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Introduction
Flow equations

On the road to QG: where does QFT come in?

Take a background metric g and perturb with a
symmetric 2-form h. What can go wrong?!

The theory is power-counting
non-renormalisable, so either we treat it as an
effective theory [Bjerrum-Bohr, Donoghue,. . . ], or we
look for a non-Gaussian fixed point (assymptotic
safety) [Wetterich, Reuter, Saueressig, Eichhorn,

Reichert, Held, Knorr, Platania. . . ]

Some things to consider: Lorentzian signature,
background independence, gauge invariant
observables, locality vs non-locality.
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Introduction
Flow equations

Algebraic QFT on curved spacetimes

Before we get to QG: QFT on curved spacetimes. Many of its
conceptual problems can be solved in the algebraic approach.
[Hollands, Wald, Brunetti, Fredenhagen, Verch, Fewster, Dappiaggi,

Pinamonti, . . . ].

It generalizes the original algebraic quantum field theory
(AQFT) framework on Minkowski spacetime [Haag, Kastler, Araki].
The main idea is to encode physical information in algebras
A(O) (interpreted as algebras of observables) assigned to open
regions O ⊂ M.

Main advantage

Construction of observables A(O) is independent from the
construction of states. Entanglement and superposition are properties
of states (always non-local) not of observables (often local).
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Perturbative algebraic quantum field theory

Perturbative algebraic quantum field theory (pAQFT) is a
mathematically rigorous framework that allows to build
interacting QFT models on curved spacetimes using formal
power series.

Main contributions:

Free theory obtained by the formal deformation quantization of
Poisson (Peierls) bracket: ?-product ([Dütsch-Fredenhagen 00,
Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, . . . ]).
Interaction introduced in the causal approach to renormalization
due to Epstein and Glaser ([Epstein-Glaser 73]),
Generalization to gauge theories using homological algebra
([Hollands 08, Fredenhagen-KR 11]).
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Physical input

A globally hyperbolic spacetime M with metric g.

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).

Typically E(M) is a space of smooth sections of some vector
bundle E π−→ M over M. For the scalar field: E(M) ≡ C∞(M,R).
For perturbative gravity E(M) = Γ((T∗M)⊗2).

The choice of action functional I specifies the dynamics. We use
a modification of the Lagrangian formalism (fully covariant).
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Building models in pAQFT I

We model observables as functionals F(M) on the space E(M)
of all possible (off-shell) field configurations.

On F(M) we introduce first classical dynamics by means of a

Poisson structure (Peierls bracket): {F,G} =

〈
δF
δϕ
,∆

δG
δϕ

〉
,

where ∆ = ∆R−∆A (Green functions for the linearized action).

Use the deformation quantization to construct the
non-commutative algebra A(M) = (F(M)[[~]], ?), such that

F ? G ~=0−−→ FG
1
i~

(F ? G− G ? F)
~=0−−→ {F,G} .
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Building models in pAQFT II

We work all the time on the same vector space of functionals, but
we equip it with different algebraic structures (Poisson bracket,
?-product).

For a quadratic action I0 that induces hyperbolic equations of
motion (e.g. −(2 + m2)ϕ = 0), ? can be constructed directly,
starting from ∆ and choosing a choice of a 2-point function for a

quasifree Hadamard state: ∆+ =
i
2

∆ + H.

F ?H G .
= m ◦ e~

〈
∆+, δ

δϕ
⊗ δ
δϕ

〉
(F ⊗ G) ,
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Time-ordered products

Take an interaction V ∈ Floc(M) and define the formal S-matrix

S(λV)
.
=

∞∑
n=0

1
n!

(
iλ
~

)n

V ·T . . . ·T V ,

where ·T is obtained from

F ·T G .
= m ◦ e~

〈
∆F, δ

δϕ
⊗ δ
δϕ

〉
(F⊗G) , ∆F =

i
2

(∆R + ∆A) + H

after Epstein-Glaser renormalization.
We also introduce the time-ordering map T , so that
F ·T G = T (T −1F · T −1G). It formally corresponds to path
integrating with a Gaussian measure:

T F(0) ∼
∫

F(ϕ)dµ(ϕ)
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Interacting fields and states I

Define relative S-matrices by: SλV(F)
.
= S(λV)−1 ? S(λV + F),

where the inverse of S is the ?-inverse.

