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Casimir effect

Predicted 1948

ρC = −
ℏπ2

720a4

⇒
FQ

A
≈ ρQ ⋅ a

Observed 1997
ref [10]
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·a ≠ 0

S. Perlmutter, A. Riess, B. Schmidt,  & others
measurements:

··a > 0 ⇒ Λ > 0 !
1998

ref [2]

NP 2011
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Big theoretical puzzle

In short QFT with cutoff ρQ ∼ cκ4
0 /ℏ3

As ratio

Unsolved - experimental input needed!

Many solutions - experimental input needed!
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Two hypothesis
HQ↔Λ : Are the cosmogical vacuum and


the laboratory vacuum related? ( )α1

HΛ↔G : Is the cosmological constant related

to Newtons constant? ( )C1, C3

Seemingly independent, but 

we argue that one leads naturally to the other…
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wait …

ρQ( ⃗x )

local variable

= cte .
universal 

constant

need variable, 

, …ρΛ( ⃗x ), Λ( ⃗x )

Parametrize small change
ρΛ0

− α ⋅ ρC = ρΛoriginal cosmo

quantum modification

modified cosmo

HQ↔Λ
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Hypothesis 1&2:

1414

HΛ↔G HΛ↔Q
On this conference seen many models


that have 1 or 2 or both!

Continue with a “minimal version” that

• General covariance

• Small deviation from classical GR

• Local

• 2nd order eom
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Γk = ∫ d4x −g (c4 R − 2Λ(k)
16πG(k)

+ ℒm(ϕ, k))

Gμν = 8πG(k)Tμν − Λ(k)gμν−Δtμν

Equations Derivatives of

G (k( ⃗x ))δΓk

δgμν
:

δΓk

δk
: ∂ℒk

∂k
= 0 :

variational

scale setting

Covariant!
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Expand:

Only interested in SD small IR modifications

G(k) = G0(1 + g(k)) = G0 (1 + C1G0 k2) + …

Λ(k) = Λ0(1 + λ(k)) = Λ0 (1 + C3G0 k2) + …

ℒm(ϕ, k) = ℒm,0(ϕ) + ℒm,1(ϕ) k2 + …

Theorist:

predict

Phenomenologist:

use to predict

Experimentalist:

measure

HΛ↔G

HQ↔Λ
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G(k) = ϵΦ (G0 + ϵGΔG(k) + 𝒪(ϵ2
Φ))

Λ(k) → ϵΦΛ(k)

Casimir matter modes
⟨ℒm,1⟩bg = α1 ⟨ ( ⃗E 2 − ⃗B 2)

2 ⟩
bg

+ α2a ⟨( ⃗E 2 − ⃗B 2)2⟩bg
+ ·

• Apply to Casimir experiment:
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Casimir matter modes
⟨ℒm,1⟩bg = α1 ⟨ ( ⃗E 2 − ⃗B 2)

2 ⟩
bg

+ α2a ⟨( ⃗E 2 − ⃗B 2)2⟩bg
+ ·
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Equation(s)

⃗∇2Φ(r, θ, ϕ) =
4π
c4

G0ρM(r, θ, ϕ) +
ϵG

ϵΦ

⃗∇2ΔG(k)
2G0

− Λ(k) + 𝒪(ϵΦ, ϵG)

Solution

⃗ℱ G,12 = − ⃗ℱ G,21 = G0 ∫V2

d3x2 ∫V1

d3x1
ρ̃M ( ⃗x 1) ρ̃M ( ⃗x 2) ( ⃗x 2 − ⃗x 1)

| ⃗x 2 − ⃗x 1 |3

⃗∇2G(k) = α1c2
⃗∇2ρC( ⃗x )

2c4(C1 − C3)Λ0

SD-Casimir

ρ̃M = ρm + c2
⃗∇2G(k)

8πG2
0
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⃗ℱ G,12 ≠ ⃗F G,12α1c2
⃗∇2ρC( ⃗x )

2c4(C1 − C3)Λ0

⇒ Gravitational attraction between plates changes

Hypothesis 

can be tested by experiment:

SD-Casimir

Sensitive to parameters: α1, (C1 − C3)



Towards experiment

2020



Towards experiment

2020

Cannex approved experiment



ref [9]

