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CPTM symmetry: doubling of degrees of freedom

• Consider two manifolds, A-manifold and B-manifold, with coordinates x and x̃

related by CPTM symmetry provided by CPTM transform:

q → − q̃ , r → − r̃ t → − t̃ ,mgrav → − m̃grav ,minertial → m̃inertial

q̃ , r̃ , t̃ , m̃grav > 0

CPTM(gµν(x)) = g̃µν(x̃) = gµν(x̃)

The transform relates the Eddington–Finkelstein (Kruskal–Szekeres) coordinates of

the I and III regions of the Schwarzschild spacetime:

U = − e−u/4M → Ũ = e−ũ/4M̃ = −U , V = ev/4M → Ṽ = − eṽ/4M̃ = −V

T =
1

2
(V + U ) → −T , R =

1

2
(V − U ) → −R

The CC assumed to arise as a result of interaction between the manifolds, it’s

value can be different for two manifolds but related by the CPTM symmetry:

CPTM(Λ) = Λ̃ , CPTM(gµν(x,Λ)) = g̃µν(x̃, Λ̃)
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Quantized scalar field: short example

• Consider a scalar field undergoes the CPTM transform:

CPTM(φ(x)) = CPTM

(∫

d3 k

(2π)3/2
√
2ωk

(

φ−(k) e−ı k x + φ+(k) eı k x
)

)

=

= φ̃(x̃) =

∫

d3 k

(2π)3/2
√
2 ω̃k

(

φ̃−(k) eı k x̃ + φ̃+(k) e−ı k x̃
)

and






φ−(k) ↔ φ̃−(k)

φ+(k) ↔ φ̃+(k)
→







[ φ̃−(k) φ̃+(k
′

) ] = δ3
k k

′

< φ̃+(k) φ̃−(k
′

) >= − δ3
k k

′







< 0|φ+ = 0

φ+ |0 > 6= 0

CPTM↔







φ̃+ |0 >= 0

< 0| φ̃+ 6= 0
;







< 0|φ− 6= 0

φ− |0 >= 0

CPTM↔







φ̃− |0 > 6= 0

< 0| φ̃− = 0

The results:

< Pµ > =

∫

d3 k k µ
(

< φ+(k)φ−(k) > + < φ̃−(k) φ̃+(k) >
)

= 0

CPTM(GF (x, y)) = −GD(x̃, ỹ)
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A and B spinors in an external gravity field

• Lagrangian of extended manifold:

L = LA + LB = LA + CPT M(LA) = LA + ψB (ıγa(−Eµ
a )∂µ +m) ψB =

= LA − ψB (ıγa(Eµ
a )∂µ −m) ψB

Gravity field is included with ”negative” vierbein transform (e, E)A → − (e, E)B :

ωcab → ωcab , Dµ → Dµ = ∂µ +
1

8
ωµab [γ

aγb]

S = SA + SB =

∫

d4xA eA ψA ( ı Eµ
c γ

cDµ − m ) ψA −

−
∫

d4xB eB ψB ( ı Eµ
c γ

cDµ − m ) ψB

We consider the linearized theory with symmetrical graviton:

ωcab = ∂c (e1 ab − e1 ba) − ∂a (e1 cb + e1 bc) + ∂b (e1 ca + e1 ac)

scb =
1

2
( e1 cb + e1 bc) , scb = sbc
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Quantization of B-spinor field

• The B-spinor field in this case is a replica of the A-field:

ψ(x)2B =

∫

d3p

(2π)3/2
1√
2Ep

∑

s

((

M̂asp

)

us(p) e−ı px +
(

M̂bs †
p

)

vs(p) eı px
)

with







M̂ asp = csp ↔ asp

M̂ bsp = dsp ↔ bsp
→







{ arp as†k } → { crp cs†k } = − δ3p k δ
rs , < 0|crp = 0

{ brp bs†k } → { drp ds†k } = − δ3p k δ
rs , < 0|drp = 0

and

Pµ =
∑

s

∫

d3k kµ
(

as†p a
s
p + bs†p b

s
p + cspc

s†
p + dspd

s†
p

)

, < 0|Pµ |0 >= 0

Quantum propagator for B-spinor field is again the Dyson’s one:

S̃F (x− y) = −
(

ı∂̂x + m
)

∫

d4k

(2π)4
e−ı k (x−y)

k2 − m2 − ıε

(

ı ∂̂x − m
)

S̃F (x, y) = − δ4(x− y)
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One loop effective action for A,B-manifolds

• The effective action construction:

ψA,B → ψA,B cl + χA,B .

