Casimir effect, and Newton's non-constant
B. Koch with R. Sedmik, M. Pitschmann, and C. Käding arXiv: 2211.00662

July 10-14
Quantum Gravity 2023
Nijmegen, Netherlands

Content

- What we know \& what we would like to know
- Hypothesis 1 \& 2
- Scale-dependent (SD) framework
- SD-Casimir
- Towards experiment?
- Discussion and Conclusion

Vacuum energy

What we know so far?

Vacuum energy

 What we know so far?
Quantum vacuum:

$$
\rho_{Q}
$$

Vacuum energy

What we know so far?

Quantum vacuum:

$$
\rho_{Q}
$$

Vacuum energy

What we know so far?

Quantum vacuum:

$$
\rho_{Q}
$$

accelerates plates

Vacuum energy

What we know so far?

Quantum vacuum:

$$
\rho_{Q}
$$

accelerates plates

Vacuum energy

What we know so far?

Quantum vacuum:

$$
\rho_{Q}
$$

accelerates plates

Vacuum energy

What we know so far?

Quantum vacuum:

$$
\rho_{Q}
$$

accelerates plates

$$
\rho_{\Lambda}
$$

accelerates Universe

Vacuum energy

 What we would like to know:
Vacuum energy What we would like to know:

$$
\rho_{Q}
$$

Vacuum energiy What we would like to know:

$\rho_{Q} \quad \rho_{\Lambda}$

Vacuum energy What we would like to know:

How are they related?

$$
\rho_{Q} \quad \rho_{\Lambda}
$$

Vacuum energy What we would like to know:

How are they related?

$$
\rho_{Q} \quad \rho_{\Lambda}
$$

Vacuum energy What we would like to know:

$\rho_{Q} \quad \rho_{\Lambda}$

Vacuum energy

What we would like to know:

ρ_{Q} in lab

ρ_{Q} in lab

ρ_{Q} in lab

Casimir effect

ρ_{Q} in lab

Casimir effect

Predicted 1948

ρ_{Q} in lab

Casimir effect
Predicted 1948
Observed 1997

ρ_{Q} in lab

Casimir effect
Predicted 1948
ref [10]
Observed 1997

$$
\rho_{C}=-\frac{\hbar \pi^{2}}{720 a^{4}}
$$

ρ_{Q} in lab

Casimir effect
Predicted 1948
ref [10]
Observed 1997

$$
\begin{aligned}
& \rho_{C}=-\frac{\hbar \pi^{2}}{720 a^{4}} \\
\Rightarrow \quad & \frac{F_{Q}}{A} \approx \rho_{Q} \cdot a
\end{aligned}
$$

ρ_{Q} in lab

In reality, additional effects

ρ_{Q} in lab

In reality, additional effects

- Finite temperature $T \approx 300 K \Rightarrow$ modified ϵ, μ

ρ_{Q} in lab

In reality, additional effects

- Finite temperature $T \approx 300 K \Rightarrow$ modified ϵ, μ
- Gravitational attraction between plates

ρ_{Q} in lab

In reality, additional effects

- Finite temperature $T \approx 300 K \Rightarrow$ modified ϵ, μ
- Gravitational attraction between plates
$\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\rho_{M}\left(\vec{x}_{1}\right) \rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}$

$\rho_{Q}{ }^{\mathrm{i}}$

In reality, additional effect いい

- Finite temperat MN modified ϵ, μ M
- Gravitational a plates

$$
\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} V_{2} V_{1} d^{3} / \frac{q M\left(\vec{x}_{1}\right)}{} \frac{\rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}
$$

ρ_{Q} in lab

In reality, additional effects

- Finite temperature $T \approx 300 K \Rightarrow$ modified ϵ, μ
- Gravitational attraction between plates
$\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\rho_{M}\left(\vec{x}_{1}\right) \rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}$

ρ_{Q} in lab

In reality, additional effects

- Finite temperature $T \approx 300 K \Rightarrow$ modified ϵ, μ
- Gravitational attraction between plates
$\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\rho_{M}\left(\vec{x}_{1}\right) \rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}$
- Finite penetration depth $\lambda \approx 10^{-8} m$, thus $\rho_{C}=\rho_{C}(\vec{x})$

ρ_{O} in lab

$$
\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\rho_{M}\left(\vec{x}_{1}\right) \rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}
$$

- Finite penetration depth $\lambda \approx 10^{-8} m$, thus $\rho_{C}=\rho_{C}(\vec{x})$

ρ_{O} in lab

In

$$
\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} / x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\rho_{M}\left(\vec{x}_{1}\right) \rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}
$$

- Finite penetration depth
$\lambda \approx 10^{-8} m$ thus $\rho_{C}=\rho_{C}(\vec{x})$

ρ_{O} in lab

$$
\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\rho_{M}\left(\vec{x}_{1}\right) \rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}
$$

- Finite penetration depth $\lambda \approx 10^{-8} m$, thus $\rho_{C}=\rho_{C}(\vec{x})$

ρ_{Q} in lab

In reality, additional effects

- Finite temperature $T \approx 300 K \Rightarrow$ modified ϵ, μ
- Gravitational attraction between plates
$\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\rho_{M}\left(\vec{x}_{1}\right) \rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}$
- Finite penetration depth $\lambda \approx 10^{-8} m$, thus $\rho_{C}=\rho_{C}(\vec{x})$

ρ_{Q} in lab

In reality, additional effects

- Finite temperature $T \approx 300 K \Rightarrow$ modified ϵ, μ
- Gravitational attraction between plates
$\vec{F}_{G, 12}=-\vec{F}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\rho_{M}\left(\vec{x}_{1}\right) \rho_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}$
- Finite penetration depth $\lambda \approx 10^{-8} m$, thus $\rho_{C}=\rho_{C}(\vec{x}) \backsim$ remember

ρ_{Q} in Universe

ρ_{Q} in Universe

Albert Einstein

ρ_{Q} in Universe

Albert Einstein

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

ρ_{Q} in Universe

Albert Einstein

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

\Rightarrow Friedman eq.

$$
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 p)+\frac{\Lambda}{3} \equiv 0
$$

ρ_{Q} in Universe

Albert Einstein

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=8 \pi G T_{\mu \nu}
$$

\Rightarrow Friedman eq.

$$
\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 p)+\frac{\Lambda}{3} \equiv 0
$$

