Towards a quantitative phenomenology of quantum gravity

Aaron Held

DAAD PRIME Fellow Jena University

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Quantum Spacetime and the Renormalization Group 2023, Oct 02 – 06 2023.

Towards a quantitative phenomenology of quantum gravity in black-hole astrophysics

Aaron Held

DAAD PRIME Fellow Jena University

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Quantum Spacetime and the Renormalization Group 2023, Oct 02 – 06 2023.

• SMEFT + GREFT works ...

• SMEFT + GREFT works ... depressingly well

• SMEFT + GREFT works ... depressingly well

SMEFT + GREFT works ... let's make use of it

only a few free parameters!

only a few free parameters!

• **COSMOlOGY** [early universe]

see other talks by Christof Wetterich Enrico Pajer

only a few free parameters!

• **COSMOlOGY** [early universe]

see other talks by Christof Wetterich Enrico Pajer

• particle physics

see other talks by Manuel Reichert Marc Schiffer Rafael Linos dos Santos

only a few free parameters!

• **COSMOlOGY** [early universe]

see other talks by Christof Wetterich Enrico Pajer

• particle physics

see other talks by Manuel Reichert Marc Schiffer Rafael Linos dos Santos

• nonlinear gravitational astrophysics

only a few free parameters!

• **COSMOlOGY** [early universe]

see other talks by Christof Wetterich Enrico Pajer

• particle physics

see other talks by Manuel Reichert Marc Schiffer Rafael Linos dos Santos

- nonlinear gravitational astrophysics
- cosmology again [late universe]

singularity

theorems

only a few free parameters!

• **COSMOlogy** [early universe]

see other talks by Christof Wetterich Enrico Pajer

• particle physics

see other talks by Manuel Reichert Marc Schiffer Rafael Linos dos Santos

- nonlinear gravitational astrophysics
- cosmology again [late universe]

Maintaining **cosmic censorship in gravitational EFTs** seems to be very nontrivial!

Ripley, Pretorius '19 Figueras, France '20 Hegade, Ripley, Yunes '22

•••

Maintaining **cosmic censorship in gravitational EFTs** seems to be very nontrivial!

Violations ... either suggest that the **EFT is incomplete** or suggest an opportunity for **smoking-gun signatures.** Part I: global "solutions" Interlude: The quantum effective action Part II: linear dynamics Part III: nonlinear dynamics

A comment on ghosts?

Maintaining **cosmic censorship in gravitational EFTs** seems to be very nontrivial!

Violations ... either suggest that the EFT is incomplete or suggest an opportunity for smoking-gun signatures.

Maintaining **cosmic censorship in gravitational EFTs** seems to be very nontrivial!

Violations ... either suggest that the EFT is incomplete or suggest an opportunity for smoking-gun signatures.

Part I: global (horizonless) solutions by overspinning regular black holes: Eichhorn, Held, JCAP 01 (2023) 032, ... by distinct branches of global solutions: Daas et.Al '22, ...

Part I: global (horizonless) solutions by overspinning regular black holes: Eichhorn, Held, JCAP 01 (2023) 032, ... by distinct branches of global solutions: Daas et.Al '22, ...

Can we exclude this? Eichhorn, Held, Gold, ApJ, 950 (2023) 2, 117

11 telescopes

230 GHz

8 telescopes

230 GHz

ehtim reconstruction proposed ngEHT array 21 telescopes 230 | 345 GHz (multifrequency)

Can we exclude this? Eichhorn, Held, Gold, ApJ, 950 (2023) 2, 117

Do we really trust the RG improvement? Held 2105.11458

Interlude: The quantum effective action

• might be nontrivial to resolve curvature & momentum

 N_R : power of curvature N_P : power of momenta

• might be nontrivial to resolve curvature & momentum

$$\begin{split} N_{\mathsf{R}}[\mathsf{Riem}] &= 1 \quad N_{\mathsf{P}}[\mathsf{Riem}] = 2 \\ N_{\mathsf{R}}[\Box] &= 0 \quad N_{\mathsf{P}}[\Box] = 2 \end{split}$$

 N_R : power of curvature N_P : power of momenta

• might be nontrivial to resolve curvature & momentum

$$\begin{split} N_{\mathsf{R}}[\mathsf{Riem}] &= 1 \quad \tilde{\mathsf{N}}_{\mathsf{P}}[\mathsf{Riem}] = 0 \\ N_{\mathsf{R}}[\Box] &= 0 \quad \tilde{\mathsf{N}}_{\mathsf{P}}[\Box] = 1 \end{split}$$

• might be nontrivial to resolve curvature & momentum

• might be nontrivial to resolve curvature & momentum

• might be nontrivial to resolve curvature & momentum

 N_R : power of curvature $\tilde{N}_P = N_P/2 - N_R$

... propagates **2 + 1 + 5 DoF**

• might be nontrivial to resolve curvature & momentum

• might be nontrivial to resolve curvature & momentum

 N_{R} : power of curvature $\tilde{N}_{P}=N_{P}/2-N_{R}$

f(Riemann) Gravity $-\frac{\mathcal{L}_{\infty}}{\sqrt{-g}} = \mathcal{F}(\text{Riem})$ $\tilde{N}_{P} = 0$ $N_{R} = \infty$ Linear: Hindawi, Ovrut, Waldram, PRD 53 (1996)
Nonlinear: ongoing work with Pau Figueras... propagates 2 + 1 + 5 DoF

• might be nontrivial to resolve curvature & momentum

• might be nontrivial to resolve curvature & momentum

 N_{R} : power of curvature $\tilde{N}_{P}=N_{P}/2-N_{R}$

Form factors

... propagating DoF depend on poles

as a fundamental theory

[perturbatively renormalizable; asymtotically free; ghost]

Stelle, PRD 16 (1977) 953-969 see also talk by Luca Buoninfante Avramidi, Barvinsky, PLB 159 (1985) 269-274 Bender, Mannheim, PRL 100 (2008) Donoghue, Menezes, PRD 104 (2021) 4

as the marginal terms in the effective action

modulo: Baldazzi, Falls '21 Knorr '22 essential scheme / field redefinitions Burgess, Living Rev. Rel. 7:5,2004 Endlich et. Al, JHEP 09 (2017) 122 see also talk by Kevin Falls

Part II: Linear dynamics in Quadratic Gravity

Background: decomposition

$$\begin{split} \mathcal{L}_{QG} &= \mathsf{M}_{\mathsf{PI}}^2 \left[\frac{1}{2}\mathsf{R} + \frac{1}{12m_0^2}\mathsf{R}^2 \right. \\ & \left. + \frac{1}{4m_2^2}\mathsf{C}_{\mathsf{abcd}}\mathsf{C}^{\mathsf{abcd}} \right] \end{split}$$

massless spin-2 h_{ab} (graviton)

massive spin-0

➤ massive spin-2

 $\psi_{\mathsf{a}\mathsf{b}}$

 ϕ

Background: decomposition

$$\begin{split} \mathcal{L}_{QG} &= \mathsf{M}_{\mathsf{PI}}^2 \left[\frac{1}{2} \mathsf{R} + \frac{1}{12 \mathsf{m}_0^2} \mathsf{R}^2 \right. \\ & \left. + \frac{1}{4 \mathsf{m}_2^2} \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \right] \end{split}$$

massless spin-2 h_{ab} (graviton)

