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Overview

▶ What is the role of the conformal factor in AS?
▶ Conformally reduced R+R2 theory
▶ Beyond the polynomial truncations
▶ The UV critical manifold: evidence for and against finite

dimensionality
▶ The role of split-symmetry
▶ Gauge invariance reloaded
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R + R2

▶ First attempt to go beyond EH truncation by Reuter and
Lauscher (2002)

▶ Machado and Percacci (2009): pure quadratic theory
▶ Demmel, Saueressig and Zanusso (2015): scaling solution

from f(R) approximation
▶ Knorr (2021): R+R2 and R+R3 - flat projection -
▶ Question: does the projection/background matter? - see ηkin

vs ηpot discussion
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Conformal factor in QG

▶ In a series of papers Reuters and collaborators have clarified
that conformal factor plays a central role in the emergence of
the NGFP in the ultraviolet region and in the determination of
the critical properties of the theory (see Reuter and Weyer)

▶ There are two issues in particular which make the emergence
of AS gravity highly non-trivial, the first one is the use of the
background field approach, and the second is the pivotal role
played by the conformal mode instability.

▶ In fact, the central idea of conformal field quantization is to
employ the background metric (in the sense of the
background field method) in constructing the Wilsonian
renormalization group equations.
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▶ On the other hand, as the conformal factor has the wrong
kinetic sign in the euclidean theory, either the conformal
factor is integrated out before doing any functional integral (’t
Hooft), or a special regulator must be employed to cutoff
modes with the “wrong” ultraviolet stability properties.

▶ As first discussed in AB and Guarnieri (2012), the IR
evolution of the renormalization trajectory can be problematic
and only an ultraviolet evolution can be consistently defined.

▶ Most probably a new kind of perturbative continuum limit for
quantum gravity emerges in the deep UV for the conformally
reduced theory. (see Morris)
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Conformally reduced EH (CREH)

▶ In the standard framework a background metric ḡµν is chosen
in order to perform the actual calculations, and the
fluctuations hµν are thus “integrated-out" in momentum shell.

▶ The background should be dynamically determined by the
requirement that the expectation value of the fluctuation field
vanishes, ⟨hµν⟩ ≡ h̄µν = 0.

▶ Any physical length must then be proper with respect to the
background metric ḡµν .

▶ In the conformally reduced theory we assume

ḡµν = χ2
B ĝµν

where ĝµν is a reference metric which plays no dynamical role
but it is instead fixed to perform the actual calculations on
the geometry defined by ḡ.
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CREH

▶ Let us now consider S[χ] to be the action for the fundamental
field χ(x) that we write as χ(x) = χB(x) + f(x) where
χB(x) is a non-dynamical background field and f(x) a
dynamical (fluctuating) field.

▶ In this formalism χ plays the same role of a microscopic
metric γµν in the full theory.

▶ the expectation values f̄ ≡ ⟨f⟩ and ϕ ≡ ⟨χ⟩ = χB + f̄ are the
analogs of h̄µν ≡ ⟨hµν⟩ and gµν = ⟨γµν⟩ = ḡµν + h̄µν in the
full theory.
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CREH R + R2

Consider the RG flow equation approach to study the conformal
sector of the the following theory:

S =
∫
ddx

√
g

[ 1
16πG(−R+ 2Λ) + βR2

]
. (1)

A Weyl rescaling gµν = ϕ(x)2ν ĝµν is implemented, where
ν = 2/(d− 2) and ĝµν is a reference metric. Weyl rescaling leads
to

R = ϕ−2ν

(
R̂− 2ν(d− 1)□̂ϕ

ϕ
+ g(d) ĝ

µν∂µϕ∂νϕ

ϕ2

)
, (2)

where g(d) =
(
2ν(d− 1) − ν2(d− 1)(d− 2)

)
= 0 as

ν = 2/(d− 2) and R̂ = R(ĝ).
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CREH R + R2