ρ_{Q} in Universe

S, Perlmutter, A. Riess, B. Schmidt, \& others
ref [2]

ρ_{Q} in Universe

S, Perlmutter, A. Riess, B. Schmidt, \& others

ρ_{Q} in Universe

S, Perlmutter, A. Riess, B. Schmidt, \& others measurements:
ref [2]

ρ_{Q} in Universe

S, Perlmutter, A. Riess, B. Schmidt, \& others

mei

ρ_{Q} in Universe

S, Perlmutter, A. Riess, B. Schmidt, \& others mei

$\dot{a} \neq 0$

ρ_{Q} in Universe

S, Perlmutter, A. Riess, B. Schmidt, \& others mé

$\dot{a} \neq 0$
$\ddot{a}>0 \Rightarrow \Lambda>0$

ρ_{Q} Puzzle

ρ_{Q} Puzzle

Λ as an energy density

ρ_{Q} Puzzle

Λ as an energy density

$$
\rho_{\Lambda, 0}=\frac{\Lambda_{0} c^{4}}{8 \pi G_{0}}=5.35 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3}
$$

ρ_{Q} Puzzle

Λ as an energy density

$$
\rho_{\Lambda, 0}=\frac{\Lambda_{0} c^{4}}{8 \pi G_{0}}=5.35 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3}
$$

Quantum origin?

ρ_{Q} Puzzle

Λ as an energy density

$$
\rho_{\Lambda, 0}=\frac{\Lambda_{0} c^{4}}{8 \pi G_{0}}=5.35 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3}
$$

Quantum origin?

Yakov Zeldovich, 1967

ρ_{Q} Puzzle

Λ as an energy density

$$
\rho_{\Lambda, 0}=\frac{\Lambda_{0} c^{4}}{8 \pi G_{0}}=5.35 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3}
$$

Quantum origin?

Yakov Zeldovich, 1967

Steven Weinberg, 1998

ρ_{Q} Puzzle

Λ as an energy density

$$
\rho_{\Lambda, 0}=\frac{\Lambda_{0} c^{4}}{8 \pi G_{0}}=5.35 \times 10^{-10} \mathrm{~J} / \mathrm{m}^{3}
$$

Quantum origin?

Yakov Zeldovich, 1967

Steven Weinberg, 1998

ref [4]
Big theoretical puzzle

ρ_{Q} Puzzle

ρ_{Q} Puzzle

Big theoretical puzzle

In short QFT with cutoff $\rho_{Q} \sim c \kappa_{0}^{4} / \hbar^{3}$ As ratio

ρ_{Q} Puzzle

Big theoretical puzzle

In short QFT with cutoff $\rho_{Q} \sim c \kappa_{0}^{4} / \hbar^{3}$
As ratio

$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

ρ_{Q} Puzzle

Big theoretical puzzle

In short QFT with cutoff $\rho_{Q} \sim c \kappa_{0}^{4} / \hbar^{3}$
As ratio

$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

Unsolved - experimental input needed!

ρ_{Q} Puzzle

Big theoretical puzzle

In short QFT with cutoff $\rho_{Q} \sim c \kappa_{0}^{4} / \hbar^{3}$
As ratio

$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z} .
\end{array}\right.
$$

Unse ed - experimental input needed!

ρ_{Q} Puzzle

Big theoretical puzzle

In short QFT with cutoff $\rho_{Q} \sim c \kappa_{0}^{4} / \hbar^{3}$
As ratio

$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

Unse ed - experimental input needed!
Many solutions - experimental input needed!

Two hypothesis

Two hypothesis

$H_{Q \leftrightarrow \Lambda}:$ Are the cosmogical vacuum and the laboratory vacuum related? $\left(\alpha_{1}\right)$

Two hypothesis

$H_{Q \leftrightarrow \Lambda}:$ Are the cosmogical vacuum and the laboratory vacuum related? $\left(\alpha_{1}\right)$
$H_{\Lambda \leftrightarrow G}$: Is the cosmological constant related to Newtons constant? $\left(C_{1}, C_{3}\right)$

Two hypothesis

$H_{Q \leftrightarrow \Lambda}$: Are the cosmogical vacuum and the laboratory vacuum related? $\left(\alpha_{1}\right)$
$H_{\Lambda \leftrightarrow G}$: Is the cosmological constant related to Newtons constant? $\left(C_{1}, C_{3}\right)$

Seemingly independent, but we argue that one leads naturally to the other...

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change

$$
\rho_{\Lambda_{0}}-\alpha \cdot \rho_{C}=\rho_{\Lambda}
$$

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}}-\alpha \cdot \rho_{C}=\rho_{\Lambda}$

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}}-\alpha \cdot \rho_{C}=\rho_{\Lambda}$
quantum modification

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}}-\alpha \cdot \rho_{C}=\rho_{\Lambda} \longleftarrow$ modified cosmo quantum modification

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \longrightarrow \alpha \cdot \rho_{C}=\rho_{\Lambda} \longleftarrow$ modified cosmo
quantum modification

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \geq \alpha \cdot \rho_{C}=\rho_{\Lambda} \longleftarrow$ modified cosmo

quantum modification

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \longrightarrow \alpha \cdot \rho_{C}=\rho_{\Lambda} \leftarrow$ modified cosmo
quantum modification

wait ...

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \longrightarrow \alpha \cdot \rho_{C}=\rho_{\Lambda} \longleftarrow$ modified cosmo
quantum modification

wait ...

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \longrightarrow \alpha \cdot \rho_{C}=\rho_{\Lambda} \leftarrow$ modified cosmo
quantum modification
local variable

wait ...

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \longrightarrow \alpha \cdot \rho_{C}=\rho_{\Lambda} \longleftarrow$ modified cosmo
quantum modification
local variable

Hypothesis 1: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \longrightarrow \alpha \cdot \rho_{C}=\rho_{\Lambda} \longleftarrow$ modified cosmo
quantum modification

Hypothesis 1: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \longrightarrow \alpha \cdot \rho_{C}=\rho_{\Lambda} \longleftarrow$ modified cosmo
quantum modification

Hypothesis l: $H_{Q \leftrightarrow \Lambda}$

Parametrize small change
original cosmo $\longrightarrow \rho_{\Lambda_{0}} \longrightarrow \alpha \cdot \rho_{C}=\rho_{\Lambda} \longleftarrow$ modified cosmo
quantum modification

Hypothesis 2: $H_{\Lambda \leftrightarrow G}$

Hypothesis 2: $H_{\Lambda \leftrightarrow G}$

- Gravitational couplings connected?