 ϕ

 ψ_{ab}

massive spin-0

➤ massive spin-2

Background: decomposition

• spherical harmonics $Y_{\ell m}(\theta, \phi)$

$$\begin{split} h_{ab}^{(\text{polar})} &= e^{-i\omega t} \ h_{ab}^{(\text{polar})\ell m}(r) \ Y^{\ell m}(\theta, \phi) \\ h_{ab}^{(\text{axial})} &= e^{-i\omega t} \ h_{ab}^{(\text{axial})\ell m}(r) \ Y^{\ell m}(\theta, \phi) \\ \psi_{ab}^{(\text{polar})} &= e^{-i\omega t} \ \psi_{ab}^{(\text{polar})\ell m}(r) \ Y^{\ell m}(\theta, \phi) \\ \psi_{ab}^{(\text{axial})} &= e^{-i\omega t} \ \psi_{ab}^{(\text{axial})\ell m}(r) \ Y^{\ell m}(\theta, \phi) \end{split}$$

$$\begin{split} \mathcal{L}_{QG} &= \mathsf{M}_{\mathsf{PI}}^2 \left[\frac{1}{2}\mathsf{R} + \frac{1}{12m_0^2}\mathsf{R}^2 \right. \\ & \left. + \frac{1}{4m_2^2}\mathsf{C}_{\mathsf{abcd}}\mathsf{C}^{\mathsf{abcd}} \right] \end{split}$$

➤ massless spin-2

 \rightarrow massive spin-0

 \rightarrow massive spin-2

(graviton)

hab

 ϕ

 ψ_{ab}

Background: decomposition

- spherical harmonics $Y_{\ell m}(\theta, \phi)$
- axisymmetric perturbations m = 0

$$\begin{split} h_{ab}^{(polar)} &= e^{-i\omega t} \begin{pmatrix} AH_0 & H_1 & 0 & 0 \\ H_1 & H_2/B & 0 & 0 \\ 0 & 0 & r^2\mathcal{K} & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta\mathcal{K} \end{pmatrix} Y^{\ell}(\theta) \\ \psi_{ab}^{(polar)} &= e^{-i\omega t} \begin{pmatrix} AF_0 & F_1 & \mathcal{F}_0\partial_{\theta} & 0 \\ F_1 & F_2/B & \mathcal{F}_1\partial_{\theta} & 0 \\ \mathcal{F}_0\partial_{\theta} & \mathcal{F}_1\partial_{\theta} & \mathcal{M} + \mathcal{N}\partial_{\theta}^2 & 0 \\ 0 & 0 & 0 & \sin^2\theta\mathcal{M} \end{pmatrix} Y^{\ell}(\theta) \end{split}$$

$$\begin{split} \mathcal{L}_{QG} &= \mathsf{M}_{\mathsf{PI}}^2 \left[\frac{1}{2} \mathsf{R} + \frac{1}{12 \mathsf{m}_0^2} \mathsf{R}^2 \right. \\ & \left. + \frac{1}{4 \mathsf{m}_2^2} \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \right] \end{split}$$

massless spin-2 h_{ab} (graviton)

 ϕ

 ψ_{ab}

massive spin-0

massive spin-2

Background: decomposition

- spherical harmonics $Y_{\ell m}(\theta, \phi)$
- axisymmetric perturbations m = 0
- focus on the monopole $\ell = 0$

$$\begin{split} h_{ab}^{(\text{polar})} &= e^{-i\omega t} \begin{pmatrix} AH_0 & H_1 & 0 & 0 \\ H_1 & H_2/B & 0 & 0 \\ 0 & 0 & r^2\mathcal{K} & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta\mathcal{K} \end{pmatrix} Y^{\ell=0} \\ \psi_{ab}^{(\text{polar})} &= e^{-i\omega t} \begin{pmatrix} AF_0 & F_1 & 0 & 0 \\ F_1 & F_2/B & 0 & 0 \\ 0 & 0 & \mathcal{M} & 0 \\ 0 & 0 & 0 & \sin^2\theta\mathcal{M} \end{pmatrix} Y^{\ell=0} \end{split}$$

$$\begin{split} \mathcal{L}_{QG} &= \mathsf{M}_{\mathsf{PI}}^2 \left[\frac{1}{2} \mathsf{R} + \frac{1}{12 \mathsf{m}_0^2} \mathsf{R}^2 \right. \\ & \left. + \frac{1}{4 \mathsf{m}_2^2} \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \right] \end{split}$$

massless spin-2 h_{ab} (graviton)

 ϕ

 ψ_{ab}

massive spin-0

massive spin-2

Background: decomposition

- spherical harmonics $Y_{\ell m}(\theta, \phi)$
- axisymmetric perturbations m = 0
- focus on the monopole $\ell = 0$

$$\begin{split} h_{ab}^{(polar)} &= e^{-i\omega t} \begin{pmatrix} AH_0 & H_1 & 0 & 0 \\ H_1 & H_2/B & 0 & 0 \\ 0 & 0 & r^2\mathcal{K} & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta\mathcal{K} \end{pmatrix} Y^{\ell=0} \\ \psi_{ab}^{(polar)} &= e^{-i\omega t} \begin{pmatrix} AF_0 & F_1 & 0 & 0 \\ F_1 & F_2/B & 0 & 0 \\ 0 & 0 & \mathcal{M} & 0 \\ 0 & 0 & 0 & \sin^2\theta\mathcal{M} \end{pmatrix} Y^{\ell=0} \end{split}$$

$$\frac{\mathrm{d}^2}{\mathrm{d} r_*^2}\psi(\mathbf{r})+\psi(\mathbf{r})\,\left[\omega^2-V(\mathbf{r})\right]=0$$

GR-background: Brito, Cardoso, Pani '13 non-GR: **Held**, Zhang, PRD 107 (2023) 6

$$\begin{split} \mathcal{L}_{QG} &= \mathsf{M}_{\mathsf{PI}}^2 \left[\frac{1}{2} \mathsf{R} + \frac{1}{12 \mathsf{m}_0^2} \mathsf{R}^2 \right. \\ & \left. + \frac{1}{4 \mathsf{m}_2^2} \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \right] \end{split}$$

massless spin-2 h_{ab} (graviton)

