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H . Is the cosmological constant related
A-G 2
to Newtons constant? (C;, C;)

Seemingly independent, but
we argue that one leads naturally to the other...




Hypothesis 1:H, 5




Hypothesis 1:H,.

Parametrize small change




Hypothesis 1:H,.

Parametrize small change

e O fl R L




Hypothesis 1:H,.

Parametrize small change

original cosmo — PA, ~ @ " Pc = Pa




Hypothesis 1:H,.

Parametrize small change

goriginal et O\ T X Do DR

quantum modification




Hypothesis 1:H,.

Parametrize small change

original cosmo — P, ; Pc = Pa+ modified cosmo

quantum modification




Hypothesis 1:H,.

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification




Hypothesis 1:H,.

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification

How are they related?

Po PA

N




Hypothesis 1:H,.

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification

How are they related?

Po PA

N




Hypothesis 1:H,.

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification

How are they related?

/’Q(y) PA

N




Hypothesis 1:H,.

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification

How are they related?

local variable




Hypothesis 1:H,.

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification

How are they related?

local variable




Hypothesis 1:H,.

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification

How are they related?

universal
constant

local variable




Hypothesis 1:H;. 5

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification

How are they related? wait ...

universal
constant

local variable




Hypothesis 1:H;. 5

Parametrize small change

\

original cosmo — P, ~ ; Pc = Pa+ modified cosmo

quantum modification

How are they related? wait ...

universal

constant
.~ local variable
’ need variable,

pA(7)9 A(?)/ bisi2




Hypothesis g&:H, ..




Hypothesis «:H,

e Gravitational couplings connected?




Hypothesis «:H,_.

e Gravitational couplings connected?




Hypothesis 1&e2:

My,
HA<—>G AeQ




Hypothesis 1&e2:

HA<—>G HA<—>Q

On this conference seen many models
that have 1 or 2 or both!




Hypothesis 1&e2:

HA<—>G HA<—>Q

On this conference seen many models
that have 1 or 2 or both!

Continue with a “minimal version” that




Hypothesis 1&e2:

HA<—>G HA<—>Q

On this conference seen many models
that have 1 or 2 or both!

Continue with a “minimal version” that

e General covariance

e Small deviation from classical GR
e [ ocal

e 2nd order eom
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B. A(k) has very weak RG coupling to G(k)

C. Effective Einstein equations have additional fields,
contributions, stuff, leading to cancellations...

For each interpretation many possible subcategories, e.g.
: B 1. Aisnota coupling but a field

2. G isnot a coupling but a field
. RG group is not universal
. Hierarchy in QG parameters: C; > C,
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