Hypothesis 2: $H_{\Lambda \leftrightarrow G}$

- Gravitational couplings connected?

Hypothesis l\&2:

$H_{\Lambda \leftrightarrow G}$

$H_{\Lambda \leftrightarrow Q}$

Hypothesis l\&ez:

$H_{\Lambda \leftrightarrow G}$ $H_{\Lambda \leftrightarrow Q}$

On this conference seen many models that have 1 or 2 or both!

Hypothesis l\&ez:

$H_{\Lambda \leftrightarrow G}$ $H_{\Lambda \leftrightarrow Q}$

On this conference seen many models that have 1 or 2 or both!

Continue with a "minimal version" that

Hypothesis l\&\&:

$H_{\Lambda \leftrightarrow G}$ $H_{\Lambda \leftrightarrow Q}$

On this conference seen many models that have 1 or 2 or both!

Continue with a "minimal version" that

- General covariance
- Small deviation from classical GR
- Local
- 2nd order eom

SD-Framework

SD-Framework

Action for both hypothesis

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

Equations

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

Equations

$$
\frac{\delta \Gamma_{k}}{\delta g_{\mu \nu}}:
$$

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

Equations

$$
\frac{\delta \Gamma_{k}}{\delta g_{\mu \nu}}: \quad G_{\mu \nu}=8 \pi G(k) T_{\mu \nu}-\Lambda(k) g_{\mu \nu}-\Delta t_{\mu \nu}
$$

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

Equations
Derivatives of

$$
\frac{\delta \Gamma_{k}}{\delta g_{\mu \nu}}: \quad G_{\mu \nu}=8 \pi G(k) T_{\mu \nu}-\Lambda(k) g_{\mu \nu}-\Delta t_{\mu \nu}
$$

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

Equations
Derivatives of

$$
\begin{array}{ll}
\frac{\delta \Gamma_{k}}{\delta g_{\mu \nu}}: G_{\mu \nu}=8 \pi G(k) T_{\mu \nu}-\Lambda(k) g_{\mu \nu}-\Delta t_{\mu \nu} \\
\frac{\delta \Gamma_{k}}{\delta k}: & G(k(\vec{x}))
\end{array}
$$

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

Equations
Derivatives of

$$
\begin{aligned}
& \frac{\delta \Gamma_{k}}{\delta g_{\mu \nu}}: G_{\mu \nu}=8 \pi G(k) T_{\mu \nu}-\Lambda(k) g_{\mu \nu}-\Delta t_{\mu \nu} \\
& \frac{\delta \Gamma_{k}}{\delta k}: \\
& \frac{\partial \mathscr{L}_{k}}{\partial k}=0:
\end{aligned}
$$

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

Equations

$$
\begin{array}{ll}
\frac{\delta \Gamma_{k}}{\delta g_{\mu \nu}}: & G_{\mu \nu}=8 \pi G(k) T_{\mu \nu}-\Lambda(k) g_{\mu \nu}-\Delta t_{\mu \nu} \\
\frac{\delta \Gamma_{k}}{\delta k}: & \frac{\partial \mathscr{L}_{k}}{\partial k}=0: \\
\text { variational } \\
\text { scale setting }
\end{array}
$$

SD-Framework

Action for both hypothesis

$$
\Gamma_{k}=\int d^{4} x \sqrt{-g}\left(c^{4} \frac{R-2 \Lambda(k)}{16 \pi G(k)}+\mathscr{L}_{m}(\phi, k)\right)
$$

Equations

$$
\begin{aligned}
& \frac{\delta \Gamma_{k}}{\delta g_{\mu \nu}}: G_{\mu \nu}=8 \pi G(k) T_{\mu \nu}-\Lambda(k) g_{\mu \nu}-\Delta t_{\mu \nu} \\
& \frac{\delta \Gamma_{k}}{\delta k}: \\
& \frac{\partial \mathscr{L}_{k}}{\partial k}=0: \\
& \text { variational } \\
& \text { scale setting }
\end{aligned}
$$

Covariant!

SD-Framework

SD-Framework

Only interested in SD small IR modifications

SD-Framework

Only interested in SD small IR modifications

Expand:

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
G(k)=G_{0}(1+g(k))=G_{0}\left(1+C_{1} G_{0} k^{2}\right)+\ldots
$$

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
\begin{aligned}
& G(k)=G_{0}(1+g(k))=G_{0}\left(1+C_{1} G_{0} k^{2}\right)+\ldots \\
& \Lambda(k)=\Lambda_{0}(1+\lambda(k))=\Lambda_{0}\left(1+C_{3} G_{0} k^{2}\right)+\ldots
\end{aligned}
$$

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
\begin{aligned}
G(k)= & G_{0}(1+g(k))=G_{0}\left(1+C_{1} G_{0} k^{2}\right)+\ldots \\
\Lambda(k)= & \Lambda_{0}(1+\lambda(k))=\Lambda_{0}\left(1+C_{3} G_{0} k^{2}\right)+\ldots \\
& \mathscr{L}_{m}(\phi, k)=\mathscr{L}_{m, 0}(\phi)+\mathscr{L}_{m, 1}(\phi) k^{2}+\ldots
\end{aligned}
$$

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
\begin{gathered}
G(k)=G_{0}(1+g(k))=G_{0}\left(1+C_{1} G_{0} k^{2}\right)+\ldots \\
\Lambda(k)=\Lambda_{0}(1+\lambda(k))=\Lambda_{0}\left(1+C_{3} G_{0} k^{2}\right)+\ldots \\
\mathscr{L}_{m}(\phi, k)=\mathscr{L}_{m, 0}(\phi)+\mathscr{L}_{m, 1}(\phi) k^{2}+\ldots
\end{gathered}
$$

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
\begin{aligned}
G(k)= & G_{0}(1+g(k))=G_{0}\left(1+C_{1} G_{0} k^{2}\right)+\ldots \\
\Lambda(k)= & \Lambda_{0}(1+\lambda(k))=\Lambda_{0}\left(1+C_{3} G_{0} k^{2}\right)+\ldots \\
& \mathscr{L}_{m}(\phi, k)=\mathscr{L}_{m, 0}(\phi)+\mathscr{L}_{m, 1}(\phi) k^{2}+\ldots
\end{aligned}
$$

