Emergence of geometry from fluctuations

With B. Šoda and A. Kempf

Marcus Reitz

Jagiellonian University

10July2023

JAGIELLONIAN University In Kraków

Table of Contents

- Motivation: lesson of quantum gravity
- Fluctuations as rods and clocks
- A pre-geometric path-integral

 $\bullet\,$ Observables: effective dimension, volume and density of degrees of freedom

• Conclusion & Outlook

Motivation: lesson of quantum gravity - 1/1

 \blacktriangleright QG approaches agree: no manifold $\mathcal M$ at high energies.

Motivation: lesson of quantum gravity - 1/1

- \blacktriangleright QG approaches agree: no manifold ${\mathcal M}$ at high energies.
- ▶ Picture of manifold with fields emerges at low energy.

Motivation: lesson of quantum gravity - 1/1

- \blacktriangleright QG approaches agree: no manifold $\mathcal M$ at high energies.
- ▶ Picture of manifold with fields emerges at low energy.
- Here: we investigate a mechanism of emergence of spacetime from path-integral Z with matter/gravity action S.

• Motivation to take non-geometric starting point: Hilbert space \mathcal{H} , bosonic ϕ and fermionic ψ matter fields and associated Laplacian Δ and Dirac D operators.

- Motivation to take non-geometric starting point: Hilbert space \mathcal{H} , bosonic ϕ and fermionic ψ matter fields and associated Laplacian Δ and Dirac D operators.
- Kac's question in spectral geometry: "Can you hear the shape of a drum?"

- Motivation to take non-geometric starting point: Hilbert space \mathcal{H} , bosonic ϕ and fermionic ψ matter fields and associated Laplacian Δ and Dirac D operators.
- Kac's question in spectral geometry: "Can you hear the shape of a drum?"
- ► Is knowing Laplacian Δ through spectrum $\{\lambda_i\}$ sufficient to reconstruct \mathcal{M} ?

- Motivation to take non-geometric starting point: Hilbert space \mathcal{H} , bosonic ϕ and fermionic ψ matter fields and associated Laplacian Δ and Dirac D operators.
- Kac's question in spectral geometry: "Can you hear the shape of a drum?"
- ► Is knowing Laplacian Δ through spectrum $\{\lambda_i\}$ sufficient to reconstruct \mathcal{M} ?
- ► No. Yes, if interactions are present using basis where interactions are diagonal, metric $g_{\mu\nu}$ from propagator $G_F(x, y)$:

$$g_{\mu\nu}(x) = -\frac{1}{2} \left(\frac{\Gamma(d/2 - 1)}{4\pi^{d/2}} \right)^{\frac{2}{d-2}} \lim_{x \to y} \frac{\partial}{\partial x^{\mu}} \frac{\partial}{\partial y^{\nu}} (G_F(x, y)^{\frac{2}{2-d}})$$

Kempf 2021.

An action (gravity) - 1/4

• We work in Euclidean signature to use tools of spectral geometry and a UV cut-off Λ (e.g. at Planck scale).

An action (gravity) - 1/4

• We work in Euclidean signature to use tools of spectral geometry and a UV cut-off Λ (e.g. at Planck scale).

• Makes dimension N of \mathcal{H} finite with:

$$N = \frac{1}{16\pi^2} \int d^4x \sqrt{g} \left(\frac{\bar{\Lambda}^2}{2} + \frac{\bar{\Lambda}}{6} R + O(R^2) \right)$$

Gilkey 1975, Hawking 1978.

An action (gravity) - 1/4

• We work in Euclidean signature to use tools of spectral geometry and a UV cut-off Λ (e.g. at Planck scale).

• Makes dimension N of \mathcal{H} finite with:

$$N = \frac{1}{16\pi^2} \int d^4x \sqrt{g} \left(\frac{\bar{\Lambda}^2}{2} + \frac{\bar{\Lambda}}{6} R + O(R^2) \right)$$

• Gravity action $S_g = \mu N$, contains $S_{EH} + \mathcal{O}(R^2)$ when $\mu = \frac{6\pi}{\Lambda}$.

Gilkey 1975, Hawking 1978.

▶ Next, spectral matter actions S_b, S_f .