 ϕ

 ψ_{ab}

massive spin-0

massive spin-2

Background: decomposition

- spherical harmonics $Y_{\ell m}(\theta, \phi)$
- axisymmetric perturbations m = 0
- focus on the monopole $\ell = 0$

$$\begin{split} h_{ab}^{(polar)} &= e^{-i\omega t} \begin{pmatrix} AH_0 & H_1 & 0 & 0 \\ H_1 & H_2/B & 0 & 0 \\ 0 & 0 & r^2\mathcal{K} & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta\mathcal{K} \end{pmatrix} Y^{\ell=0} \\ \psi_{ab}^{(polar)} &= e^{-i\omega t} \begin{pmatrix} AF_0 & F_1 & 0 & 0 \\ F_1 & F_2/B & 0 & 0 \\ 0 & 0 & \mathcal{M} & 0 \\ 0 & 0 & 0 & \sin^2\theta\mathcal{M} \end{pmatrix} Y^{\ell=0} \end{split}$$

$$\frac{\mathrm{d}^2}{\mathrm{d} r_*^2}\psi(\mathbf{r}) + \psi(\mathbf{r}) \,\left[\omega^2 - V(\mathbf{r})\right] = \mathbf{0}$$

GR-background: Brito, Cardoso, Pani '13 non-GR: Held, Zhang, PRD 107 (2023) 6

Boundary conditions:

• purely ingoing waves at the horizon

$$\begin{split} \mathcal{L}_{QG} &= \mathsf{M}_{\mathsf{PI}}^2 \left[\frac{1}{2} \mathsf{R} + \frac{1}{12 \mathsf{m}_0^2} \mathsf{R}^2 \right. \\ & \left. + \frac{1}{4 \mathsf{m}_2^2} \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \right] \end{split}$$

massless spin-2 h_{ab} (graviton)

 ϕ

 ψ_{ab}

massive spin-0

massive spin-2

Background: decomposition

- spherical harmonics $Y_{\ell m}(\theta, \phi)$
- axisymmetric perturbations m = 0
- focus on the monopole $\ell = 0$

$$h_{ab}^{(polar)} = e^{-i\omega t} \begin{pmatrix} AH_0 & H_1 & 0 & 0 \\ H_1 & H_2/B & 0 & 0 \\ 0 & 0 & r^2\mathcal{K} & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta\mathcal{K} \end{pmatrix} Y^{\ell=0}$$
$$\psi_{ab}^{(polar)} = e^{-i\omega t} \begin{pmatrix} AF_0 & F_1 & 0 & 0 \\ F_1 & F_2/B & 0 & 0 \\ 0 & 0 & \mathcal{M} & 0 \\ 0 & 0 & 0 & \sin^2\theta\mathcal{M} \end{pmatrix} Y^{\ell=0}$$

$$\frac{\mathrm{d}^2}{\mathrm{d} r_*^2}\psi(\mathbf{r}) + \psi(\mathbf{r}) \,\left[\omega^2 - V(\mathbf{r})\right] = \mathbf{0}$$

GR-background: Brito, Cardoso, Pani '13 non-GR: **Held**, Zhang, PRD 107 (2023) 6

- purely ingoing waves at the horizon
- outgoing waves at asymptotic infinity define QNMs
- ingoing waves at asymptotic infinity define bound states

$$\begin{split} \mathcal{L}_{QG} &= \mathsf{M}_{\mathsf{PI}}^2 \left[\frac{1}{2} \mathsf{R} + \frac{1}{12 \mathsf{m}_0^2} \mathsf{R}^2 \right. \\ & \left. + \frac{1}{4 \mathsf{m}_2^2} \mathsf{C}_{\mathsf{abcd}} \mathsf{C}^{\mathsf{abcd}} \right] \end{split}$$

massless spin-2 h_{ab} (graviton)

 ϕ

 ψ_{ab}

massive spin-0

massive spin-2

Background: decomposition

- spherical harmonics $Y_{\ell m}(\theta, \phi)$
- axisymmetric m = 0
- focus on the monopole $\ell = 0$

$$h_{ab}^{(polar)} = e^{-i\omega t} \begin{pmatrix} AH_0 & H_1 & 0 & 0 \\ H_1 & H_2/B & 0 & 0 \\ 0 & 0 & r^2\mathcal{K} & 0 \\ 0 & 0 & 0 & r^2\sin^2\theta\mathcal{K} \end{pmatrix} Y^{\ell=0}$$
$$\psi_{ab}^{(polar)} = e^{-i\omega t} \begin{pmatrix} AF_0 & F_1 & 0 & 0 \\ F_1 & F_2/B & 0 & 0 \\ 0 & 0 & \mathcal{M} & 0 \\ 0 & 0 & 0 & \sin^2\theta\mathcal{M} \end{pmatrix} Y^{\ell=0}$$

$$\frac{d^2}{dr_*^2}\psi(\mathbf{r}) + \psi(\mathbf{r}) \,\left[\omega^2 - V(\mathbf{r})\right] = 0$$

GR-background: Brito, Cardoso, Pani '13 non-GR: **Held**, Zhang, PRD 107 (2023) 6

- purely ingoing waves at the horizon
- outgoing waves at asymptotic infinity define QNMs
- ingoing waves at asymptotic infinity define bound states

- positive imaginary part signals instability
- negative imaginary part signals stability

Part III: Nonlinear dynamics in Quadratic Gravity

Held, Lim, PRD 104 (2021) 8 Held, Lim, 2306.04725

((An initial value problem is well-posed if a solution

- exists for all future time
- is unique
- and depends continuously on the initial data

((An initial value problem is well-posed if a solution

- exists for all future time
- is unique
- and depends continuously on the initial data

... for General Relativity

Formal proof of existence and uniqueness Yvonne Choquet-Bruhat '52

(3+1) numerical evolution Frans Pretorius '05 Baumgarte, Shapiro, Shibata, Nakamura '87-'99 Sarbach et.Al '02-'04

((An initial value problem is well-posed if a solution

- exists for all future time
- is unique
- and depends continuously on the initial data

... for General Relativity

Formal proof of existence and uniqueness Yvonne Choquet-Bruhat '52 (3+1) numerical evolution Frans Pretorius '05 Baumgarte, Shapiro, Shibata, Nakamura '87-'99 Sarbach et.Al '02-'04

... and for Quadratic Gravity

Formal proof of existence and uniqueness Noakes '83 spherical symmetry: Held, Lim, PRD 104 (2021) 8 (3+1): Held, Lim, 2306.04725

((An initial value problem is well-posed if a solution

- exists for all future time
- is unique
- and depends continuously on the initial data

... for General Relativity

Formal proof of existence and uniqueness Yvonne Choquet-Bruhat '52 (3+1) numerical evolution Frans Pretorius '05 Baumgarte, Shapiro, Shibata, Nakamura '87-'99 Sarbach et.Al '02-'04