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
\begin{aligned}
G(k)= & G_{0}(1+g(k))=G_{0}\left(1+C_{1} k^{2}\right)+\ldots \\
\Lambda(k)= & \Lambda_{0}(1+\lambda(k))=\Lambda_{0}\left(1+C_{3} G\left\{\begin{array}{l}
\left.k^{2}\right)+\ldots \\
\\
\\
\mathscr{L}_{m}(\phi, k)=\mathscr{L}_{m, 0}(\phi)+\mathscr{L}_{m}(\phi) k^{2}+\ldots
\end{array}\right) H_{Q \leftrightarrow \Lambda}\right.
\end{aligned}
$$

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
\begin{aligned}
& G(k)= G_{0}(1+g(k))=G_{0}\left(1+\epsilon_{1}\right. \\
& \Lambda(k)= \Lambda_{0}(1+\lambda(k))=\Lambda_{0}(1+\ldots \\
& C_{3} G
\end{aligned}\left\{\begin{array}{l}
\left.k^{2}\right)+\ldots \\
\mathscr{L}_{m}(\phi, k)=\mathscr{L}_{m, 0}(\phi)+H_{\Lambda \leftrightarrow G} \\
(\phi) k^{2}+\ldots
\end{array}\right) H_{Q \leftrightarrow \Lambda}
$$

Theorist:
predict

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
\left.\begin{array}{rl}
G(k)= & G_{0}(1+g(k))=G_{0}\left(1+C_{1} k^{2}\right)+\ldots \\
\Lambda(k)= & \Lambda_{0}(1+\lambda(k))=\Lambda_{0}\left(1+H_{\Lambda \leftrightarrow G} G_{\{ }\right. \\
\left.k^{2}\right)+\ldots \\
\mathscr{L}_{m}(\phi, k)=\mathscr{L}_{m, 0}(\phi)+ \\
\mathscr{L}_{m}
\end{array}\right) H_{Q \leftrightarrow \Lambda}(\phi) k^{2}+\ldots,
$$

Theorist: Phenomenologist: predict use to predict

SD-Framework

Only interested in SD small IR modifications
Expand:

$$
\begin{aligned}
& \begin{array}{l}
G(k)=G_{0}(1+g(k))=G_{0}\left(1+C_{1} k^{2}\right)+\ldots \\
\Lambda(k)=\Lambda_{0}(1+\lambda(k))=\Lambda_{0}\left(1+C_{3} G k^{2}\right)+\ldots \leftrightarrow G
\end{array} \\
& \mathscr{L}_{m}(\phi, k)=\mathscr{L}_{m, 0}(\phi)+\mathscr{L}_{m}(\phi) k^{2}+\ldots H_{Q \leftrightarrow \Lambda}
\end{aligned}
$$

Theorist: Phenomenologist: Experimentalist: predict use to predict measure

SD-Casimir

SD-Casimir

- Apply to Casimir experiment:

SD-Casimir

- Apply to Casimir experiment:

Weak field and weak SD expansion...

SD-Casimir

- Apply to Casimir experiment:

Weak field and weak SD expansion...

$$
d s^{2}=-\left(1+2 \epsilon_{\Phi} \Phi(r, \theta, \phi)\right) c^{2} d t^{2}+\left(1-2 \epsilon_{\Phi} \Psi(r, \theta, \phi)\right) d r^{2}+\left(1+2 \epsilon_{\Phi} \Xi(r, \theta, \phi)\right) r^{2} d \Omega^{2}+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right)
$$

SD-Casimir

- Apply to Casimir experiment:

Weak field and weak SD expansion...

$$
\begin{aligned}
d s^{2} & =-\left(1+2 \epsilon_{\Phi} \Phi(r, \theta, \phi)\right) c^{2} d t^{2}+\left(1-2 \epsilon_{\Phi} \Psi(r, \theta, \phi)\right) d r^{2}+\left(1+2 \epsilon_{\Phi} \Xi(r, \theta, \phi)\right) r^{2} d \Omega^{2}+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right) \\
G(k) & =\epsilon_{\Phi}\left(G_{0}+\epsilon_{G} \Delta G(k)+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right)\right)
\end{aligned}
$$

SD-Casimir

- Apply to Casimir experiment:

Weak field and weak SD expansion...

$$
\begin{aligned}
d s^{2} & =-\left(1+2 \epsilon_{\Phi} \Phi(r, \theta, \phi)\right) c^{2} d t^{2}+\left(1-2 \epsilon_{\Phi} \Psi(r, \theta, \phi)\right) d r^{2}+\left(1+2 \epsilon_{\Phi} \Xi(r, \theta, \phi)\right) r^{2} d \Omega^{2}+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right) \\
G(k) & =\epsilon_{\Phi}\left(G_{0}+\epsilon_{G} \Delta G(k)+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right)\right) \\
\Lambda(k) & \rightarrow \epsilon_{\Phi} \Lambda(k)
\end{aligned}
$$

SD-Casimir

- Apply to Casimir experiment:

Weak field and weak SD expansion...

$$
\begin{aligned}
d s^{2} & =-\left(1+2 \epsilon_{\Phi} \Phi(r, \theta, \phi)\right) c^{2} d t^{2}+\left(1-2 \epsilon_{\Phi} \Psi(r, \theta, \phi)\right) d r^{2}+\left(1+2 \epsilon_{\Phi} \Xi(r, \theta, \phi)\right) r^{2} d \Omega^{2}+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right) \\
G(k) & =\epsilon_{\Phi}\left(G_{0}+\epsilon_{G} \Delta G(k)+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right)\right) \\
\Lambda(k) & \rightarrow \epsilon_{\Phi} \Lambda(k)
\end{aligned}
$$

Casimir matter modes

SD-Casimir

- Apply to Casimir experiment:

Weak field and weak SD expansion...

