of H finite with:
1 [, (R & )

» Gravity action S, = uN, contains Sgy + O(R?) when p = %Tﬂ'

Gilkey 1975, Hawking 1978.
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» Next, spectral matter actions Sy, Sy.
» Spectral form:

NfN

N, N
Sy = Z Z)\n(qsszz))z’ Sf = Z Z \/)‘_neffzéiz

i

» Ny, Ny copies of {¢$Z')}, Grassmann components 67, 0% of 1) and
eigenvalues {\,,}, of (A +m?) and D, all mass m.

» Note: A\, of (A +m?) is related to /), of D for simplicity.
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An

action (combined) - 3/4

Combined gravity /matter action:

S=Sg+Sb+Sf

Advantages: no modding out diff. group and “pre-geometric”, symmetry
group extended to unitary group.

Next, path-integral Z with action S

Standard matter path-integral, Gravitational path-integral: sum
over dimension N, integral over spectra {\;} with UV cut-off A.
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» Combined gravity /matter path-integral:

o A B _BSAN(%—n

» Introduced inverse “temperature” 5 = 1/T to interpret Z as partition
function.

» Note: Wick rotation difficult.

» Choice: with or without zero-mode,
here with, to investigate spectral gap.

» Note: Z is finite.
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Effective dimension - 1/6

» For manifold M, dimension n from Weyl’s law:

lim  p(A) o< A1

A—00

» We obtain density of eigenvalues p(\) from probability density p(A;).
p()\z) o ()\i)Nf/Z—Nb/Q

» Scaling of p();) gives effective dimension dcyy.
deff(A) = Ny — Ny +2

» Note, degp > 0 only if Ny > N, — 2.
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» Scale-dependent effective dimension from varying masses:
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» Scale-dependent effective dimension from varying masses:

| 2

Typical dimensional reduction
in quantum gravity.
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Density of degrees of freedom - 3/6

» Calculate expectation value (NV):
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» Calculate expectation value (NV):

_ —z7'9z
<N> B op W L
10°° PP 1
» Fermions dominant: e
— desy > 0, (N) bounded. | ) 0.90)
geometric. 103} e ]
9 Pttt {N, N7} = {30,64}
Bosons dominant: = 1 {No, N/} = {30,32)
— deff < Oa <N> unbounded. 1013+ ,," . S I (N, N/} = {7.2}
non-geometric. R PP L 1
b e | {Ni, Ny} = {7,3}

; ; . 'y I No. Ny} = {7,4
PhYSlFal picture: ' ool 11 2 ] (Vo Np} = (7.4}
Fermions span effective 4
manifold, but constrain P By

T

dimension of H.
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» Estimate effective volume Vs from expected gap (o) from
relation between diameter ¢ and A9 on a manifold:
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» Estimate effective volume Vs from expected gap (o) from
relation between diameter ¢ and A9 on a manifold:

Ao~ 2NV
» So we define the effective volume Veyy,

<)\2>—deff/2 = V.fs
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Effective density of degrees of freedom - 5/6

> Compare (O) = (N) and (O) = (Ag)~%s/2 = V4.

1033

1023

1013

1000

— {N.Nr}v,, = {3096}

{No, Ny}v,,, = {30,64}
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{No. Ny}n = {30,96}

{Ny, Ny}n = {30,64}

{Ny, Ny}n = {30,32}
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» Compare (O) =

» (N) and V.sy match closely, ratio ~ 1.
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Effective density of degrees of freedom - 5/6

> Compare (O) = (N) and (O) = (Ag)~%s/2 = V4.

» (N) and V.sy match closely, ratio ~ 1.

» No agreement between (N) and V,y; when bosons dominate.
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{Ny, Ny}n = {30,64}
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» Remember Hawking-Gilkey:

= T6- 2/d4:c\/_( +AR+O(R2))

» We interpret (N) ~ Vs¢ as leading order (volume term) of quantum
version of Hawking-Gilkey, effective density of degrees of freedom.

» Difference between (N) and V¢ is curvature, should be checked
independently.

> Remarkable consistent geometric picture when fermions dominate
without initial geometric structure.
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New mechanism by which spacetime with matter emerges from a
pre-geometric model, no modding out of diff. group.

Emergence of the mathematical representability of abstract degrees of
freedom in terms of quantum fields on a manifold with curvature.

Effective (running) dimension, effective volume, effective density of
degrees of freedom, found special role fermions.

Future: work in Lorentzian signature, include interactions, varying
masses, decouple eigenvalues A and D, etc.
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