... and for Quadratic Gravity

Formal proof of existence and uniqueness Noakes '83 spherical symmetry: Held, Lim, PRD 104 (2021) 8 (3+1): Held, Lim, 2306.04725 Cayuso, 2307.15163 East, Siemonsen, 2309.05096

 $\begin{array}{l} \displaystyle \begin{array}{l} 2^{nd} \\ \text{order variables} \end{array} & \mathsf{R}_{ab}(\Box g) = \ \widetilde{\mathcal{R}}_{ab} + \frac{1}{4} \mathsf{g}_{ab} \mathcal{R} \equiv \widetilde{\mathsf{T}}_{ab} & \mbox{massless spin-2} \\ & \end{tabular} \\ & \end{tabular} \\ & \end{tabular} \\ & \end{tabular} \mathcal{R} = \ \mathsf{m}_0^2 \mathcal{R} + 2\mathsf{T}^{\mathsf{c}}_{\mathsf{c}} & \mbox{massive spin-0} \\ & \end{tabular} \\ & \end{tabula$

 $\begin{array}{l} \displaystyle \overset{2^{nd}\text{-}}{\text{order variables}} \\ \mathsf{R}_{ab}(\Box g) = \ \widetilde{\mathcal{R}}_{ab} + \frac{1}{4} g_{ab} \mathcal{R} \equiv \widetilde{\mathsf{T}}_{ab} \\ \\ \displaystyle \Box \mathcal{R} = \ \mathsf{m}_0^2 \mathcal{R} + 2 \mathsf{T}^c_{\ c} \\ \\ \displaystyle \Box \ \widetilde{\mathcal{R}}_{ab} = -\frac{1}{3} \left(\frac{\mathsf{m}_2^2}{\mathsf{m}_0^2} - 1 \right) \left(\nabla_a \nabla_b \mathcal{R} \right) - 2 \widetilde{\mathcal{R}}^{cd} \mathsf{C}_{acbd} + \mathcal{O}_{lower \ order} \end{array}$

massless spin-2 (graviton)

massive spin-0 (scalar)

massive spin-2 (ghost)

1storder variables

$$\begin{split} \widetilde{V}_{ab} &\equiv -n^c \nabla_c \widetilde{\mathcal{R}}_{ab} \\ \widehat{\mathcal{R}} &\equiv -n^c \nabla_c \mathcal{R} \\ \widehat{\mathcal{R}} &\equiv -n^c \nabla_c \mathcal{R} \\ \end{split}$$

2ndorder $R_{ab}(\Box g) = \widetilde{\mathcal{R}}_{ab} + \frac{1}{4}g_{ab}\mathcal{R} \equiv \widetilde{T}_{ab}$ massless spin-2 (graviton) variables $\Box \mathcal{R} = m_0^2 \mathcal{R} + 2T_c^c$ massive spin-0 (scalar) $\Box \, \widetilde{\mathcal{R}}_{ab} = -\frac{1}{3} \left(\frac{m_2^2}{m_2^2} - 1 \right) \left(\nabla_a \nabla_b \mathcal{R} \right) - 2 \widetilde{\mathcal{R}}^{cd} C_{acbd} + \mathcal{O}_{lower \ order}$ massive spin-2 (ghost) 2nd order 1st- $\widetilde{V}_{ab} \equiv -n^c \nabla_c \widetilde{\mathcal{R}}_{ab}$ quasilinear Leray's theorem guarantees order diagonal variables well-posed IVP $\hat{\mathcal{R}} \equiv -n^{c} \nabla_{c} \mathcal{R}$ for \mathcal{C}^{∞} initial data + constraints (in harmonic gauge)

Leray '53 Choquet-Bruhat & DeWitt-Morette '77

2ndorder $R_{ab}(\Box g) = \widetilde{\mathcal{R}}_{ab} + \frac{1}{4}g_{ab}\mathcal{R} \equiv \widetilde{T}_{ab}$ massless spin-2 (graviton) variables $\Box \mathcal{R} = \mathbf{m}_0^2 \mathcal{R} + 2 \mathbf{T}_c^{\mathsf{c}}$ massive spin-0 (scalar) $\Box \, \widetilde{\mathcal{R}}_{ab} = -\frac{1}{3} \left(\frac{m_2^2}{m_2^2} - 1 \right) \left(\nabla_a \nabla_b \mathcal{R} \right) - 2 \widetilde{\mathcal{R}}^{cd} C_{acbd} + \mathcal{O}_{lower \ order}$ massive spin-2 (ghost) (3+1) decomposition $\widetilde{\mathcal{R}}_{ab} = \mathcal{A}_{ab} + \frac{1}{3} \gamma_{ab} \mathcal{A} - 2 n_{(a} \mathcal{C}_{b)} + n_a n_b \mathcal{A}$ 1storder $\widetilde{V}_{ab} \equiv -n^c \nabla_c \widetilde{\mathcal{R}}_{ab}$ variables $g_{ab} = \gamma_{ab} + n_a n_b$ $\hat{\mathcal{R}} \equiv -n^{c} \nabla_{c} \mathcal{R}$ $\widetilde{\mathsf{V}}_{\mathsf{a}\mathsf{b}} = \mathcal{B}_{\mathsf{a}\mathsf{b}} + \frac{1}{3}\,\gamma_{\mathsf{a}\mathsf{b}}\,\mathcal{B} - 2\,\mathsf{n}_{(\mathsf{a}}\mathcal{E}_{\mathsf{b})} + \mathsf{n}_{\mathsf{a}}\mathsf{n}_{\mathsf{b}}\,\mathcal{B}$

 $\begin{array}{c|c} 2^{nd} & \mbox{massless spin-2 (ADM / BSSN)} \\ \mbox{order} & \mbox{R}_{ab}(\Box g) = & \widetilde{\mathcal{R}}_{ab} + \frac{1}{4}g_{ab}\mathcal{R} \equiv \widetilde{T}_{ab} \end{array}$

 $\Box \mathcal{R} = \mathbf{m}_0^2 \mathcal{R} + 2 \mathbf{T}_c^{\mathsf{c}}$

variables

massless spin-2 (graviton)

massive spin-0 (scalar)

massive spin-2 (ghost)

 $\begin{array}{l} 1^{st} \\ \text{order} \\ \text{variables} \end{array} \quad \widetilde{V}_{ab} \equiv -n^{c} \nabla_{c} \widetilde{\mathcal{R}}_{ab} \qquad \begin{array}{l} (3+1) \\ \text{decomposition} \\ g_{ab} = \gamma_{ab} + n_{a} n_{b} \end{array} \quad \widetilde{\mathcal{R}}_{ab} = \mathcal{A}_{ab} + \frac{1}{3} \gamma_{ab} \mathcal{A} - 2 n_{(a} \mathcal{C}_{b)} + n_{a} n_{b} \mathcal{A} \\ \widetilde{V}_{ab} = \mathcal{B}_{ab} + \frac{1}{3} \gamma_{ab} \mathcal{B} - 2 n_{(a} \mathcal{E}_{b)} + n_{a} n_{b} \mathcal{B} \end{aligned}$

