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 § Introduction

Eigenvalue distributions of matrix models play important roles 
in understanding atoms, 2-dim quantum gravity, QCD, etc.

 ~ random matrix : Semicircle lawH E.Wigner 1958

Solving matrix models via ρ(e)
E. Brezin, C. Itzykson, G. Parisi and J. B. Zuber, 1978

D. J. Gross and E. Witten, S. R. Wadia, 1980

Gross-Witten-Wadia transition, topological change of ρ(e)



Tensor eigenvalue/vector distributions were previously studied in

• Expectation numbers of real tensor eigenvalues
P. Breiding, SIAM Journal on Applied Algebra and Geometry 1, 254-271 (2017). 
P. Breiding, Transactions of the American Mathematical Society 372, 7857-7887 (2019). 

• Estimation of the largest eigenvalue 
O. Evnin, Lett. Math. Phys. 111, 66 (2021) doi:10.1007/s11005-021-01407-z 
[arXiv:2003.11220 [math-ph]]. 

• Extension of Wigner semicircle law
R. Gurau, [arXiv:2004.02660 [math-ph]]. 

What roles eigenvalue/vector distributions can take in tensor 
models ?



H = Cabcwawbwc, wawa = 1  : random (Gaussian)Cabc

Real tensor eigenvalue distribution is the same as to count the 
critical points of the Hamiltonian (complexity) of the spherical 

-spin model for spin glasses.p

This has comprehensively been solved vie matrix model techniques in

Auffinger, A., Arous, G.B. and Černý, J. (2013), “Random Matrices and Complexity of Spin 
Glasses.” Comm. Pure Appl. Math., 66: 165-201. https://doi.org/10.1002/cpa.21422

Accordingly, the end results of this talk are not new. However, the 
method we use is different, i.e., field theoretical, and give insights 
and extensions different from previous studies, as will be 
mentioned briefly at the summary.

( ) p = 3

https://doi.org/10.1002/cpa.21422


Cabcvbvc = ζ va
L.Qi 2005, L.H.Lim 2005, D.Cartwright and B.Sturmfels 2013 

• A system of  non-linear equationsN
• Not unique: can be rescaled by , ζ → c ζ va → c va

• Even if  is real, ,  are not necessarily real.Cabc ζ va

Accordingly there are some different notions of eigenvalues/vectors. 

Z-eigenvalue (Qi) :  ( ) with ,  ζ ≥ 0 v ∈ ℝN |v | = 1

 : Eigenvalueζ  : Eigenvectorva

Tensor eigenvalues/vectors of  :Cabc

Ex.

There exist some differences from the matrix case:

Consider real symmetric order-three tensor Cabc (a, b, c = 1,…, N)

 § Tensor eigenvalues/vectors



Cabcvbvc = va

 : symmetric real tensor, Gaussian distributionCabc

v ∈ ℝN

Cabcwbwc = ζwa

 ζ =
1

|v |

wa =
va

|v |

In this talk we compute the distributions of real eigenvectors and 
eigenvalues:

(Z-eigenvalues)

What is new in this talk is that we use field theoretical methods 
instead of matrix models.

Real eigenvector distribution Real eigenvalue distribution



§ Eigenvector distributions

= | det M |
N

∏
a=1

δ(Cabcvbvc − va)

ρ(v, C) =
#sol(C)

∑
i=1

δN(v − vi) Cabcvi
bv

i
c = vi

a vi ∈ ℝN

Mab =
∂

∂va
(vb − Cbcdvcvd) = δab − 2Cabcvc

ρ(v) = ⟨ρ(v, C)⟩C = A−1 ∫ℝ#C

dC e−α C2ρ(v, C) α > 0C2 = CabcCabc

: Jacobian

= A−1 ∫ℝ#C

dC e−α C2 | det M |
N

∏
a=1

δ(Cabcvbvc − va)

• For a given Cabc

• For a Gaussian distributed Cabc



§ Field theoretical expression

det M = ∫ dψ̄dψ eψ̄Mψ

• | det M | = lim
R→1/2,ϵ→+0

{det(M2 + ϵI)}R

(I) Signed distribution (Just forget )| ⋅ |

(II) Distribution

{det(M2 + ϵI)}R = (−1)NR ∫ dψ̄dψdφ̄dφ e−φ̄iφi+ϵψ̄ iψi−ψ̄ iMψi−φ̄iMφi

 : fermionsψ̄, ψ

fermions
bosons

For integer R

• | det M | = lim
ϵ→+0

det(M2 + ϵ I)
det(M2 + ϵ I)

Rewrite  | det M |



N

∏
a=1

δ(Cabcvbvc − va) = (2π)−N ∫ℝN

dλ ei λa(va−Cabcvbvc)

ρ⋅(v) = ∫ dC dλ dψ̄dψ dϕ⋯ eS

S = − αC2 + iλa(va − Cabcvbvc) − (ψ̄, ψ, ϕ, ⋯)2 − (ψ̄, ψ, ϕ, ⋯)M(ψ̄, ψ, ϕ, ⋯)

= (C, λ)(−α *
* 0 ) (C

λ) + (C, λ)( *
* ) + ⋯

 and  can be integrated out, since these are at most quadratic.C λ

We obtain an effective theory of bosons and fermions with quartic 
interactions.