Towards experiment

2020

Cannex approved experiment



ref [9]

Towards experiment

2020

Cannex approved experiment



ref [9]

Towards experiment

2020

Cannex approved experiment



Towards experiment

2121

Results (preliminary toy estimate):



Towards experiment

2121

Results (preliminary toy estimate):

ℱ12 − F12

F12
≪ 1



Towards experiment

2121

Results (preliminary toy estimate):

ℱ12 − F12

F12
≪ 1



Towards experiment

2121

Results (preliminary toy estimate):

ℱ12 − F12

F12
≪ 1

Corrections tend to be very large,

thus coefficient has to be very small



Towards experiment

2121

Results (preliminary toy estimate):

ℱ12 − F12
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≪ 1

α1

C1 − C3
≪ 10−32

Corrections tend to be very large,

thus coefficient has to be very small



Take home message I

2222

HQ↔ΛHΛ↔G



Take home message I

2222

HQ↔ΛHΛ↔G

Covariant implementation

in SD framework



Take home message I

2222

Corrections to the Newton potential

tend to be big in our implementation

HQ↔ΛHΛ↔G

Covariant implementation

in SD framework



Take home message I

2222

Corrections to the Newton potential

tend to be big in our implementation

Unless,  is small 
α1

C1 − C3

HQ↔ΛHΛ↔G

Covariant implementation

in SD framework



Take home message I

2222

Corrections to the Newton potential

tend to be big in our implementation

Unless,  is small 
α1

C1 − C3

HQ↔ΛHΛ↔G

Will b
e tested!

Covariant implementation

in SD framework



Take home message II

2323

HQ↔ΛHΛ↔G



Take home message II

2323

HQ↔ΛHΛ↔G

Will b
e tested!



Take home message II

2323

HQ↔ΛHΛ↔G

Will b
e tested!

Expect same, or similar effects,

for all implementations 


(your model?)



Take home message II

2323

HQ↔ΛHΛ↔G

Will b
e tested!

Expect same, or similar effects,

for all implementations 


(your model?)



Under construction

2424



Under construction

2424

• Comparison with quantum gravity benchmarks



Under construction

2424

• Comparison with quantum gravity benchmarks



Under construction

2424

• Comparison with quantum gravity benchmarks



Under construction

2424

• More realistic simulation for Cannex

• Comparison with quantum gravity benchmarks



Under construction

2424

• More realistic simulation for Cannex

• Comparison with quantum gravity benchmarks



Under construction

2424

• More realistic simulation for Cannex

• Comparison with quantum gravity benchmarks



Under construction

2424

• More realistic simulation for Cannex

• Comparison with quantum gravity benchmarks

• Simulation for existing  experiments



Under construction

2424

• More realistic simulation for Cannex

• Comparison with quantum gravity benchmarks

• Simulation for existing  experiments

• Implications for the CCP, (more to be said)



Under construction

2424

• More realistic simulation for Cannex

• Comparison with quantum gravity benchmarks

• …

• Simulation for existing  experiments

• Implications for the CCP, (more to be said)
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α
C1

C1 − C3
≪ 10−32

For each interpretation many possible subcategories, e.g.
1.  is not a coupling but a field

2.  is not a coupling but a field

3. RG group is not universal

4. Hierarchy in QG parameters: 
5. …

Λ
G

C3 ≫ C1

B.

A.  contribution to  strongly suppressed ρQ ρΛ (α ≪ 1)
B.  has very weak RG coupling to Λ(k) G(k)
C.  Effective Einstein equations have additional fields,

     contributions, stuff, leading to cancellations…
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A: (α ≪ 1)
Implications for the CCP

Problem comes from the ambition
ρΛ = Υ(ρQ) ⋅ ρQ,

Casimir can contribute to both
ρΛ = ρΛ0

− α ⋅ ρCρQ = ρQ,0 + β ⋅ ρC

hypothesis,

α

Should be , or 0

but who knows …

β = 1
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A: (α ≪ 1)
Implications for the CCP

Look at changes of the CCP

Υ′￼0 ≡
dΥ(ρQ)

dρC
ρC=0Find

α = Υ′￼0 + β Υ0

Measuring 

Measure changes in CCP

α
⇒
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 PuzzleρQ
Big theoretical puzzle