Γk =
∫
ddx
√
ĝ

[
−1

2Zkϕ□̂ϕ+ U [ϕ]+ 16
(
d− 1
d− 2

)2
βk(□̂ϕ)2ϕ

2d−8
d−2 −2+

−8
(
d− 1
d− 2

)
βkR̂(□̂ϕ)ϕ

2d−8
d−2 −1

]
, (3)

where U [ϕ] = AZkR̂ϕ
2 − 2AZkΛkϕ

2d
d−2 + βkR̂

2ϕ
2d−8
d−2 ,

A = (d− 2)/8(d− 1) and

Zk = − 1
2πGk

d− 1
d− 2 .
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PT flow-equation

We use the PT FRG

∂t Sk[f ;χB ] = −1
2 Tr

∫ ∞

0

ds

s
∂t ρk exp

{
− s

δ2Sk[f ;χB ]
δf2

}
, (4)

where t ≡ log(k) is the RG time and ρk = ρk[χB]. For actual
calculations we shall use various families of smooth cutoffs
ρk ≡ ρ1,2

k (s, n)

ρ1
k(s, n) = Γ(n, sZ k̂2) − Γ(n, sZ Λ2)

Γ(n) (5)

ρ2
k(s, n) = Γ(n, s nZ k̂2) − Γ(n, s nZ Λ2)

Γ(n) . (6)

Here n is an arbitrary real, positive parameter that controls the
shape of the ρ1,2

k (s, n) in the interpolating regions, and
Γ(α, x) =

∫∞
x dt tα−1e−t denotes the incomplete Gamma-function.
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FRG

▶ Z is a constant which has to be adjusted: being the kinetic
terms of the field of type a of the form −Za□̂, we impose
exactly Z = Za. With this prescription, in (5) the eigenvalues
of □̂ are cut off at ∼ k̂2, instead of ∼ k̂2/Za. Similarly, in (6)
the cutoff is located at ∼ k̂2/n. These two choices represent
two so-called ‘spectral adjustments’

▶ the trace inside the flow equation (4) must be performed on
the modes of the background ḡµν . This is concretely
performed inside the regularizators through the identification
k̂2 = χ2ν

B k̄
2.

▶ Finally, Λ represents the cutoff in the UV. As we are
interested only in the Wilson-Kadanoff portion of the RG, the
UV cut-off is sent to infinity.
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FRG

Overall, this leads to implementing the scaling laws

∂tρ
1
k(s, n) = − 2

Γ(n) (sZ k2 χ2ν
B )ne−s Zk2χ2ν

B . (7)

∂tρ
2
k(s, n) = − 2

Γ(n) (s nZk2 χ2ν
B )ne−s nZk2χ2ν

B (8)

inside the flow equation. Concretely, the calculations for both
cutoff families are performed through a range of values for the
smoothness parameter n: n = {3, 5, 7, 9, 10, 15, 20, 30, 40, 50}.
The limiting case n → ∞ is also considered for the second
regularizator: this is readily done through

lim
n→∞

∂tρ
(2)
k (s, n) = − 2

Z k2 χ2ν
B

δ

(
s− 1

Z k2 χ2ν
B

)
. (9)
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FRG

Cutoffs (7) and (8) are built through the regularization on k̄2,
which are the modes of the −□̄ operator. Because our model
contains both −□̄ and □̄2 operators, we also apply a regularization
on the quadratic operator in order to check possible differences in
the physics of the results. Higher-derivative cutoffs are defined:

ρ̃1
k(s, n) = Γ(n, s (Zk̂2 + Z2k̂4)) − Γ(n, s (ZΛ2 + Z2Λ4))

Γ(n) (10)

ρ̃2
k(s, n) = Γ(n, s n (Zk̂2 + Z2k̂4)) − Γ(n, s n (ZΛ2 + Z2Λ4))

Γ(n) , (11)

see also (Buccio and Percacci recent works).
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FRG

In particular in the Λ → ∞ limit we obtain,

∂tρ̃
1
k(s, n) = − 2

Γ(n) (s (Zk2χ2ν
B + Z2k4χ4ν

B ))n×

× e−s (Zk2χ2ν
B +Z2k4χ4ν

B ). (12)