Rewrite 

Then generally we have

C



§ Computation of the effective field theories
(I) Signed distribution ( )det M

ρ(v) = 3(N−1)/2π−N/2αN/2v−2Ne−v2/α ∫ dψ̄dψ eS

S = − ψ̄∥ψ∥ + ψ̄⊥ ⋅ ψ⊥ −
v2

6α
(ψ̄⊥ ⋅ ψ⊥)2

 : parallel to ,  : transverse to ∥ v ⊥ v

ρ(v) = − 31/22−1+N/2α π−N/2e−α/v2 |v |−N−2 U (1 −
N
2

,
3
2

,
3α
2v2 )

Exactly computed as 

Confluent hypergeom. fn. 
of the second kind

Agree with MC



KB = − σ2 − 2iσϕ − ϵϕ2

KF = − φ̄φ − ψ̄φ − φ̄ψ − ϵψ̄ ψ

VF = −
v2

6α ((ψ̄φ)2 + (φ̄ψ)2 + 2(ψ̄φ̄)(φψ) + 2(ψ̄ ψ)(φ̄φ))

VB = −
2v2

3α
(σ2ϕ2 + (σϕ)2)

VBF =
2iv2

3α
((ψ̄σ)(φϕ) + (φ̄σ)(ψϕ) + (ψ̄ϕ)(φσ) + (φ̄ϕ)(ψσ))

S = KB + KF + VF + VB + VBF

: bosons, : fermions  σa, ϕa ψ̄a, ψa, φ̄a, φa (a = 1,2,⋯, N)

(ψ̄ ψ) = ψ̄aψa, etc.

(II) Distribution ( )| det M |
 is more complicated.S



• Exact analytic expressions for small  in terms of error fn.N (,R)

• The expression for large-  computed through Schwinger-Dyson 
equation. It turns out that the eigenvalue distribution for large-  
is given by Gaussian.

N
N
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Figure 1: Some non-trivial checks of the general formula (31) with (29). The analytical results,
(34) with (35) for ↵ = 1/2, (solid lines) and the results from the Monte Carlo simulations (51)
(dots) for (N,R) = (2, 1), (3, 1), (2, 2), (3, 2) from the left to the right panels are compared.
�v = 0.03. NC = 3 · 104 for the former two, and NC = 105 for the latter two.

• Repeat the above processes.

By the above repeating procedure we obtain a data of (|vi|, detMi) (i = 1, 2, . . . , L), where L
is the total number of real eigenvectors generated. For the general case of R, we define

⇢simR ((k + 1/2)�v) =
1

�vNC

LX

i=1

| detM |
2R�1 ✓(k�v < |vi|  (k + 1)�v), (51)

where NC denotes the total number of randomly generated C, �v is a bin size, k = 0, 1, 2, . . .,
and ✓ is a support function which takes 1 if the inequality of the argument is satisfied, but zero
otherwise. This quantity corresponds to ⇢(v, R, 0)SN�1|v|N�1 with ↵ = 1/2 of the analytical
result by a derivation similar to that of (47). The �1 in the exponent of | detM | in (51) comes
from the consideration of the measure associated to the delta functions, namely, the di↵erence
between (2) and (3).

In Figure 1, the numerical datas (51) for N = 2, 3, R = 2, 3, and the analytical results,
⇢(v, R, 0)SN�1|v|N�1 with ⇢(v, R, 0) being given by (34) with (35) for ↵ = 1/2, are compared.
They precisely agree. The agreement includes the allover numerical factor, and gives non-
trivial checks of the general formula (31) with (29).

For R = 1/2 in (51), we have

⇢simsize((k + 1/2)�v) =
1

�vNC

LX

i=1

✓(k�v < |vi|  (k + 1)�v). (52)

For large-N , this is the numerical quantity corresponding to (47) with ↵ = 1/2.

In the left panel of Figure 2 the analytical result (47) and the numerical result (52) are
compared. In this figure, the analytical result is multiplied by an extra allover numerical
factor, which means that the overall factor is not correctly computed in the analytical result,
while the functional form agrees well with the numerical data. As shown in the right panel,
the extra factor  needed to have good agreement is dependent on N . As far as the fitting
line implies, the factor seems to asymptotically diverge in N ! 1.
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Figure 1: The results of the Monte Carlo simulation for N = 8, NC = 10000 are compared
with the analytic expressions. Left: The eigenvector size distribution. The Monte Carlo result
(66) with �v = 0.03 (dots) is compared with (67) using (40) and GN=8 in (63) (solid line).
Right: The eigenvalue distribution. The Monte Carlo result (68) with �⇣ = 0.03 (dots) is
compared with the analytic expression through (7).