$$
\begin{aligned}
d s^{2} & =-\left(1+2 \epsilon_{\Phi} \Phi(r, \theta, \phi)\right) c^{2} d t^{2}+\left(1-2 \epsilon_{\Phi} \Psi(r, \theta, \phi)\right) d r^{2}+\left(1+2 \epsilon_{\Phi} \Xi(r, \theta, \phi)\right) r^{2} d \Omega^{2}+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right) \\
G(k) & =\epsilon_{\Phi}\left(G_{0}+\epsilon_{G} \Delta G(k)+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right)\right) \\
\Lambda(k) & \rightarrow \epsilon_{\Phi} \Lambda(k)
\end{aligned}
$$

Casimir matter modes

$$
\left\langle\mathscr{L}_{m_{1} 1}\right\rangle_{b_{g}}=\alpha_{1}\left\langle\frac{\left(\vec{E}^{2}-\vec{B}^{2}\right)}{2}\right\rangle_{b_{g}}+\alpha_{2} a\left\langle\left\langle\vec{E}^{2}-\vec{B}^{2}\right)^{2}\right\rangle_{b_{g}}+\cdot
$$

SD-Casimir

- Apply to Casimir experiment:

Weak field and weak SD expansion...

$$
\begin{aligned}
d s^{2} & =-\left(1+2 \epsilon_{\Phi} \Phi(r, \theta, \phi)\right) c^{2} d t^{2}+\left(1-2 \epsilon_{\Phi} \Psi(r, \theta, \phi)\right) d r^{2}+\left(1+2 \epsilon_{\Phi} \Xi(r, \theta, \phi)\right) r^{2} d \Omega^{2}+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right) \\
G(k) & =\epsilon_{\Phi}\left(G_{0}+\epsilon_{G} \Delta G(k)+\mathcal{O}\left(\epsilon_{\Phi}^{2}\right)\right) \\
\Lambda(k) & \rightarrow \epsilon_{\Phi} \Lambda(k)
\end{aligned}
$$

Casimir matter modes

$$
\begin{gathered}
\left\langle\mathscr{L}_{m_{1} 1}\right\rangle_{b g}=\alpha_{1}\left\langle\frac{\left(\vec{E}^{2}-\vec{B}^{2}\right)}{2}\right\rangle_{b_{g}}+\alpha_{2} a\left\langle\left(\vec{E}^{2}-\vec{B}^{2}\right)^{2}\right\rangle_{b g}+\cdot \\
\rho_{C}
\end{gathered}
$$

SD-Casimir

Equation(s)

SD-Casimir

Equation(s)
$\vec{\nabla}^{2} \Phi(r, \theta, \phi)=\frac{4 \pi}{c^{4}} G_{0} \rho_{M}(r, \theta, \phi)+\frac{\epsilon_{G}}{\epsilon_{\Phi}} \frac{\vec{\nabla}^{2} \Delta G(k)}{2 G_{0}}-\Lambda(k)+O\left(\epsilon_{\Phi}, \epsilon_{G}\right)$

SD-Casimir

Equation(s)

$$
\vec{\nabla}^{2} \Phi(r, \theta, \phi)=\frac{4 \pi}{c^{4}} G_{0} \rho_{M}(r, \theta, \phi)+\frac{\epsilon_{G}}{\epsilon_{\Phi}} \frac{\vec{\nabla}^{2} \Delta G(k)}{2 G_{0}}-\Lambda(k)+\dot{O}\left(\epsilon_{\Phi}, \epsilon_{G}\right)
$$

Solution

SD-Casimir

Equation(s)

$$
\vec{\nabla}^{2} \Phi(r, \theta, \phi)=\frac{4 \pi}{c^{4}} G_{0} \rho_{M}(r, \theta, \phi)+\frac{\epsilon_{G}}{\epsilon_{\Phi}} \frac{\vec{\nabla}^{2} \Delta G(k)}{2 G_{0}}-\Lambda(k)+\mathcal{O}\left(\epsilon_{\Phi}, \epsilon_{G}\right)
$$

Solution

$$
\overrightarrow{\mathscr{F}}_{G, 12}=-\overrightarrow{\mathscr{F}}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\tilde{\rho}_{M}\left(\vec{x}_{1}\right) \tilde{\rho}_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}}
$$

SD-Casimir

Equation(s)

$$
\vec{\nabla}^{2} \Phi(r, \theta, \phi)=\frac{4 \pi}{c^{4}} G_{0} \rho_{M}(r, \theta, \phi)+\frac{\epsilon_{G}}{\epsilon_{\infty}} \frac{\vec{\nabla}^{2} \Delta G(k)}{2 G_{0}}-\Lambda(k)+O\left(\epsilon_{\Phi}, \epsilon_{G}\right)
$$

Solution

$$
\begin{gathered}
\overrightarrow{\mathscr{F}}_{G, 12}=-\overrightarrow{\mathscr{F}}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\tilde{\rho}_{M}\left(\vec{x}_{1}\right) \tilde{\rho}_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}} \\
\tilde{\rho}_{M}=\rho_{m}+c^{2} \frac{\vec{\nabla}^{2} G(k)}{8 \pi G_{0}^{2}}
\end{gathered}
$$

SD-Casimir

Equation(s)

Mns

 MW wha WN$$
\vec{\nabla}^{2} \Phi(r, \theta, \phi)=\frac{4 \pi}{c^{4}} G_{0} \rho_{M}(r, \theta, \phi)+\left(\frac{\epsilon_{G}}{\epsilon_{\Phi}} \frac{\vec{\nabla}^{2} \Delta G(k)}{2 G_{0}}-\Lambda(k)+\sigma\left(\epsilon_{\Phi}, \epsilon_{G}\right)\right.
$$

Solution

$$
\begin{aligned}
& \vec{F}_{G, 12}=-\overrightarrow{\mathscr{F}}_{G, 21}=G_{0} \int_{V_{2}} d^{3} x_{2} \int_{V_{1}} d^{3} x_{1} \frac{\tilde{\rho}_{M}\left(\vec{x}_{1}\right) \tilde{\rho}_{M}\left(\vec{x}_{2}\right)\left(\vec{x}_{2}-\vec{x}_{1}\right)}{\uparrow\left|\vec{x}_{2}-\vec{x}_{1}\right|^{3}} \\
& \tilde{\rho}_{M}=\rho_{m}+c^{2} \frac{\vec{\nabla}^{2} G(k)}{8 \pi G_{0}^{2}} \\
& \vec{\nabla}^{2} G(k)=\alpha_{1} c^{2} \frac{\vec{\nabla}^{2} \rho_{C}(\vec{x})}{2 c^{4}\left(C_{1}-C_{3}\right) \Lambda_{0}}
\end{aligned}
$$