- ▶ Next, spectral matter actions S_b, S_f .
- ► Spectral form:

$$S_b = \sum_{i}^{N_b} \sum_{n}^{N} \lambda_n (\phi_n^{(i)})^2, \quad S_f = \sum_{i}^{N_f} \sum_{n}^{N} \sqrt{\lambda_n} \theta_n^i \bar{\theta}_i^i$$

- ▶ Next, spectral matter actions S_b, S_f .
- ► Spectral form:

$$S_b = \sum_{i}^{N_b} \sum_{n}^{N} \lambda_n (\phi_n^{(i)})^2, \quad S_f = \sum_{i}^{N_f} \sum_{n}^{N} \sqrt{\lambda_n} \theta_n^i \bar{\theta}_n^i$$

▶ N_b, N_f copies of $\{\phi_n^{(i)}\}$, Grassmann components $\theta_n^i, \bar{\theta}_n^i$ of ψ and eigenvalues $\{\lambda_n\}$, of $(\Delta + m^2)$ and D, all mass m.

- ▶ Next, spectral matter actions S_b, S_f .
- ► Spectral form:

$$S_b = \sum_{i}^{N_b} \sum_{n}^{N} \lambda_n (\phi_n^{(i)})^2, \quad S_f = \sum_{i}^{N_f} \sum_{n}^{N} \sqrt{\lambda_n} \theta_n^i \bar{\theta}_n^i$$

- ▶ N_b, N_f copies of $\{\phi_n^{(i)}\}$, Grassmann components $\theta_n^i, \bar{\theta}_n^i$ of ψ and eigenvalues $\{\lambda_n\}$, of $(\Delta + m^2)$ and D, all mass m.
- ▶ Note: λ_n of $(\Delta + m^2)$ is related to $\sqrt{\lambda_n}$ of D for simplicity.

► Combined gravity/matter action:

$$S = S_g + S_b + S_f$$

Combined gravity/matter action:

$$S = S_g + S_b + S_f$$

 Advantages: no modding out diff. group and "pre-geometric", symmetry group extended to unitary group.

► Combined gravity/matter action:

$$S = S_g + S_b + S_f$$

- Advantages: no modding out diff. group and "pre-geometric", symmetry group extended to unitary group.
- \blacktriangleright Next, path-integral Z with action S

Combined gravity/matter action:

$$S = S_g + S_b + S_f$$

- Advantages: no modding out diff. group and "pre-geometric", symmetry group extended to unitary group.
- \blacktriangleright Next, path-integral Z with action S
- Standard matter path-integral, Gravitational path-integral: sum over dimension N, integral over spectra $\{\lambda_i\}$ with UV cut-off Λ .

Combined gravity/matter path-integral:

$$Z = \sum_{N=1}^{\infty} \int_{m^2}^{\Lambda} \mathcal{D}\lambda \int \mathcal{D}\phi \int \mathcal{D}\theta \mathcal{D}\bar{\theta} e^{-\beta S} \frac{\Lambda^{N(\frac{N_f}{2}-1)}}{(N-1)!}$$

Combined gravity/matter path-integral:

$$Z = \sum_{N=1}^{\infty} \int_{m^2}^{\Lambda} \mathcal{D}\lambda \int \mathcal{D}\phi \int \mathcal{D}\theta \mathcal{D}\bar{\theta} e^{-\beta S} \frac{\Lambda^{N(\frac{N_f}{2}-1)}}{(N-1)!}$$

► Introduced inverse "temperature" $\beta = 1/T$ to interpret Z as partition function.

Combined gravity/matter path-integral:

$$Z = \sum_{N=1}^{\infty} \int_{m^2}^{\Lambda} \mathcal{D}\lambda \int \mathcal{D}\phi \int \mathcal{D}\theta \mathcal{D}\bar{\theta} e^{-\beta S} \frac{\Lambda^{N(\frac{N_f}{2}-1)}}{(N-1)!}$$

- ► Introduced inverse "temperature" $\beta = 1/T$ to interpret Z as partition function.
- ▶ Note: Wick rotation difficult.