For the weak gravity limit

sab = sab − 1

2
ηab s , ∂a s

a
b = 0

Tadpole contributions to Γ effective action or vacuum contributions to

momentum-energy tensor (Euclidean space):

Γ1 = ı SE
FR(0)

∫

d4x
(

−ı (δ µ
c ∂µs − ηµν∂µscν) γ

c +
ı

2
(∂bs ca − ∂as cb) γ

c γa γb −ms
)

Γ1(pf ) = − 4 ım2GE
Sc.Reg.(0)

∫

d4x s(x)

Γ1A + Γ1B = 0

Two-legs contributions to Γ or tadpole contributions to momentum-energy tensor

Γ2A + Γ2B = 0
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One-loop spinor and gravity actions together:

• One-loop spinor action:

Γ(ψ,ψ, s) = ΓA(ψA, ψA, s) + ΓB(ψB , ψB , s) =

=

∫

d4xA ψAM1(xA)ψA −
∫

d4xB ψB M1(xB)ψB −

−
∫

d4xA d
4yA ψA(xA)M1(xA)SF (xA, yA)M1(yA)ψA(yA) −

−
∫

d4xB d4yB ψB(xB)M1(xB)SD(xB , yB)M1(yB)ψB(yB)

Gravity action:

Sgr = −m2
p

∫ ∞

−∞

dtA

∫

d3x
√
−gAR(x)−m2

p

∫ ∞

−∞

dtB

∫

d3x
√
−gB R(x)

with

m2
p =

1

16πG
=

2

κ2
, gB(xB) = CPTM (gA(xA))

General action:

S = Γ(ψ,ψ, s) + Sgr
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General set-up for the gravity field:

• Weak gravity limit, mostly general set-up:

gAµν(x) = gA 0
µν (x) + hAµν(x) ;

gBµν(y) = gB 0
µν (y) + hBµν(y) ; .

hµν = hµν − 1

2
ηµν h , ∂µ h

µ
ν = 0 ,

Γ =
m2

p

4

∫

d4xh
µν
A G−1

A h
A
µν +

m2
p

4

∫

d4xh
µν
B G−1

B h
B
µν +

∫

d4xh
µν
A Tµν A +

+

∫

d4xh
µν
B Tµν B + ηµν

∫

d4xh
µν
A Λ0A + ηµν

∫

d4xh
µν
B Λ0B −

− 1

2

∫

d4x

∫

d4y h
µν
A (x)M1AA

µν ρσ h
ρσ
A (y) − 1

2

∫

d4x

∫

d4y h
µν
B (x)M1BB

µν ρσ h
ρσ
B (y) −

− 1

2

∫

d4x

∫

d4y h
µν
A (x)M1AB

µν ρσ h
ρσ
B (y) − 1

2

∫

d4x

∫

d4y h
µν
B (x)M1BA

µν ρσ h
ρσ
A (y)

The M1 IJ
µν ρσ(ψ,ψ) here are vertices of effective interaction between I = A,B and

J = A,B gravity fields. The cosmological constants ΛA,B appears here as some

terms in the effective action. CC smallness – p. 9



General set-up: propagators and dark matter

• Green’s function of the framework:

m2
p

2





G−1
A − 2

m2
p
M AA

1 − 2
m2

p
M AB

1

− 2
m2

p
M BA

1 G−1
B − 2

m2
p
M BB

1









GAA GAB

GBA GBB



 = I

The GAB and GBA propagators here are analog of the Wightman propagators

S> and S< in the Schwinger-Keldysh technique. The Green’s function for

A-manifold:

G−1
A G0AA =

2

m2
p

δAA , G
−1
B G0BA = 0 , G−1

A G0AB = 0 ;

GAA = G0AA +

∫

G0AAM
1AAGAA +

∫

G0AAM
1AB GBA +

+

∫

G0AB M1BAGAA +

∫

G0AB M1BB GBA .

The propagator is modified-”dark” matter effect. The gravitational field:

hI = h0 I − 2

m2
p

∫

GIJ
δ Γint

δhJ
+ ξI ; G−1

I h0 I = 0 ; I, J = A,B .
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Cosmological constant appearance: first variant

• We have to define the connection between s and h fields. In an analog of the

Schwinger-Keldysh like formulation:

gA,B
µν (x) = gA,B 0

µν (x) + hA,B
µν (x) , sA =

hA

2
, sB =

hB

2

To leading order precision CC is:

ΛA =
1

m2
p

δ Γ

δ hA

∣

∣

∣

∣

hA =0

=
m

4m2
p

ψA ψA , ΛB =
1

m2
p

δ Γ

δ hB

∣

∣

∣

∣

hB =0

= − m

4m2
p

ψB ψB

mψA,B ψA,B =
(

T µ
0µ

)

A,B

The one loop-contributions in this case are not fully canceled:

sA =
hA

2
=

1

2
h0A −

∫

GAA Λ0A + · · ·

sB =
hB

2
=

1

2
h0B −

∫

GBB Λ0B + · · ·

even for h0A = h0B , to next order the fields are not the same.
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Cosmological constant appearance: second variant

• Vierbein gravity fields are the same for the matter fields:

gA,B
µν (x) = gA,B 0

µν (x) + hA,B
µν (x) , sµν =

1

2
hµν =

1

4

(

h
A
µν + h

B
µν

)

with action:

