

A new perspective in the construction of spin foam models to quantum gravity

Carlos E. Beltrán.

Center of Mathematical Sciences and Physics Institute National Autonomous University of Mexico

Under the supervision of José A. Zapata. Beltrán, C.E., Zapata, J.A. A discretization of Holst's action for general relativity. Gen Relativ Gravit 55, 77 (2023) arXiv:2208.13808 [gr-qc]

Carlos E. Beltrán.

To try to give sense to

$$\int D[g_{\mu
u}]e^{iS_{GR}[g]}$$

- Quantization of discrete BF theory+ simplicity constraints=spin foam model.
- EPRL model.

J. Engle, E. Livine, R. Pereira and C. Rovelli, Nucl. Phys. B **799**, 136-149 (2008) [arXiv:0711.0146 [gr-qc]].

- ${\scriptstyle \bullet }$ Most widely accepted in the loop quantum gravity community
 - Provides well defined expressions for transition amplitudes.
 - It is very successful to compute quantum effects in some physical situations.
 - It has a well defined discrete semi-classical limit.

- What is the role of a tetrad field in a quantum theory of gravity?
- What is the role of the curvature in a quantum theory of gravity?
- Some concerns raised about the imposition of the simplicity constraints at the quantum level
 - S. Alexandrov, Phys. Rev. D 82 (2010), 024024,
 - . A possible answer was provided

A. Perez, Papers Phys. **4**, 040004 (2012) doi:10.4279/PIP.040004 [arXiv:1205.0911 [gr-qc]]., is there an alternative construction avoiding these issues?

Backing to the roots

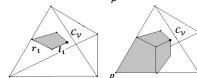
Discretization.

The derived complex; used in Reisenberger M. 1997 Class.

Quantum Grav. 14 1753

-Oriented simplicial complex riangle in 4 dimensions and its dual $riangle^*$.

• Wedges $s(\sigma \nu)$ and corner cells c_p



• Edges $l(\nu\tau)$ y $r(\tau\sigma)$.

Discretization of the curvature:

$$g_{\partial s} = h_{l_2}^{-1} k_{r_2}^{-1} k_{r_1} h_{l_1}$$
Carlos E. Beltrán.

Action for the classical model.

• The action for the classical discrete model is:

$$S_{\triangle}(e,h,k) = \sum_{\nu < \triangle} \sum_{l,l',s < \nu} \operatorname{sgn}(l,l',s) e_l^K e_{l'}^L(T_i)^{JI} P_{IJKL} \theta_s^i.$$

with
$$\theta_s^i := \operatorname{tr} [T^i g_{\partial s}]$$
,
 $\theta_s^i (T_i)^I \,_J$ a discretization of $F^I \,_J$ and
 $P_{IJKL} := \epsilon_{IJKL} - \frac{1}{2\gamma} \epsilon_{IJMN} \epsilon^{MN}_{KL}$

• $S_{ riangle}$ converges to

$$S_{H}(e,\omega) = \int_{M} \Sigma_{i}(e) \wedge F^{i}(\omega)$$

which is a way to rewrite the Holst action

$$S_{H}(e,\omega) = rac{1}{2} \int_{M} \epsilon_{IJKL} e^{I} \wedge e^{J} \wedge F^{KL}(\omega) + rac{1}{\gamma} \int_{M} e_{I} \wedge e_{J} \wedge F^{IJ}(\omega)$$

• This is the *e*-model.

- Basic fields: *e*_l, *h*_l, *k*_r
- A discrete tetrad field for each corner cell c_P.
- A discrete metric for *c*_{*P*}.

$$g_{l_1 l_2}(c_P) = e_{l_1}^{\prime} e_{l_2}^{J} \eta_{IJ} \;\; {
m for \; any} \;\; l_1, l_2 < c_P$$

- The corners have pairwise compatible metrics.
- No simplicity constrains.
- We can write functions of the space of histories; geometric quantities like areas, volumes, 4-volumes in the bulk.