We define the interacting field corresponding to F by

Fint = −i~
d
dt
SλV(tF)

∣∣
t=0 ≡ RλV(F) ,

In the algebraic approach, states are functionals ω : A(M)→ C
with ω(1) = 1 and ω(A∗A) ≥ 0. (Relation to Hilbert spaces via
GNS theorem).

A natural state on F(M) and hence A(M) is given by evaluation
at a given field configuration. For the scalar field we can take
ω(F) = F(0).
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Interacting fields and states II

Wightman n-point functions of the free theory are

Wn(f1, . . . , fn) = (Φ(f1) ? · · · ? Φ(fn))(0) ,

where Φ(f )(ϕ) =

∫
ϕ(x)f (x)dµ(x).

Interacting correlation functions are obtained as:

(Φint(f1) ? · · · ? Φint(fn))(0) ,

similarly for other observables in the theory.
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RG flow and pAQFT

Wetterich equation on Lorentzian manifolds, Edoardo D’Angelo,
Nicolò Drago, Nicola Pinamonti, KR [arXiv:2202.07580]

Lorentzian Wetterich equation for gauge theories, Edoardo
D’Angelo, KR [arXiv:2303.01479]

We propose new flow equations that can be realized on arbitrary
globally hyperbolic manifolds in any Hadamard state (examples:
deSitter, thermal states).
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Generating functions

For an arbitrary but fixed Hadamard state ω, define:

Z(j) := ω(SV(J)) = ω[S(V)−1 ? S(V + J)] = ω[RVS(J)] ,

where J(χ) =

∫
M

jχ for a source j.

It is a generating function for time-ordered interacting
correlators:

δnZ
inδj(x1)...δj(xn)

∣∣
j=0 = ω ◦ RV (χ(x1) ·T ... ·T χ(xn))

= ωV(χ(x1) ·T · · · ·T χ(xn)) = ω ◦ RV(χ(x1) ·T · · · ·T χ(xn)) ,

where ωV
.
= ω ◦ RV is the interacting state.
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Effective action

Let W(j) be the functional defined by

Z(j) = eiW(j) .

The effective action Γ̃ is Γ̃(φ) = W(jφ)− Jφ(φ), where
jφ ∈ C∞c (M) is the current defined by

δW
δj

∣∣∣∣
j=jφ

= φ ,

for φ ∈ E .
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Introduction
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Choice of the regulator

We use a local regulator

Qk = −1
2

∫
dx qk(x)χ(x)2 ,

and chose qk(x) = k2f (x), where f is a compactly supported
smooth function (to be taken to 1). Compare: Spectral functions
of gauge theories with Banks-Zaks fixed points, Yannick Kluth,
Daniel F. Litim, Manuel Reichert, Phys.Rev.D 2023.

Modify the free theory: I0k = I0 + Qk. The regularised
generating functional Zk is

Zk(j) := ω(S(V)−1 ? S(V + J + Qk)) ,

We also have Wk(j) = −i log Zk(j), Γ̃k(φ) = Wk(j‘φ)− Jφ(φ)
and finally we can translate Γ̃k to get the average effective action,

Γk(φ) = Γ̃k(φ)− Qk(φ) .

Kasia Rejzner Lorentzian asymptotic safety on curved backgrounds 16 / 19
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Choice of the regulator

We use a local regulator

Qk = −1
2

∫
dx qk(x)χ(x)2 ,

and chose qk(x) = k2f (x), where f is a compactly supported
smooth function (to be taken to 1). Compare: Spectral functions
of gauge theories with Banks-Zaks fixed points, Yannick Kluth,
Daniel F. Litim, Manuel Reichert, Phys.Rev.D 2023.
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Flow equations I

By definition:

∂kWk(j) = −1
2

∫
dx∂kqk(x)

1
Zk(j)

ω(S(V)−1?[S(V+J+Qk)·T T χ2(x)]) .

After a short computation:

∂kΓk(φ)

= −1
2

∫
dx∂kqk(x)

[
1

Zk(jφ)
ω
(
RV(S(Jφ+Qk)·T T χ2(x))

)
−φ2(x)

]
= lim

y→x

i
2

∫
dx∂kqk(x)

[
δ2Wk(j)
δj(x)δj(y)

− iH̃F(x, y)

]
,

where we use an appropriate distribution H̃F. This corresponds
to a choice of normal ordering. Hence...
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Flow equations II

Wetterich-form equation

∂kΓk = − i
2

∫
dx∂kqk(x) :

[
Γ

(2)
k − qk

]−1
:H̃F

(x) ,
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Thank you very much for your attention!
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