∂tρ̃
2
k(s, n) = − 2

Γ(n) (s n (Zk2χ2ν
B + Z2k4χ4ν

B ))n×

× e−s n (Zk2χ2ν
B +Z2k4χ4ν

B ). (13)
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S4 projection

Projecting on S4 we arrive at:

∂tΓk = 1
2

∫ ∞

0

ds

s

(
− 2

Γ(n) (s nZkχ
4

d−2
B k2)ne−s n Zkχ

4
d−2
B

k2
)

×

× e
−s

[
Zk

(
2AR̂−2ABΛkχ

2d
d−2 −2

B

)
+CβkR̂2χ

2d−8
d−2 −2

B

]
TrW (−□̄), (14)

where

W (−□̄) = e
−s

[
−

(
Zkχ

4
d−2
B

+DβkR̂χ

2d−4
d−2 −2

B

)
□̄+Eβkχ

2d
d−2 −2

B
□̄2

]
, (15)

with D = 16
(

d−1
d−2

)(
2d−8
d−2 − 1

)
and E = 32

(
d−1
d−2

)2
.
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Local expansion

The last trace can be performed through a Seeley-Gilkey-deWitt
heat kernel expansion at quadratic order in curvature:

Tr[W (−□̄)] = 1
(4π)d/2

∫
ddx
√
ḡ
∑
k≥0

[ak]Q d
2 −k, (16)

where Qn = 1
Γ[n]

∫∞
0 dzW (z)zn−1 and where the first coefficients

of the expansion in the spherical projection are [a0] = 1,
[a1] = R̂/6, [a2] = f(d)R̂2 with

f(d) = 1
18

(
1
4 + 1

5d(d− 1) − 1
10d

)
. (17)
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Results

Reuter-Lauscher (full, S4): (g∗, λ∗, β∗) = (0.292, 0.330, 0.005)
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Critical exponents

For additional details see Maria’s poster. - open questions -
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Beyond polynomial approximations

▶ Let us consider CR gravity theory of the type

S =
∫
ddx

√
g [f(g)R+ h(g)] . (18)

where f(g) and h(g) are completely arbitrary functions. What
is the flow of fk and gk in the CR theory?

▶ First attempts: Reuter and Weyer (2009), AB and F.
Guarnieri (2012) - only flow for hk(g) (LPA approximation).

▶ Complete flow for fk and gk described for the first time by
Morris and collaborators in a series of papers: Dietz, Morris
and Slade (2019), Dietz, Morris (2015), Bridle, Dietz and
Morris (2014), Labus, Morris and Slade (2016)

▶ Key strategy: solve flow equations + msWI using a special
class of cutoff functions.
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Beyond polynomial approximations

▶ Key results: infinitely many relevant directions
▶ Is the theory predictive?
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Beyond LPA

let us consider

SEH [gµν ] = − 1
16π

∫
ddx

√
g G−1 (R− 2Λ), (19)

which, by Weyl rescaling gµν = ϕ2ν ĝµν can be written as

SEH
k [ϕ] =

∫
ddx

√
ĝ Zk

2

(
ĝµν ∂µϕ∂νϕ+AR̂ϕ2 − 4AΛkϕ

2d
d−2

)
, (20)

where R̂ ≡ R(ĝ), A = A(d) = d−2
8(d−1) and

Zk = − 1
2πGk

d− 1
d− 2 (21)
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beyond LPA

It makes sense to consider a general action of the type

Sk[ϕ] =
∫
ddx

√
ĝ

(1
2Zk[ϕ] ĝµν∂µϕ∂νϕ+ Vk[ϕ]

)
, (22)

so that the LHS of the flow equation reads

∂tΓk =
∫
ddx

√
ĝ

(1
2(k∂kZk)[χB]f̄□̂f̄ + k∂kVk[χB]

)
. (23)