Γ =
m2

p

4

∫

d4xh
µν
A G−1

AA h
A
µν +

m2
p

4

∫

d4xh
µν
B G−1

BB h
B
µν +

∫

d4xh
µν
A Tµν A +

+

∫

d4xh
µν
B Tµν B + ηµν

∫

d4xh
µν
A Λ0A + ηµν

∫

d4xh
µν
B Λ0B −

− 1

2

∫

d4x

∫

d4y h
µν
A (x)

(

M1AA
µν ρσ + M1BB

µν ρσ

)

xy
h
ρσ
A (y) −

− 1

2

∫

d4x

∫

d4y h
µν
B (x)

(

M1AA
µν ρσ + M1BB

µν ρσ

)

xy
h
ρσ
B (y) −

− 1

2

∫

d4x

∫

d4y h
µν
A (x)

(

M1AA
µν ρσ + M1BB

µν ρσ

)

xy
h
ρσ
B (y) −

− 1

2

∫

d4x

∫

d4y h
µν
B (x)

(

M1AA
µν ρσ + M1BB

µν ρσ

)

xy
h
ρσ
A (y) −

− 1

2

∫

d4x

∫

d4y h
µν
A (x)M1AB

µν ρσ h
ρσ
B (y) − 1

2

∫

d4x

∫

d4y h
µν
B (x)M1BA

µν ρσ h
ρσ
A (y)
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Cosmological constant appearance: second variant

• CC we have in this case:

Λ0A = Λ0B =
1

8

m

m2
p

(

ψA(z)ψA(z) − ψB(z)ψB(z)
)

=
1

8m2
p

(

Tµ
Aµ − Tµ

B µ

)

There are two possibilities, the trivial one with parallel arrows of time’s flow

Tµ
B µ = Tµ

Aµ

and with opposite time directions for the A, B manifolds

tA,B =
T

2
± t ; ζ = t/T

Λ0A =
1

8m2
p

(

Tµ
Aµ(

T

2
+ t) − Tµ

B µ(
T

2
− t)

)

≈ 1

4Tm2
p

(

∂Tµ
0Aµ

∂ζ
+

∂Tµ
0B µ

∂ζ

)

t

The cosmological constant is changing with time and rate of the the change is

defined by the change of the trace of the energy-momentum tensor, which is due

a new matter creation and/or annihilation in our Universe.
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Cosmological constant appearance: third variant

• We can consider the mutual weak field as well:

gA,B
µν (x) = gA,B 0

µν (x) +
1

2

(

hAµν(x) + hBµν(x)
)

, sµν =
1

2
hµν =

1

4

(

h
A
µν + h

B
µν

)

with action

Γ =
m2

p

16

∫

d4xh
µν
A

(

G−1
AA +G−1

BB

)

h
A
µν +

m2
p

16

∫

d4xh
µν
B

(

G−1
BB +G−1

AA

)

h
B
µν +

+
m2

p

8

∫

d4xh
µν
A

(

G−1
AA +G−1

BB

)

h
B
µν +

∫

d4xh
µν
A Tµν A + · · ·

There is a special free fields propagator arises here, for the particular types of G−1
AA

and G−1
BB it can describes a theory without free asymptotic gravitons, similarly to

Wheeler-Feynman propagator. The cosmological constant is this case is the same

(to LO) as in the second variant, but propagator’s structure (”dark” matter issue) is

different from the previous case.
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Conclusion:

• The CPTM symmetry defines an additional manifold populated by negative mass

(gravitational) matter, the number of matter fields is doubling (at least).

• For the same external gravitational ”legs” attached to the loop diagrams, there is

a cancellations of the particular one-loop contributions to the general effective

action (momentum-energy tensor) of the extended manifolds occurs. For the full

cancellation, the mechanism requires an introduction of the unified weak gravity

field for A and B manifolds, otherwise the only particular cancellation takes place.

• Without special ”mixing” mechanisms, the A and B manifolds do not interact. The

interactions are due the like Schwinger-Keldysh non-diagonal Green’s functions

or/and introduction of the interactions of the matter of both separated manifolds

with two weak gravity fields in Dirac equations. There is an option for the single

unified gravity field for both manifolds exists as well of course.

• On the classical level there are th eoptions for the CC to be equal or to the trace

of the matter’s momentum-energy tensor for each manifold separately or CC van

be equal to the difference of the matter’s momentum-energy tensor of the A and

B manifolds.
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Conclusion:

• The dark matter appears in the approach inevitably in the form of the gravity

propagator modification due the B manifold influence.

• The approach is falsifiable, namely each from the variants provides different values

of cosmological constant and different ways of propagators modifications The

cosmological constant and propagators can be calculated at least to one-loop

precision.

• The interesting issue is about the renormalizability properties of the model-can also

help to choose the particular scheme.
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