SD-Casimir

SD-Casimir

\Rightarrow Gravitational attraction between plates changes

SD-Casimir

\Rightarrow Gravitational attraction between plates changes

$$
\overrightarrow{\mathscr{F}}_{G, 12} \neq \vec{F}_{G, 12}
$$

SD-Casimir

\Rightarrow Gravitational attraction between plates changes
$x_{1} c^{2} \frac{\vec{\nabla}^{2} \rho_{C}(\vec{x})}{2 c^{4}\left(C_{1}-C_{3}\right) \Lambda_{0}} \rightarrow \overrightarrow{\mathscr{F}}_{G, 12} \neq \vec{F}_{G, 12}$

SD-Casimir

\Rightarrow Gravitational attraction between plates changes

$$
x_{1} c^{2} \frac{\vec{\nabla}^{2} \rho_{C}(\vec{x})}{2 c^{4}\left(C_{1}-C_{3}\right) \Lambda} \rightarrow \vec{F}_{G, 12} \neq \vec{F}_{G, 12}
$$

Hypothesis

can be tested by experiment:

SD-Casimir

\Rightarrow Gravitational attraction between plates changes

$$
\underbrace{\frac{\vec{\nabla}^{2} \rho_{C}(\vec{x})}{2 c^{4}\left(C_{1}-C_{3}\right) \Lambda}}_{1, c^{2}} \rightarrow \overrightarrow{\mathscr{F}}_{G, 12} \neq \vec{F}_{G, 12}
$$

Hypothesis

can be tested by experiment:

Sensitive to parameters: $\quad \alpha_{1},\left(C_{1}-C_{3}\right)$

Towards experiment

Towards experiment

Cannex approved experiment

Towards experiment

Cannex approved experiment

ref [9]

Towards experiment

Cannex approved experiment

Towards experiment

Cannex approved experiment

Towards experiment

Results (preliminary toy estimate):

Towards experiment

Results (preliminary toy estimate):

$$
\frac{\mathscr{F}_{12}-F_{12}}{F_{12}} \ll 1
$$

Towards experiment

Results (preliminary toy estimate):

$$
\frac{\mathscr{F}_{12}-F_{12}}{F_{12}} \ll 1
$$

Towards experiment

Results (preliminary toy estimate):

$$
\frac{\mathscr{F}_{12}-F_{12}}{F_{12}} \ll 1
$$

Corrections tend to be very large, thus coefficient has to be very small

Towards experiment

Results (preliminary toy estimate):

$$
\frac{\mathscr{F}_{12}-F_{12}}{F_{12}} \ll 1
$$

Corrections tend to be very large, thus coefficient has to be very small

$$
\frac{\alpha_{1}}{C_{1}-C_{3}} \ll 10^{-32}
$$

Take home message I

$$
H_{\Lambda \leftrightarrow G} \quad H_{Q \leftrightarrow \Lambda}
$$

Take home message I

$$
\begin{aligned}
& H_{\Lambda \leftrightarrow G} \quad H_{Q \leftrightarrow \Lambda} \\
& \text { Covariant implementation } \\
& \text { in SD framework }
\end{aligned}
$$

Take home message I

$$
H_{\Lambda \leftrightarrow G} \quad H_{Q \leftrightarrow \Lambda}
$$

Covariant implementation in SD framework

Corrections to the Newton potential tend to be big in our implementation

Take home message I

$$
H_{\Lambda \leftrightarrow G} \quad H_{Q \leftrightarrow \Lambda}
$$

Covariant implementation in SD framework

Corrections to the Newton potential tend to be big in our implementation

$$
\text { Unless, }\left|\frac{\alpha_{1}}{C_{1}-C_{3}}\right| \text { is small }
$$

Take home message I

$$
H_{\Lambda \leftrightarrow G} \quad H_{Q \leftrightarrow \Lambda}
$$

Covariant implementation in SD framework

Corrections to the Newton potential tend to be big in our implementation

$$
\text { Unless, }\left|\frac{\alpha_{1}}{C_{1}-C_{3}}\right| \text { is small }
$$

Take home message II

$$
H_{\Lambda \leftrightarrow G} \quad H_{Q \leftrightarrow \Lambda}
$$

Take home message II

$$
H_{\Lambda \leftrightarrow G} \text { withe test }
$$

Take home message II

Expect same, or similar effects, for all implementations
(your model?)

Take home message II

Expect same, or similar effects, for all implementations
(your model?)

Under construction

Under construction

- Comparison with quantum gravity benchmarks

Under construction
 CONSTRUCTION

- Comparison with quantum gravity benchmarks

	B_{1}	B_{2}	B_{3}
N_{S}	0	0	4
N_{D}	0	1	12
N_{V}	0	1	12
C_{1}	$-15 /(16 \pi)$	$-4 / \pi$	$-11 /(2 \pi)$
C_{3}	$-15 /(16 \pi)$	$-3 /(2 \pi)$	$-3 / \pi$
$C_{1} /\left(C_{1}-C_{3}\right)$	∞	1.6	2.2

Under construction

- Comparison with quantum gravity benchmarks

Under construction

- Comparison with quantum gravity benchmarks
- More realistic simulation for Cannex

Under construction

- Comparison with qu
- More realistic simul

testable α
-1×10^{-29}
-3×10^{-30}
-1×10^{-31}
-3×10^{-32}
-1×10^{-33}
-3×10^{-34}
-1×10^{-35}
-3×10^{-36}
-3×10^{-36}

Under construction

- Comparison with quantum gravity benchmarks
- More realistic simulation for Cannex

Under construction UNDER
 constiduction

- Comparison with quantum gravity benchmarks
- More realistic simulation for Cannex
- Simulation for existing experiments

Under construction UNDIDR
 COMSTRUCTION

- Comparison with quantum gravity benchmarks
- More realistic simulation for Cannex
- Simulation for existing experiments
- Implications for the CCP, (more to be said)

Under construction UNDIDR
 COMSTRUCTION

- Comparison with quantum gravity benchmarks
- More realistic simulation for Cannex
- Simulation for existing experiments
- Implications for the CCP, (more to be said)

Thank You!