 $\Box \, \widetilde{\mathcal{R}}_{ab} = -\frac{1}{3} \left(\frac{m_2^2}{m_2^2} - 1 \right) \left(\nabla_a \nabla_b \mathcal{R} \right) - 2 \widetilde{\mathcal{R}}^{cd} C_{acbd} + \mathcal{O}_{lower \ order}$

2ndorder $R_{ab}(\Box g) = \widetilde{\mathcal{R}}_{ab} + \frac{1}{4}g_{ab}\mathcal{R} \equiv \widetilde{T}_{ab}$ massless spin-2 (graviton) variables $\Box \mathcal{R} = m_0^2 \mathcal{R} + 2T_c^c$ massive spin-0 (scalar) $\Box \, \widetilde{\mathcal{R}}_{ab} = -\frac{1}{3} \left(\frac{m_2^2}{m_2^2} - 1 \right) \left(\nabla_a \nabla_b \mathcal{R} \right) - 2 \widetilde{\mathcal{R}}^{cd} C_{acbd} + \mathcal{O}_{lower \ order}$ massive spin-2 (ghost) (3+1) decomposition $\widetilde{\mathcal{R}}_{ab} = \mathcal{A}_{ab} + \frac{1}{3} \gamma_{ab} \mathcal{A} - 2 n_{(a} \mathcal{C}_{b)} + n_a n_b \mathcal{A}$ 1st- $\widetilde{\mathsf{V}}_{\mathsf{ab}}\equiv-\mathsf{n}^{\mathsf{c}}
abla_{\mathsf{c}}\widetilde{\mathcal{R}}_{\mathsf{ab}}$ order $\hat{\mathcal{R}} \equiv -n^{c} \nabla_{c} \mathcal{R}$ variables $g_{ab} = \gamma_{ab} + n_a n_b$ $\widetilde{\mathsf{V}}_{\mathsf{a}\mathsf{b}} = \mathcal{B}_{\mathsf{a}\mathsf{b}} + \frac{1}{3} \gamma_{\mathsf{a}\mathsf{b}} \mathcal{B} - 2 \,\mathsf{n}_{(\mathsf{a}}\mathcal{E}_{\mathsf{b})} + \mathsf{n}_{\mathsf{a}}\mathsf{n}_{\mathsf{b}} \mathcal{B}$

2ndorder $R_{ab}(\Box g) = \widetilde{\mathcal{R}}_{ab} + \frac{1}{4}g_{ab}\mathcal{R} \equiv \widetilde{T}_{ab}$ massless spin-2 (graviton) variables $\Box \mathcal{R} = m_0^2 \mathcal{R} + 2T_c^c$ massive spin-0 (scalar) massive spin-2 $\Box \widetilde{\mathcal{R}}_{ab} = -\frac{1}{3} \left(\frac{m_2^2}{m_a^2} - 1 \right) \left(\nabla_a \nabla_b \mathcal{R} \right) - 2 \widetilde{\mathcal{R}}^{cd} C_{acbd} + \mathcal{O}_{lower order}$ massive spin-2 (ghost) (3+1) decomposition $\widetilde{\mathcal{R}}_{ab} = \mathcal{A}_{ab} + \frac{1}{3} \gamma_{ab} \mathcal{A} - 2 n_{(a} \mathcal{C}_{b)} + n_{a} n_{b} \mathcal{A}$ 1storder $\widetilde{V}_{ab} \equiv -n^c \nabla_c \widetilde{\mathcal{R}}_{ab}$ $g_{ab} = \gamma_{ab} + n_a n_b \qquad \text{massive spin-2} \\ \widetilde{V}_{ab} = \frac{\mathcal{B}_{ab}}{\mathcal{B}_{ab}} + \frac{1}{3} \gamma_{ab} \mathcal{B} - 2 n_{(a} \mathcal{E}_{b)} + n_a n_b \mathcal{B}$ $\hat{\mathcal{R}} \equiv -n^{c} \nabla_{c} \mathcal{R}$ variables

Well-posed evolution in Quadratic Gravity Noake

Noakes, JMP 24, 1846 (1983) **Held**, Lim 2306.04725

massless spin-2 $(\mathbf{n}^{c}\nabla_{c}\gamma_{ij}) = -2 D_{(i}n_{i)} + \mathcal{O}_{ij}$ $(n^c \nabla_c \mathsf{K}_{ij}) = -(n^c \nabla_c n_i)(n^c \nabla_c n_j) - 2 \, \mathsf{D}_{(i} n^c \nabla_c n_{j)} - 2 \, \mathsf{K}_{m(i} \mathsf{D}_{j)} n^m$ $+^{(3)}\mathsf{R}_{ij}+\mathcal{O}_{ij}$ massive spin-0 $n^{a}\nabla_{a}\mathcal{R} = \mathcal{O}$ $n^{a}\nabla_{a}\hat{\mathcal{R}} = -D_{i}D^{i}\mathcal{R} + \mathcal{O}$ constraints $0 = D_i K_i^j - D_i K + C_i$ $0 = {}^{(3)}R - K_{ij}K^{ij} + K^2 - \frac{1}{2}R$ $\mathcal{E}_{a} = -K_{a}^{b}\mathcal{C}_{b} - K\mathcal{C}_{a} - D^{b}\mathcal{A}_{ab} - \frac{1}{3}D_{a}\mathcal{A} + \frac{1}{4}D_{a}\mathcal{R}$ $\hat{\mathcal{R}} = -4 \, \mathsf{D}^{\mathsf{b}} \mathcal{C}_{\mathsf{b}}$

 $n^{c}\nabla_{c}C_{i} = -\mathcal{E}_{i} + \mathcal{O}_{i}$

 $\begin{array}{l} \mbox{constraint evolution} \\ \mbox{n}^c \nabla_c \mathcal{E}_i = \ \dots \end{array}$