Combined gravity/matter path-integral:

$$Z = \sum_{N=1}^{\infty} \int_{m^2}^{\Lambda} \mathcal{D}\lambda \int \mathcal{D}\phi \int \mathcal{D}\theta \mathcal{D}\bar{\theta} e^{-\beta S} \frac{\Lambda^{N(\frac{N_f}{2}-1)}}{(N-1)!}$$

- ► Introduced inverse "temperature" $\beta = 1/T$ to interpret Z as partition function.
- ▶ Note: Wick rotation difficult.
- Choice: with or without zero-mode, here with, to investigate spectral gap.

Combined gravity/matter path-integral:

$$Z = \sum_{N=1}^{\infty} \int_{m^2}^{\Lambda} \mathcal{D}\lambda \int \mathcal{D}\phi \int \mathcal{D}\theta \mathcal{D}\bar{\theta} e^{-\beta S} \frac{\Lambda^{N(\frac{N_f}{2}-1)}}{(N-1)!}$$

- ► Introduced inverse "temperature" $\beta = 1/T$ to interpret Z as partition function.
- ▶ Note: Wick rotation difficult.
- Choice: with or without zero-mode, here with, to investigate spectral gap.
- Note: Z is finite.

For manifold \mathcal{M} , dimension n from Weyl's law:

$$\lim_{\lambda \to \infty} \ \rho(\lambda) \propto \lambda^{n/2 - 1}$$

For manifold \mathcal{M} , dimension n from Weyl's law:

$$\lim_{\lambda o \infty} \
ho(\lambda) \propto \lambda^{n/2-2}$$

• We obtain density of eigenvalues $\rho(\lambda)$ from probability density $p(\lambda_i)$.

$$p(\lambda_i) \propto (\lambda_i)^{N_f/2 - N_b/2}$$

For manifold \mathcal{M} , dimension n from Weyl's law:

$$\lim_{\lambda o \infty} \
ho(\lambda) \propto \lambda^{n/2-2}$$

• We obtain density of eigenvalues $\rho(\lambda)$ from probability density $p(\lambda_i)$.

$$p(\lambda_i) \propto (\lambda_i)^{N_f/2 - N_b/2}$$

Scaling of $p(\lambda_i)$ gives effective dimension d_{eff} .

$$d_{eff}(\lambda) = N_f - N_b + 2$$

For manifold \mathcal{M} , dimension n from Weyl's law:

$$\lim_{\lambda o \infty} \
ho(\lambda) \propto \lambda^{n/2-1}$$

• We obtain density of eigenvalues $\rho(\lambda)$ from probability density $p(\lambda_i)$.

$$p(\lambda_i) \propto (\lambda_i)^{N_f/2 - N_b/2}$$

Scaling of $p(\lambda_i)$ gives effective dimension d_{eff} .

$$d_{eff}(\lambda) = N_f - N_b + 2$$

▶ Note, $d_{eff} > 0$ only if $N_f > N_b - 2$.

▶ Scale-dependent effective dimension from varying masses:

$$p(\lambda) \propto \prod_{k}^{N_b} \sqrt{(\lambda + m_{b_k}^2)} \prod_{l}^{N_f} (\sqrt{\lambda} + m_{f_k})$$

▶ Scale-dependent effective dimension from varying masses:

Density of degrees of freedom - 3/6

• Calculate expectation value $\langle N \rangle$:

$$\langle N \rangle = \frac{-Z^{-1}}{\beta} \frac{\partial Z}{\partial \mu}$$

Density of degrees of freedom - 3/6

▶ Calculate expectation value $\langle N \rangle$:

$$\langle N \rangle = \frac{-Z^{-1}}{\beta} \frac{\partial Z}{\partial \mu}$$

Fermions dominant: $\rightarrow d_{eff} > 0, \langle N \rangle$ bounded. geometric.

Bosons dominant: $\widehat{\Xi}$ $\rightarrow d_{eff} < 0, \langle N \rangle$ unbounded. non-geometric.

physical picture: Fermions span effective manifold, but constrain dimension of \mathcal{H} .