Some References

0) F. Canales, B. Koch, C. Laporte, A. Rincon JCAP no1 26, 2020
1) E. Hubble, Proceedings of the National Academy of Sciences of USA, Volume 15, Issue 3, pp. 168-173
2) Supernova Search Team (A. G. Riess (UC, Berkeley, Astron. Dept.) et al.). May 1998. 36 pp Published in Astron.J. 116 (1998) 1009-1038
3) R. J. Adler, B. Casey and O. C. Jacob, Am. J. Phys. 63, 620 (1995);
H. Martel, P. R. Shapiro and S. Weinberg, Astrophys. J. 492, 29 (1998);
S. Weinberg, Rev. Mod. Phys. 61, 1 (1989);
J. Martin Comptes Rendus Physique 13 (2012) 566-665.
4) M. Reuter, F. Saueressig, Phys.Rev. D65 (2002) 065016; and many others
5) e.g. M. Niedermaier and M. Reuter, Living Rev. Rel. 9, 5 (2006)
6) S.J. Brodsky and R. Shrock, Proc. Nat. Acad.Sci. 108, 45 (2011)
7) H. Fritzsch, Nucl. Phys. Proc. Suppl. 203-204, 3 (2010)
8) B.K., P. Rioseco, Carlos Contreras, PRD 91 (2015) no2, 025009.
9) R. Sedmik, M.Pitschann, Universe, 7, 234, (2021)
10) G. Bimonte, B. Spreng, P. A. Maia Neto, G.-L. Ingold, G. L. Klimchitskaya, V. M. Mostepanenko, and R. S. Decca, Universe 7, 93 (2021).
B. V. Derjaguin, I. I. Abrikusova, and F. M. T.ifshit., Q. Rev. Chem. Soc. 10, 295 (1956)
S. I.amoreaux, Phys. Rev. Ietl. 78, 5 (1997).
U. Mohideen and A. Koy, Phys. Rev. Lett. 81, 4549 (1998)
A. Roy, C.-Y. Lin, and U. Mohideen, Phys. Rev. D 60, 111101 (1999)
G. Bressi, G. Carugnon, R. Onolfio, and G. Ruoso, Phys. Rev. Iell. 88, 041804 (2002).
R. S. Decea, D. López, E. Fischbach, and D. E. Krause, Phys. Rev. Lett. 91, 050402 (2003).
J. M. Obrecht, R. J. Wilil, M. Anteza, I. P. Pitaevskii, S. Stringari, and F. A. Carnell, Physical Review Ietlers 98, 063201 (2007).
H. B. Chan, Y. Bao, J. Zou, K. A. Cirelli, F. Klemens, W. M. Mansfield, and C. S. Pai, Physical Review Letters 101, 030401 (2008).
W. J. Kim, A. O. Sushkov, D. A. R. Dalvit, and S. K. Lamoreaux, Phys. Rcv. Lctt. 103, 060401 (2009).
P. Zuurbier, S. de Man, G. Gruca, K. Heeck, and D. Iannuzzi, New Journal of Physics 13, 023027 (2011), ISSN $1367-2630$.
R. H. Schafer, Ph.D. thesis, UC. Riverside (2020).

Backup

Interpretation

$$
\alpha \frac{C_{1}}{C_{1}-C_{3}} \ll 10^{-32}
$$

Interpretation

$$
\alpha \frac{C_{1}}{C_{1}-C_{3}} \ll 10^{-32}
$$

A. ρ_{Q} contribution to ρ_{Λ} strongly suppressed $(\alpha \ll 1)$

Interpretation

$$
\alpha \frac{C_{1}}{C_{1}-C_{3}} \ll 10^{-32}
$$

A. ρ_{Q} contribution to ρ_{Λ} strongly suppressed $(\alpha \ll 1)$ B. $\Lambda(k)$ has very weak $R G$ coupling to $G(k)$

Interpretation

$$
\alpha \frac{C_{1}}{C_{1}-C_{3}} \ll 10^{-32}
$$

A. ρ_{Q} contribution to ρ_{Λ} strongly suppressed $(\alpha \ll 1)$
B. $\Lambda(k)$ has very weak RG coupling to $G(k)$
C. Effective Einstein equations have additional fields, contributions, stuff, leading to cancellations...

Interpretation

$$
\alpha \frac{C_{1}}{C_{1}-C_{3}} \ll 10^{-32}
$$

A. ρ_{Q} contribution to ρ_{Λ} strongly suppressed $(\alpha \ll 1)$
B. $\Lambda(k)$ has very weak RG coupling to $G(k)$
C. Effective Einstein equations have additional fields, contributions, stuff, leading to cancellations...
For each interpretation many possible subcategories, e.g.

Interpretation

$$
\alpha \frac{C_{1}}{C_{1}-C_{3}} \ll 10^{-32}
$$

A. ρ_{Q} contribution to ρ_{Λ} strongly suppressed $(\alpha \ll 1)$
B. $\Lambda(k)$ has very weak $R G$ coupling to $G(k)$
C. Effective Einstein equations have additional fields, contributions, stuff, leading to cancellations...
For each interpretation many possible subcategories, e.g.
B. 1. Λ is not a coupling but a field
2. G is not a coupling but a field
3. RG group is not universal
4. Hierarchy in QG parameters: $C_{3} \gg C_{1}$
5. ...

Interpretation

A: $(\alpha \ll 1)$

Interpretation

A: $(\alpha \ll 1)$

Implications for the CCP

Interpretation

A: $(\alpha \ll 1)$

 Implications for the CCP$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z} .
\end{array}\right.
$$

Interpretation

A: $(\alpha \ll 1)$ Implications for the CCP

$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z} .
\end{array}\right.
$$

Problem comes from the ambition

Interpretation

A: $(\alpha \ll 1)$

 Implications for the CCP$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z} .
\end{array}\right.
$$

Problem comes from the ambition

$$
\rho_{\Lambda}=\Upsilon\left(\rho_{Q}\right) \cdot \rho_{Q}
$$

Interpretation

A: $(\alpha \ll 1)$

 Implications for the CCP$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cl}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

Problem comes from the ambition

$$
\rho_{\Lambda}=\Upsilon\left(\rho_{Q}\right) \cdot \rho_{Q}
$$

Casimir can contribute to both

Interpretation

A: $(\alpha \ll 1)$

 Implications for the CCP$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0} \mathbb{}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