 $n^{c}\nabla_{c}\mathcal{A} = \mathcal{O}$ massive spin-2 $n^{c}\nabla_{c}\mathcal{A}_{ij} = \frac{2}{3}\mathcal{A}D_{(i}n_{j)} + \mathcal{O}_{ij}$ $n^{c}\nabla_{c}\mathcal{B} = +2\left(\mathcal{A}^{ij} + \frac{1}{3}\gamma^{ij}\mathcal{A}\right)^{(3)}\mathsf{R}_{ij} - \frac{1}{3}\left(\frac{\mathsf{m}_{2}^{2}}{\mathsf{m}_{2}^{2}} + 1\right)\mathsf{D}_{i}\mathsf{D}^{i}\mathcal{R} - \mathsf{D}_{i}\mathsf{D}^{i}\mathcal{A}$ $+2 a^{k} \mathcal{E}_{k} - a_{i} D^{i} \mathcal{A} + 4 \mathcal{C}^{j} (D^{i} K_{ii} - D_{i} K) + \mathcal{O}$ $\mathsf{n}^{\mathsf{c}}\nabla_{\mathsf{c}}\mathcal{B}_{\mathsf{ij}} = +2\left(\mathcal{A}^{\mathsf{kl}} + \frac{1}{3}\gamma^{\mathsf{kl}}\mathcal{A}\right)^{(3)}\mathsf{R}_{\mathsf{ikjl}} - \frac{1}{3}\left(\frac{\mathsf{m}_2^2}{\mathsf{m}_0^2} + 1\right)\mathsf{D}_{\mathsf{i}}\mathsf{D}_{\mathsf{j}}\mathcal{R}$ $-\left(\mathsf{D}_{\mathsf{k}}\mathsf{D}^{\mathsf{k}}+\mathsf{a}_{\mathsf{k}}\mathsf{D}^{\mathsf{k}}\right)\left(\mathcal{A}_{\mathsf{i}\mathsf{j}}+\frac{1}{3}\gamma_{\mathsf{i}\mathsf{j}}\mathcal{A}\right)$ $+\frac{2}{2}\mathcal{B}\,\mathsf{D}_{(i}\mathsf{n}_{j)}+2\,\mathsf{a}^{\mathsf{c}}\,\gamma_{\mathsf{c}(i}\mathcal{E}_{j)}-\frac{1}{3}\gamma_{ij}\,(\mathsf{n}^{\mathsf{c}}\nabla_{\mathsf{c}}\mathcal{B})+4\,\mathcal{C}^{\mathsf{k}}\left(\mathsf{D}_{[i}\mathsf{K}_{\mathsf{k}]j}+\mathsf{D}_{[j}\mathsf{K}_{\mathsf{k}]i}\right)+\mathcal{O}_{ij}$

- massive spin-0/spin-2 do **not impact** the massless spin-2 **principal part**
- amenable to 1st-order strong-hyperbolicity analysis Sarbach et.Al '02-'04 (for GR)

Numerical Evolution of Quadratic Gravity ...

Held, Lim, 2306.04725

Dendro-GR [adapted]

- parallelized adaptive mesh refinement
- wavelet adaptive multiresolution
- 4th order finite differencing
- 4th order Runge-Kutta

Fernando et.Al. 2018

Numerical Evolution of Quadratic Gravity ...

Held, Lim, 2306.04725

Hyun Lim Los Alamos

Dendro-GR [adapted]

- parallelized adaptive mesh refinement
- wavelet adaptive multiresolution
- 4th order finite differencing
- 4th order Runge-Kutta

Fernando et.Al. 2018

Dendro-GR (Fernando et.Al. 2018), https://github.com/paralab/Dendro-GR

Numerical Evolution of Quadratic Gravity ...

Held, Lim, 2306.04725

Hyun Lim Los Alamos

Dendro-GR [adapted]

- parallelized adaptive mesh refinement
- wavelet adaptive multiresolution
- 4th order finite differencing
- 4th order Runge-Kutta

Fernando et.Al. 2018

Numerical Evolution of Quadratic Gravity ...

Held, Lim, 2306.04725

Numerical Evolution of Quadratic Gravity ...

Held, Lim, 2306.04725

... is numerically stable.

Results (vacuum)

Held, Lim, 2306.04725

Held, Lim, 2306.04725

Held, Lim, 2306.04725

Held, Zhang, PRD 107 (2023) 6

Held, Lim, 2306.04725

Held, Zhang, PRD 107 (2023) 6

Held, Lim, 2306.04725

Held, Zhang, PRD 107 (2023) 6

Held, Lim, 2306.04725

Held, Zhang, PRD 107 (2023) 6

... but otherwise we find a physically stable subsector.

Held, Lim, 2306.04725

Held, Lim, 2306.04725

 apparent stability of a single black hole perturbed by Teukolsky waves

Held, Lim, 2306.04725

 apparent stability of a single black hole perturbed by Teukolsky waves

• apparent **stability** of **full binary evolution** up to merger

Held, Lim, 2306.04725

 apparent stability of a single black hole perturbed by Teukolsky waves

 apparent stability of full binary evolution up to merger

... suggests Quadratic Gravity can mimic vacuum GR.

- Ricci-flat (GR vacuum) subsector
 - nonlinear endpoint of the linear instability

see also Lehner, Pretorius, 1106.5184 Figueras et.Al., Phys.Rev.D 107 (2023) 4

- Ricci-flat (GR vacuum) subsector
 - nonlinear endpoint of the linear instability
- including matter

see also Lehner, Pretorius, 1106.5184 Figueras et.Al., Phys.Rev.D 107 (2023) 4

- Ricci-flat (GR vacuum) subsector
 - nonlinear endpoint of the linear instability
- including matter
 - gravitational collapse

see also Lehner, Pretorius, 1106.5184 Figueras et.Al., Phys.Rev.D 107 (2023) 4

> see also Cayuso, 2307.15163

- Ricci-flat (GR vacuum) subsector
 - nonlinear endpoint of the linear instability
- including matter
 - gravitational collapse
 - initial data

see also Lehner, Pretorius, 1106.5184 Figueras et.Al., Phys.Rev.D 107 (2023) 4

> see also Cayuso, 2307.15163

- Ricci-flat (GR vacuum) subsector
 - nonlinear endpoint of the linear instability

including matter

- gravitational collapse
- initial data
- ... neutron star binaries

see also Lehner, Pretorius, 1106.5184 Figueras et.Al., Phys.Rev.D 107 (2023) 4

> see also Cayuso, 2307.15163

- Ricci-flat (GR vacuum) subsector
 - nonlinear endpoint of the linear instability

including matter

- gravitational collapse
- initial data
- ... neutron star binaries
- comparison
 - with the fixing approach
 - on both sides of the field redefinition

see also Lehner, Pretorius, 1106.5184 Figueras et.Al., Phys.Rev.D 107 (2023) 4

> see also Cayuso, 2307.15163

Cayuso, Lehner PRD 102 (2020) Cayuso et.Al 2303.07246

... so what about ghosts?

Deffayet, Mukohyama, Vikman, PRL 128 (2022) 4 Deffayet, Held, Mukohyama, Vikman, 2305.09631

What about the Ostrogradski theorem?

Quadratic Gravity

$$-\frac{\mathcal{L}_{\text{quadratic}}}{\sqrt{-g}} = \mathsf{M}_{\mathsf{PI}}^{2} \left[\lambda + \frac{1}{2}\mathsf{R} + \frac{1}{12\mathsf{m}_{0}^{2}}\mathsf{R}^{2} + \frac{1}{4\mathsf{m}_{2}^{2}}\mathsf{C}_{\mathsf{abcd}}\mathsf{C}^{\mathsf{abcd}} \right]$$

... propagates **2** + **1** + **5** DoF

What about the Ostrogradski theorem?