8 Extrapolation to general N

In this section, we point out a few patterns which exist in the expressions of the distributions
derived for small N in Section 6, and guess an extrapolation to general N . A motivation
for doing this is to improve the large-N expression previously obtained by an approximation
using a Schwinger-Dyson equation [17]. The issue of the previous result was that, while the
functional form agreed well with the numerical simulation for large-N , the overall factor did
not. In this section, using the extrapolation, we will guess the overall factor for general N and
find good agreement with Monte Carlo simulations.

After a thought one notices that GN for even N (namely, N = 2, 4, 6, 8) in Section 6 can
be expressed by the following general form:

GN :even =⇡N� 3
2 z

N�1
2 HN�1


1

2
p
z

�
�


1

2
,
1

8z

�

+
p
2⇡N� 3

2
N !
N
2 !
z

N�1
2 e�

1
8z

✓
1 +

d1
z

+
d2
z2

+ · · ·+ dN�3

zN�3

◆
,

(69)

where Hn[·] are Hermite polynomials, di are some coe�cients generally depending on N , and
specifically

d1 =
1 + (�1)

N
2

4
. (70)

As for di (i � 2), we could not find reasonably simple functions of N .

Let us discuss the real eigenvalue distribution for large-N , assuming (69) with (70). Be-
cause of the relations (6) and (44), and the fact that the major part of the distribution is
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Figure 2: The guessed large-N formula (73) (solid line) is compared with the Monte Carlo
simulation (68) (dots). Left: N = 14, �⇣ = 0.03, NC = 400. Middle: N = 15, �⇣ = 0.06, NC =
100. Right: N = 16, �⇣ = 0.1, NC = 72.

around ⇣ ⇠ 0 as in Figure 1, we are interested in a 1/z expansion of (69) with (70). By
explicitly doing this one obtains

GN ⇠
p
2⇡N� 3

2
�[N + 1]

�
⇥
N
2 + 1

⇤z
N�1

2

✓
1 +

1

8z
+ · · ·

◆
, (71)

where the factorials are replaced by Gamma functions to also be applicable for odd N below.
By combining with the previous result in [17] that the large-N eigenvalue distribution is given
by a Gaussian function of |v|, one could assume that the expansion in 1/z of (71) comes from
the expression,

GN ⇠
p
2⇡N� 3

2
�[N + 1]

�
⇥
N
2 + 1

⇤z
N�1

2 e
1
8z . (72)

Putting this into (7) using (6), (40) and (44), we obtain

⇢eig(⇣) ⇠ 2�
N
2 +2↵

1
2⇡� 1

2
�[N + 1]

�
⇥
N
2 + 1

⇤
�
⇥
N
2

⇤e�↵
4 ⇣

2
, (73)

which indeed is a Gaussian distribution. While the coe�cient ↵/4 in the exponent indeed
agrees with the previous result in [17], the overall factor is di↵erent.

In Figure 2 we compare the large-N expression (73) with the Monte Carlo simulations for
N = 14, 15, 16.4 They agree well, and the agreement seems to become slightly better, as N
becomes larger.

In the above discussion, we have not used the odd N cases. The reason is that we could
not find simple expressions valid across all the odd N cases obtained in Section 6. We merely
notice

GN :odd = ⇡N�1z
N�1

2 HN�1

✓
1

2
p
z

◆
+ d00 e

� 1
8z

✓
1 +

d01
z

+ · · ·+
d0N�3

zN�3

◆
, (74)
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Exact analytical expressions S.-D. eq. (Large ) N
Compared with MC

But we can obtain

GN=8 = π
13
2 ( 2e− 1

8z (1 + 210z2 − 2100z3 + 12600z4 + 25200z5)

15z 3
2

+ (1 − 42z + 420z2 − 840z3) γ [ 1
2

,
1
8z ]) . z = v2/6α

ρ(ζ) ∼ 2− N
2 +2α

1
2π− 1

2
Γ[N + 1]

Γ [ N
2 + 1] Γ [ N

2 ]
e− α

4 ζ2

for 1 ≪ N



§ Summary and future prospects

We have computed real eigenvalue/vector distributions for order-
three real symmetric tensors with Gaussian distributions.

• The large-  limit of the eigenvalue distribution is given by 
Gaussian, which contrasts with Wigner’s semicircle law in the 
matrix model.

N

• Some exact analytical expressions 



Extensions with similar procedures

• Correlations among eigenvectors. In matrix models, 
eigenvalues are repulsive, how about tensor models ?

• Why integrable ? Obtain exact formulas of eigenvalue/
vector distributions for any , N R

• Introduce allowances to eigenvector equation

• Complex eigenvalues

• Analysis of tensor rank decompositions

• Introduce backgrounds

Cabcvbvc = va + ηa  Gaussian noiseηa :

Cabc → Qabc + Cabc  fixedQabc :

(with N.Delporte, R.Toriumi)

(With S.Majumder)

(with Z. Mirzaiyan)