Problem comes from the ambition

$$
\rho_{\Lambda}=1\left(\rho_{Q}\right) \cdot \rho_{Q}
$$

Casimir can contribyte to both

Interpretation

A: $(\alpha \ll 1)$

 Implications for the CCP$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0} \mathbb{K}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cl}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z} .
\end{array}\right.
$$

Problem comes from the ambition

$$
\rho_{\Lambda}=\lambda\left(\rho_{Q}\right) \cdot \rho_{Q}
$$

Casimir can contribyte to both

$$
\rho_{\Lambda}=\rho_{\Lambda_{0}}-\alpha \cdot \rho_{C}
$$

Interpretation

A: $(\alpha \ll 1)$

 Implications for the CCP$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0} \mathbb{R}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cl}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

Problem comes from the ambition

$$
\rho_{\Lambda}=1\left(\rho_{Q}\right) \cdot \rho_{Q}
$$

Casimir can contribyte to both

$$
\begin{gathered}
\rho_{\Lambda}=\rho_{\Lambda_{0}}-\alpha \cdot \rho_{C} \\
\text { hypothesis, }
\end{gathered}
$$

Interpretation

A: $(\alpha \ll 1)$

 Implications for the CCP$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0} \mathbb{R}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cl}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

Prpblem comes from the ambition

$$
\rho_{\Lambda}=\lambda\left(\rho_{Q}\right) \cdot \rho_{Q}
$$

Casimir can contribyte to both

$$
\rho_{\Lambda}=\rho_{\Lambda_{0}}-\alpha \cdot \rho_{C}
$$

hypothesis,

Interpretation

A: $(\alpha \ll 1)$

 Implications for the CCP$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0} \mathbb{R}}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

Prpblem comes from the ambition

$$
\rho_{\Lambda}=\lambda\left(\rho_{Q}\right) \cdot \rho_{Q}
$$

Casimir can contribste to both

$$
\rho_{Q}=\rho_{Q, 0}+\beta \cdot \rho_{C} \quad \rho_{\Lambda}=\rho_{\Lambda_{0}}-\alpha \cdot \rho_{C}
$$

hypothesis,

Interpretation

A: $(\alpha \ll 1)$ Implications for the CCP

$$
\Upsilon_{0} \equiv \frac{\rho_{\Lambda_{0}} \mathbb{K}}{\rho_{Q, 0}(\kappa)}=\frac{\Lambda_{0} c^{3} \hbar^{3}}{8 \pi G_{0} \kappa_{0}^{4}}=\left\{\begin{array}{cc}
10^{-121} & \text { for } \kappa_{0}=c \sqrt{\frac{c \hbar}{G_{0}}} \\
10^{-55} & \text { for } \kappa_{0}=c m_{Z}
\end{array}\right.
$$

Prpblem comes from the ambition

$$
\rho_{\Lambda}=l\left(\rho_{Q}\right) \cdot \rho_{Q}
$$

Casimir can contribyte to both

$$
\rho_{Q}=\rho_{Q, 0}+\beta \cdot \rho_{C} \quad \rho_{\Lambda}=\rho_{\Lambda_{0}}-\alpha \cdot \rho_{C}
$$

Should be $\beta=1$, or 0
hypothesis,
but who knows ... ${ }^{29}$

Interpretation

A: $(\alpha \ll 1)$

Implications for the CCP

Interpretation

A: $(\alpha \ll 1)$

Implications for the CCP
Look at changes of the CCP

Interpretation

A: $(\alpha \ll 1)$
Implications for the CCP
Look at changes of the CCP

$$
\left.\Upsilon_{0}^{\prime} \equiv \frac{d \Upsilon\left(\rho_{Q}\right)}{d \rho_{C}}\right|_{\rho_{C}=0}
$$

Interpretation

A: $(\alpha \ll 1)$ Implications for the CCP
Look at changes of the CCP

Find

$$
\left.\Upsilon_{0}^{\prime} \equiv \frac{d \Upsilon\left(\rho_{Q}\right)}{d \rho_{C}}\right|_{\rho_{C}=0}
$$

Interpretation

A: $(\alpha \ll 1)$ Implications for the CCP
Look at changes of the CCP

Find

$$
\begin{gathered}
\left.\Upsilon_{0}^{\prime} \equiv \frac{d \Upsilon\left(\rho_{Q}\right)}{d \rho_{C}}\right|_{\rho_{C}=0} \\
\alpha=\Upsilon_{0}^{\prime}+\beta \Upsilon_{0}
\end{gathered}
$$

Interpretation

A: $(\alpha \ll 1)$
Implications for the CCP
Look at changes of the CCP

Find

$$
\left.\Upsilon_{0}^{\prime} \equiv \frac{d \Upsilon\left(\rho_{Q}\right)}{d \rho_{C}}\right|_{\rho_{C}=0}
$$

Measuring α

$$
\alpha=\Upsilon_{0}^{\prime}+\beta \Upsilon_{0}
$$

$$
\Rightarrow
$$

Measure changes in CCP

ρ_{Q} Puzzle

Problem as a ratio:

ρ_{Q} Puzzle

Problem as a ratio:

$$
\sim \ln \left(\frac{\kappa^{4}}{\rho_{\Lambda_{0}}}\right)
$$

ρ_{Q} Puzzle

Problem as a ratio: $\ln _{10}$ (ratio) $\sim \ln \left(\frac{\kappa^{4}}{\rho_{\Lambda_{0}}}\right)$

ρ_{Q} Puzzle

Problem as a ratio: $\ln _{10}$ (ratio) 120
100
8

ρ_{Q} Puzzle

ρ_{Q} Puzzle

Problem as a ratio: $\ln _{10}$ (ratio) $\sim \ln$ $\ln \left(\frac{\kappa^{4}}{\rho_{\Lambda_{0}}}\right)$人

ρ_{Q} Puzzle

Problem as a ratio: $\ln _{10}$ (ratio)

ρ_{Q} Puzzle

Problem as a ratio: $\ln _{10}$ (ratio)

ρ_{Q} Puzzle

Problem as a ratio: $\ln _{10}$ (ratio)

ρ_{Q} Puzzle

Problem as a ratio: $\ln _{10}$ (ratio)

ρ_{Q} Puzzle

Big theoretical puzzle
Problem as a ratio: $\ln _{10}$ (ratio)