"All higher-derivative theories are unstable"

... propagates **2** + **1** + **5 DoF**

What about the Ostrogradski theorem?

"All higher-derivative theories are unstable"

"All **non-degenerate** higher-derivative **classical point-particle** theories exhibit **runaway** solutions"

Quadratic Gravity

$$-\frac{\mathcal{L}_{\text{quadratic}}}{\sqrt{-g}} = \mathsf{M}_{\mathsf{PI}}^{2} \left[\lambda + \frac{1}{2}\mathsf{R} + \frac{1}{12\mathsf{m}_{0}^{2}}\mathsf{R}^{2} + \frac{1}{4\mathsf{m}_{2}^{2}}\mathsf{C}_{\mathsf{abcd}}\mathsf{C}^{\mathsf{abcd}} \right]$$

... propagates 2 + 1 + 5 DoF

"All higher-derivative theories are unstable"

"All **non-degenerate** higher-derivative **classical point-particle** theories exhibit **runaway** solutions"

"The Hamiltonian of all higher-derivative classical point-particle theories is unbounded from above and below"

Ostrogradski 1857 [french, thus not 100% sure that this is the actual content] "All higher-derivative theories are unstable"

"All non-degenerate higher-derivative classical point-particle theories exhibit runaway solutions"

"The Hamiltonian of all higher-derivative classical point-particle theories is unbounded from above and below"

Ostrogradski 1857 [french, thus not 100% sure that this is the actual content] "All higher-derivative theories are unstable"

"All non-degenerate higher-derivative classical point-particle theories exhibit runaway solutions"

Deffayet, Mukohyama, Vikman, PRL 128 (2022) 4

Integrable Liouville models ...

$$\begin{split} H_{LV} &= \frac{p_x^2}{2} + \sigma \frac{p_y^2}{2} + V_{LV}(x, y) \\ V_{LV} &= \frac{f(u) - g(v)}{u^2 - v^2} \end{split}$$

$$\begin{split} & \mathsf{u}^2 = 1/2 \left(\mathsf{r}^2 + \mathsf{c} + \sqrt{(\mathsf{r}^2 + \mathsf{c})^2 - 4\,\mathsf{c}\,\mathsf{x}^2} \right) \\ & \mathsf{v}^2 = 1/2 \left(\mathsf{r}^2 + \mathsf{c} - \sqrt{(\mathsf{r}^2 + \mathsf{c})^2 - 4\,\mathsf{c}\,\mathsf{x}^2} \right) \\ & \mathsf{r}^2 = \mathsf{x}^2 + \sigma\,\mathsf{y}^2 \end{split}$$

Deffayet, Mukohyama, Vikman, PRL 128 (2022) 4 Deffayet, Held, Mukohyama, Vikman, JCAP, to appear

Integrable Liouville models ...

... are Lagrange stable if ...

$$\begin{split} H_{LV} &= \frac{p_x^2}{2} + \sigma \frac{p_y^2}{2} + V_{LV}(x,y) \\ V_{LV} &= \frac{f(u) - g(v)}{u^2 - v^2} \end{split}$$

(i) ... f(u) and g(v) are bounded below, i.e., $f(u) \geqslant f_0 \quad \& \quad g(v) \geqslant g_0$

(ii) ... at large |u| and |v|, these bounds sharpen to $f(u) \geqslant 4F_0 |u|^{\zeta} > 0 \quad \& \quad g(v) \geqslant 4G_0 |v|^{\eta} > 0$

with $f_0,g_0\in\mathbb{R}\;,\quad F_0,G_0\in\mathbb{R}^+\;,\quad \zeta>2\;,\,>2$

$$\begin{split} & \mathsf{u}^2 = 1/2 \left(\mathsf{r}^2 + \mathsf{c} + \sqrt{(\mathsf{r}^2 + \mathsf{c})^2 - 4\,\mathsf{c}\,\mathsf{x}^2} \right) \\ & \mathsf{v}^2 = 1/2 \left(\mathsf{r}^2 + \mathsf{c} - \sqrt{(\mathsf{r}^2 + \mathsf{c})^2 - 4\,\mathsf{c}\,\mathsf{x}^2} \right) \\ & \mathsf{r}^2 = \mathsf{x}^2 + \sigma\,\mathsf{y}^2 \end{split}$$

Deffayet, Mukohyama, Vikman, PRL 128 (2022) 4 Deffayet, Held, Mukohyama, Vikman, JCAP, to appear

Integrable Liouville models ...

... contain a polynomial subclass ...

$$\begin{split} H_{LV} &= \frac{p_x^2}{2} + \sigma \frac{p_y^2}{2} + V_{LV}(x, y) \\ V_{LV} &= \frac{f(u) - g(v)}{u^2 - v^2} \end{split}$$

$$f(u) = \sum_{n=1}^{N} C_n (u^2)^n$$
$$g(v) = \sum_{n=1}^{N} C_n (v^2)^n$$

$$u^{2} = 1/2 \left(r^{2} + c + \sqrt{(r^{2} + c)^{2} - 4 c x^{2}} \right)$$
$$v^{2} = 1/2 \left(r^{2} + c - \sqrt{(r^{2} + c)^{2} - 4 c x^{2}} \right)$$
$$r^{2} = x^{2} + \sigma y^{2}$$

Deffayet, Mukohyama, Vikman, PRL 128 (2022) 4 Deffayet, Held, Mukohyama, Vikman, JCAP, to appear

Integrable Liouville models ...

... contain a polynomial subclass ...

$$H_{LV} = \frac{p_x^2}{2} + \sigma \frac{p_y^2}{2} + V_{LV}(x, y)$$
$$V_{LV} = \frac{f(u) - g(v)}{u^2 - v^2}$$

$$V_{LV}^{(4)}(\mathbf{x}, \mathbf{y}) = \frac{\omega_{\mathbf{x}}^2}{2} \mathbf{x}^2 - \frac{\omega_{\mathbf{y}}^2}{2} \mathbf{y}^2 + \frac{1}{\tilde{c}} \left(\frac{\omega_{\mathbf{x}}^2}{2} - \frac{\omega_{\mathbf{y}}^2}{2} \right) (\mathbf{x}^2 - \mathbf{y}^2)^2 + \tilde{c} \, \mathcal{C}_4(\mathbf{x}^4 - \mathbf{y}^4) + \mathcal{C}_4(\mathbf{x}^2 - \mathbf{y}^2)^3$$

$$\begin{split} & \mathsf{u}^2 = 1/2 \left(\mathsf{r}^2 + \mathsf{c} + \sqrt{(\mathsf{r}^2 + \mathsf{c})^2 - 4\,\mathsf{c}\,\mathsf{x}^2} \right) \\ & \mathsf{v}^2 = 1/2 \left(\mathsf{r}^2 + \mathsf{c} - \sqrt{(\mathsf{r}^2 + \mathsf{c})^2 - 4\,\mathsf{c}\,\mathsf{x}^2} \right) \\ & \mathsf{r}^2 = \mathsf{x}^2 + \sigma\,\mathsf{y}^2 \end{split}$$