Formulation as a constrained BF theory

Action for the model

$$S_{\Delta}(B,h,k) = \sum_{\nu < \Delta} \sum_{s,s' <
u} \operatorname{sgn}(s,s') \left(B_{si} - \frac{1}{\gamma} * B_{si} \right) \theta^i_{s'}$$

- If we impose the conditions:
 - Given $\nu,$ for each line $l<\nu,$ there is a non-zero vector $\textbf{\textit{n}},$ such that

$$n_{II}B_s^{IJ} = 0$$
 for each s with $I < s$

٢

$$\operatorname{sgn}(s,s')\epsilon_{IJKL}B_{s}^{IJ}\wedge B_{s'}^{KL} = \operatorname{sgn}(s'',s''')\epsilon_{IJKL}B_{s''}^{IJ}\wedge B_{s'''}^{KL}$$

٢

$$g_{QR}(c_P) = \frac{1}{12V(c_P)} f_{ijk} \epsilon^{ABCDP} B^i_{QA} B^j_{BC} B^k_{DR}$$

with the same signature than η ,

Then the exist a tetrad field for each corner cell, such that $B_{PQ} = * (e_P \wedge e_Q)$ (in the non-degenerate sector).

- This defines the B-model.
- Both the e-model and the B-model are equivalent.

- Basic fields: B_s, h_l, k_r
- A metric density for each corner (following Urbantke)

$$\tilde{g}_{QR}(c_P) = \frac{1}{12} f_{ijk} \epsilon^{ABCDP} B^i_{QA} B^j_{BC} B^k_{DR}$$

 ${\scriptstyle \bullet}$ Constrained BF theory ${\rightarrow}$ standard spinfoam quantization.

- Boundary data: Boundary connection k_r and its momenta $u_{\sigma} := \frac{\delta S}{\delta k_r}$
- Well defined bulk and boundary geometry→ Study correlation of geometric observables.
- There is a natural way to regularize matter couplings.
- Each 4-simplex is curved;
 - ${\scriptstyle \bullet}$ Standard Regge discretization ${\rightarrow} {\sf Every}$ simplex if flat
 - Studies with more simplices are very recent
 P. Donà, F. Gozzini and G. Sarno, Phys. Rev. D 102, no.10, 106003 (2020) doi:10.1103 [arXiv:2004.12911 [gr-qc]].
 - In the quantization of our models one 4-simplex includes curvature.

Spin foam quantization of the B-model.

Partition function

$$\mathcal{Z}(\Delta) = \int \prod_{r < \Delta} dk_r \prod_{\nu < \Delta} A_{\nu}(k_r)$$

with

$$A_{\nu}(k_{r}) := \int \prod_{l < \nu} dh_{l} \prod_{s,\overline{s}} dB_{s} \exp\left[i \operatorname{sgn}(s,\overline{s}) B_{si} \theta_{\overline{s}}^{i}\right]$$

the vertex amplitude.

Carlos E. Beltrán.

Spin foam quantization of the B-model.

For the BF part que have:

$$A_{\nu}(k_{r}) = \int \prod_{l < \nu} dh_{l} \prod_{s < \nu} \sum_{\rho} d_{\rho} \operatorname{tr} D^{\rho} \left[\prod_{\bar{s} < \nu} g_{\partial \bar{s}}^{\operatorname{sgn}(s,\bar{s})} \right],$$

with $\rho \rightarrow$ irreducible representation of G.

- For example, for G = SO(4) we can recover the standard quantization of BF theory.
- Implementation of the constrains \rightarrow requires to identify a "corner amplitude": A_{c_P} , and glue them to recover $A_{\nu}(k_r)$
 - Classical constraints \rightarrow the *u* are simple only on each corner.

Future perspectives

- How to implement the constraints of the B-model in the quantum regime?
- Quantization of the e-model.
- What is the relation between the quantum e and B-model?
- The role of the matter coupling using the metric.
- What are the effects of the curvature in the quantum regime?
- There is another B-model not mentioned here, but potentially useful for (even more efficient) numerical simulations.
 S. K. Asante, B. Dittrich and J. Padua-Arguelles, Class.
 Quant. Grav. 38, no.19, 195002 (2021) [arXiv:2104.00485 [gr-qc]].

For more details of the classical part:

Beltrán, C.E., Zapata, J.A. A discretization of Holst's action for general relativity. Gen Relativ Gravit 55, 77 (2023) arXiv:2208.13808 [gr-qc]

Carlos E. Beltrán.

э

(*) * 문 * * 문 *