General Relativistic Decoherence with Applications to Dark Matter

Mark Hertzberg, Tufts

Quantum Gravity 2023, July 14 2023

Based on work with Itamar Allali

Allali, Hertzberg 2005.12287 (JCAP), 2012.12903 (PRD), 2103.15892 (PRL)

Dynamics can launch states into Schrodinger cat-like states

Schrodinger Cat Billiards

Albrecht, Phillips 2012

Dynamics can launch states into Schrodinger cat-like states

Quantumness destroyed due to DECOHERENCE

Schrodinger Cat Billiards

Albrecht, Phillips 2012

What about Dark Matter? Conceivably in Schrodinger cat-like states too

Claims: 0901.1106, 1111.1157, 1607.00949, 1710.02195, 1712.08219

Dark Matter Schrodinger Cat (Axions)

 $|\mathrm{DM}_1\rangle + |\mathrm{DM}_2\rangle$

Quantumness destroyed due to DECOHERENCE???

Less clear because dark matter has tiny (non-gravitational) interactions

Claim it affect axion experiments: 2211.13602 Marsh

Environmental Entanglement from Gravitational Scattering

 $|\Psi_{\rm ini}\rangle = (|\mathrm{DM}_1\rangle + |\mathrm{DM}_2\rangle) |\psi\rangle$

Product State with probe particle

Environmental Entanglement from Gravitational Scattering

 $|\Psi_{\rm ini}\rangle = (|{\rm DM}_1\rangle + |{\rm DM}_2\rangle) |\psi\rangle$

Product State with probe particle

 $\left|\Psi_{\rm fin}\right\rangle = \left|\mathrm{DM}_{1}\right\rangle \left|\psi_{1}\right\rangle + \left|\mathrm{DM}_{2}\right\rangle \left|\psi_{2}\right\rangle$

Entangled State

Trace Out Environmental Probe Particles

 $\hat{\rho} \equiv |\Psi\rangle \langle \Psi|$ Full Density Matrix $\hat{\rho}_{red} = \text{Tr}_{|\psi\rangle}[\hat{\rho}]$ Reduced Density Matrix $= |\text{DM}_1\rangle \langle \text{DM}_1| + \langle \psi_2 | \psi_1 \rangle |\text{DM}_1\rangle \langle \text{DM}_2| + \langle \psi_1 | \psi_2 \rangle |\text{DM}_2\rangle \langle \text{DM}_1| + |\text{DM}_2\rangle \langle \text{DM}_2|$ Off diagonal elements; controlling true quantum effects

Trace Out Environmental Probe Particles

Decoherence Rate from Generalized Cross-sections

Scattering Amplitude

$$f(\vec{q}',\vec{q}) \equiv -\frac{1}{2\pi} \int d^3x' e^{i(\vec{q}-\vec{q}')\cdot\vec{x}'} \Phi(\vec{x}') m^2$$

Cross-section

$$\tilde{\sigma}_{ij}(q) \equiv \int d^2 \Omega f_i^*(\vec{q}',\vec{q}) f_j(\vec{q}',\vec{q}) j_0(2qL_{ij}\sin\theta/2)$$

Decoherence Rate from Generalized Cross-sections

Decoherence Rate

$$\Gamma_{\scriptscriptstyle \mathsf{dec}} pprox nv(ilde{\sigma}_{1,1} + ilde{\sigma}_{2,2} - 2\Re[ilde{\sigma}_{1,2}])/2$$

$$\Gamma_{\rm dec} = \frac{4\pi G^2 m^4 n v}{k^2} \left[\frac{M_1^2}{\mu_1^2} \chi_{11} + \frac{M_2^2}{\mu_2^2} \chi_{22} - 2 \frac{M_1 M_2}{\mu_1 \mu_2} \chi_{12} \right]$$

Application to Light Diffuse scalar DM (axions)

Application to Light Diffuse scalar DM (axions)

Application to Boson Stars

Extremely rapid decoherence —> Very classical

General Relativistic Extension

Robust quantum gravity calculation; General Relativity treated as quantum effective theory

Decoherence Rate for Static Source

Metric - Newton gauge $g_{\mu\nu} = diag[(1+2\Phi), -(1-2\Psi), -(1-2\Psi), -(1-2\Psi)]$

Amplitude
$$f(\vec{q}',\vec{q}) \equiv -\frac{1}{2\pi} \int d^3x' e^{i(\vec{q}-\vec{q}')\cdot\vec{x}'} \left[\Phi(\vec{x}')E_q^2 + \Psi(\vec{x}')q^2 \right]$$

$$\Gamma_{\rm dec} \approx 4\pi G_N^2 n_p v_p \frac{(m_p^2 + 2k^2)^2}{k^2} \left(\frac{M_1^2}{\mu_1^2}\chi_{11} + \frac{M_2^2}{\mu_2^2}\chi_{22} - \frac{2M_1M_2}{\mu_1\mu_2}\chi_{12}\right)$$

In galaxy, the baryons provide a bigger environment than photons/neutrinos

Decoherence Rate for Oscillating Source

To "learn" about phase; inelastic scattering

Kinematic mismatch

```
E_p \to E_p \pm \omega_a \qquad \qquad \delta p_T \sim \frac{E_p}{p_p} \omega_a \gg p_a
```

Decoherence of phase is suppressed (unless all states are relativistic)

Decoherence Rate for Oscillating Source

Conceivably, relevant to direct detection, which is sensitive to axion phase

$$\mathrm{DM}\rangle \sim \sum_{i} c_{i} |\cos(\omega t - \mathbf{k}_{a} \cdot \mathbf{x} + \varphi_{i})\rangle$$

Open question: are there observables related to this?

Conclusions

- Macroscopic quantum states (Schrodinger cats) of light scalar dark matter might exist, and could potentially have slow decoherence

- We studied the decoherence of such states due to gravitational scattering from probe particles; a robust quantum gravity calculation

- We found that superpositions of spatial profiles decohere rapidly for very light DM (axions), and boson stars decohere extremely rapidly

- We found that superpositions of phases live much longer, may launch detectors into superpositions (non-grav interactions can be considered in future work).
- Relativistic states (near black holes) decohere quickly

Allali, Hertzberg 2005.12287 (JCAP), 2012.12903 (PRD), 2103.15892 (PRL)