Deffayet, Mukohyama, Vikman, PRL 128 (2022) 4 Deffayet, Held, Mukohyama, Vikman, JCAP, to appear

... contain a polynomial subclass ...

$$\begin{split} \mathsf{V}_{\mathsf{LV}}^{(4)}(\mathsf{x},\mathsf{y}) &= \frac{\omega_{\mathsf{x}}^2}{2} \mathsf{x}^2 - \frac{\omega_{\mathsf{y}}^2}{2} \mathsf{y}^2 \\ &+ \frac{1}{\tilde{\mathsf{c}}} \left(\frac{\omega_{\mathsf{x}}^2}{2} - \frac{\omega_{\mathsf{y}}^2}{2} \right) (\mathsf{x}^2 - \mathsf{y}^2)^2 \\ &+ \tilde{\mathsf{c}} \, \mathcal{C}_4(\mathsf{x}^4 - \mathsf{y}^4) + \mathcal{C}_4(\mathsf{x}^2 - \mathsf{y}^2)^3 \end{split}$$

... contain a polynomial subclass ...

$$\begin{split} \mathsf{V}_{\mathsf{LV}}^{(4)}(\mathsf{x},\mathsf{y}) &= \frac{\omega_{\mathsf{x}}^2}{2} \mathsf{x}^2 - \frac{\omega_{\mathsf{y}}^2}{2} \mathsf{y}^2 \\ &+ \frac{1}{\tilde{\mathsf{c}}} \left(\frac{\omega_{\mathsf{x}}^2}{2} - \frac{\omega_{\mathsf{y}}^2}{2} \right) (\mathsf{x}^2 - \mathsf{y}^2)^2 \\ &+ \tilde{\mathsf{c}} \, \mathcal{C}_4(\mathsf{x}^4 - \mathsf{y}^4) + \mathcal{C}_4(\mathsf{x}^2 - \mathsf{y}^2)^3 \end{split}$$

Deffayet, Held, Mukohyama, Vikman, JCAP, to appear

... contain a polynomial subclass ...

$$\begin{split} \mathsf{V}_{\mathsf{LV}}^{(4)}(\mathsf{x},\mathsf{y}) &= \frac{\omega_{\mathsf{x}}^2}{2} \mathsf{x}^2 - \frac{\omega_{\mathsf{y}}^2}{2} \mathsf{y}^2 \\ &+ \frac{1}{\tilde{\mathsf{c}}} \left(\frac{\omega_{\mathsf{x}}^2}{2} - \frac{\omega_{\mathsf{y}}^2}{2} \right) (\mathsf{x}^2 - \mathsf{y}^2)^2 \\ &+ \tilde{\mathsf{c}} \, \mathcal{C}_4(\mathsf{x}^4 - \mathsf{y}^4) + \mathcal{C}_4(\mathsf{x}^2 - \mathsf{y}^2)^3 \end{split}$$

Deffayet, Held, Mukohyama, Vikman, JCAP, to appear

... contain a polynomial subclass ...

$$V_{LV}^{(4)}(\mathbf{x}, \mathbf{y}) = \frac{\omega_{\mathbf{x}}^2}{2} \mathbf{x}^2 - \frac{\omega_{\mathbf{y}}^2}{2} \mathbf{y}^2 + \frac{1}{\tilde{c}} \left(\frac{\omega_{\mathbf{x}}^2}{2} - \frac{\omega_{\mathbf{y}}^2}{2} \right) (\mathbf{x}^2 - \mathbf{y}^2)^2 + \tilde{c} \, C_4 (\mathbf{x}^4 - \mathbf{y}^4) + C_4 (\mathbf{x}^2 - \mathbf{y}^2)^3$$

 numerics suggest that integrability is not necessary

Deffayet, Held, Mukohyama, Vikman, JCAP, to appear

... contain a polynomial subclass ...

$$V_{LV}^{(4)}(\mathbf{x}, \mathbf{y}) = \frac{\omega_{\mathbf{x}}^2}{2} \mathbf{x}^2 - \frac{\omega_{\mathbf{y}}^2}{2} \mathbf{y}^2 + \frac{1}{\tilde{c}} \left(\frac{\omega_{\mathbf{x}}^2}{2} - \frac{\omega_{\mathbf{y}}^2}{2} \right) (\mathbf{x}^2 - \mathbf{y}^2)^2 + \tilde{c} \, \mathcal{C}_4 (\mathbf{x}^4 - \mathbf{y}^4) + \mathcal{C}_4 (\mathbf{x}^2 - \mathbf{y}^2)^3$$

- numerics suggest that integrability is not necessary
- ask me about field theory extensions

Deffayet, Held, Mukohyama, Vikman, JCAP, to appear

... contain a polynomial subclass ...

$$V_{LV}^{(4)}(\mathbf{x}, \mathbf{y}) = \frac{\omega_{\mathbf{x}}^2}{2} \mathbf{x}^2 - \frac{\omega_{\mathbf{y}}^2}{2} \mathbf{y}^2 + \frac{1}{\tilde{c}} \left(\frac{\omega_{\mathbf{x}}^2}{2} - \frac{\omega_{\mathbf{y}}^2}{2} \right) (\mathbf{x}^2 - \mathbf{y}^2)^2 + \tilde{c} \, \mathcal{C}_4 (\mathbf{x}^4 - \mathbf{y}^4) + \mathcal{C}_4 (\mathbf{x}^2 - \mathbf{y}^2)^3$$

- numerics suggest that integrability is not necessary
- ask me about field theory extensions
- quantization not yet explored

We can quantitatively test asymptotic safety with a ... joint phenomenology of cosmology, particle physics, and gravitational astronomy.
We can quantitatively test asymptotic safety with a ... joint phenomenology of cosmology, particle physics, and gravitational astronomy.

Maintaining **cosmic censorship in gravitational EFTs** might be a very nontrivial constraint.

We can quantitatively test asymptotic safety with a ... joint phenomenology of cosmology, particle physics, and gravitational astronomy.

Maintaining **cosmic censorship in gravitational EFTs** might be a very nontrivial constraint.

Even without smoking-gun signatures ... **not everything goes in quantum gravity** once we push for quantitative phenomenology.

We can quantitatively test asymptotic safety with a ... joint phenomenology of cosmology, particle physics, and gravitational astronomy.

Maintaining **cosmic censorship in gravitational EFTs** might be a very nontrivial constraint.

Even without smoking-gun signatures ... **not everything goes in quantum gravity** once we push for quantitative phenomenology.

- thank you -

- thank you -