Effective volume - 4/6

Estimate effective volume V_{eff} from expected gap $\langle \lambda_2 \rangle$ from relation between diameter ℓ and λ_2 on a manifold:

$$\lambda_2 \sim \ell^{-2} \sim V^{-\frac{2}{n}}$$

Effective volume - 4/6

Estimate effective volume V_{eff} from expected gap $\langle \lambda_2 \rangle$ from relation between diameter ℓ and λ_2 on a manifold:

$$\lambda_2 \sim \ell^{-2} \sim V^{-\frac{2}{n}}$$

▶ So we define the effective volume V_{eff} ,

$$\langle \lambda_2 \rangle^{-d_{eff}/2} \equiv V_{eff}$$

• Compare
$$\langle O \rangle = \langle N \rangle$$
 and $\langle O \rangle = \langle \lambda_2 \rangle^{-d_{eff}/2} \equiv V_{eff}$.

- Compare $\langle O \rangle = \langle N \rangle$ and $\langle O \rangle = \langle \lambda_2 \rangle^{-d_{eff}/2} \equiv V_{eff}$.
- $\langle N \rangle$ and V_{eff} match closely, ratio ~ 1.

- Compare $\langle O \rangle = \langle N \rangle$ and $\langle O \rangle = \langle \lambda_2 \rangle^{-d_{eff}/2} \equiv V_{eff}$.
- $\langle N \rangle$ and V_{eff} match closely, ratio ~ 1.
- ▶ No agreement between $\langle N \rangle$ and V_{eff} when bosons dominate.

▶ Remember Hawking-Gilkey:

$$N = \frac{1}{16\pi^2} \int d^4x \sqrt{g} \left(\frac{\bar{\Lambda}^2}{2} + \frac{\bar{\Lambda}}{6} R + O(R^2) \right)$$

▶ Remember Hawking-Gilkey:

$$N = \frac{1}{16\pi^2} \int d^4x \sqrt{g} \left(\frac{\bar{\Lambda}^2}{2} + \frac{\bar{\Lambda}}{6} R + O(R^2) \right)$$

• We interpret $\langle N \rangle \sim V_{eff}$ as leading order (volume term) of quantum version of Hawking-Gilkey, effective density of degrees of freedom.

Remember Hawking-Gilkey:

$$N = \frac{1}{16\pi^2} \int d^4x \sqrt{g} \left(\frac{\bar{\Lambda}^2}{2} + \frac{\bar{\Lambda}}{6} R + O(R^2) \right)$$

- We interpret $\langle N \rangle \sim V_{eff}$ as leading order (volume term) of quantum version of Hawking-Gilkey, effective density of degrees of freedom.
- ▶ Difference between $\langle N \rangle$ and V_{eff} is curvature, should be checked independently.

Remember Hawking-Gilkey:

$$N = \frac{1}{16\pi^2} \int d^4x \sqrt{g} \left(\frac{\bar{\Lambda}^2}{2} + \frac{\bar{\Lambda}}{6} R + O(R^2) \right)$$

- We interpret $\langle N \rangle \sim V_{eff}$ as leading order (volume term) of quantum version of Hawking-Gilkey, effective density of degrees of freedom.
- ▶ Difference between $\langle N \rangle$ and V_{eff} is curvature, should be checked independently.
- Remarkable consistent geometric picture when fermions dominate without initial geometric structure.

New mechanism by which spacetime with matter emerges from a pre-geometric model, no modding out of diff. group.

New mechanism by which spacetime with matter emerges from a pre-geometric model, no modding out of diff. group.

☆

Emergence of the mathematical representability of abstract degrees of freedom in terms of quantum fields on a manifold with curvature.

- New mechanism by which spacetime with matter emerges from a pre-geometric model, no modding out of diff. group.
- Emergence of the mathematical representability of abstract degrees of freedom in terms of quantum fields on a manifold with curvature.
- Effective (running) dimension, effective volume, effective density of degrees of freedom, found special role fermions.

- New mechanism by which spacetime with matter emerges from a pre-geometric model, no modding out of diff. group.
- Emergence of the mathematical representability of abstract degrees of freedom in terms of quantum fields on a manifold with curvature.
- Effective (running) dimension, effective volume, effective density of degrees of freedom, found special role fermions.
- Future: work in Lorentzian signature, include interactions, varying masses, decouple eigenvalues Δ and D, etc.

☆