The RHS can instead be expressed as

−1
2

∫
ds

s

∫
ddx

√
ḡ

∫
ddp̄

(2π)d
(k∂kρk)⟨x|p̄⟩⟨p̄|e−sΓ(2)

k |x⟩, (24)

where the trace is performed on the modes of −□̄.
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Beyond LPA

This expression can be expanded through Baker-
Campbell-Hausdorff expansion up to quadratic terms in f̄ , leading
to

− 1
2

∫
ds

s

∫
ddxχdν

B

√
ĝ (k∂kρk)

∫
ddp̄

(2π)d
e−s(Zkχ2ν

B p̄2−ην +V
(2)

k
)×

×
(

1 − sB1 + s2

2!B2 − s3

3!B3 + s4

4!B4

)
(25)

where the identity
√
ḡ = χdν

B

√
ĝ was inserted.

23 / 39



The anomalous dimension

We consider an anomalous scaling for the χB and we write

χB = ψ k
η
2 . (26)

being ψB a dimensionless field and η the anomalous dimension.
While the identity □̂ = χ2ν

B □̄ always holds true, in order for □̂ to
show the correct dimensionality of k2 ([□̂] = k2), it must imply:
[□̄] = k2−ην . Hence, the relation between momenta built with the
reference metric and the background metric must be of the
following form:

k̂2 = χ2ν
B k̄

2−ην , (27)

which for d = 4, i.e. ν = 1, simply reduces to k̂2 = χ2
B k̄

2−η.

24 / 39



FRG for V and Z

The dimensional equations (with general dimension d and shaping
parameter n) for Vk and Zk are:

∂tVk = n
d

f0
+n
ψdνk−f0nW

− d
f0

−n

1 Z
d

f0
+n

k χ
2ν

(
d

f0
+n

)
B (28)

and

∂tZk = − 1
3f4

0
q0 n

d
f0

+n
Z

d
f0

+n−1
k k

ην(d+f0)
f0

+2n
χ

2ν(d+nf0−4)
f

B ψdν W
− d+f0(n+3)

f0
2 ×

×

(
χ

8ν
f0
B k2ην

(
V ′′

k
2
(

3f3
0ZkZ

′′
k + u0Z

′
k

2
)

+ r0V
(3)

k Z((f0 + 1)s0V
(3)

k Zk − 2t0V ′′
k Z

′
k)
)

+

− 2nZk k
l0 χ

2l0ν
f0

B

(
r0 t0 V

(3)
k ZkZ

′
k − V ′′

k

(
3f3

0ZkZ
′′
k + u0 Z

′
k

2
))

+

+ k4 n2 Z2
k χ

4ην2
f0

B

(
3f3

0ZkZ
′′
k + u0Z

′
k

2
))

, (29)

where the derivatives are taken with respect to the field ϕ.
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Scaling

▶ We now introduce Yk, zk, X as the dimensionless
counterparts of the potential Vk, the renormalization function
Zk and the field ϕ:

Vk[ϕ] = Yk[X]kd (30)
Zk[ϕ] = zk[X]kd−2−η (31)
ϕ = X k

η
2 , (32)

▶ Following the single metric approximation the expectation
value of the dimensionless field X is identified with the the
background ψB, which, for the sake of simplicity, from now on
is indicated as x:

X = ψB ≡ x . (33)
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Flow equations

∂tYk(x) = −4Yk + η xY ′
k

2 +n
4

η−2 +n
x

10η
η−2 +2n

z
4

η−2 +n

k Q
− 4

η−2 −n−3
1 Q3

2

∂tzk(x) = (η − 2) zk + ηxz′
k

2 − n
4

η−2 +n((η − 2)n+ 4)
3(η − 2)4 x

4η
η−2 +2n×

× z
4

η−2 +n−1
k Q

− 4
η−2 −n−3

1

{
(η − 1)(Y (3)

k )2z2
k

(
(η − 2)(n+ 1) + 4

)
×

×
(
(η − 2)(n+ 2) + 4

)
−
(
4(η − 1) + (η − 2)(3η − 5)

)
×

×
(
(η − 2)(n+ 1) + 4

)
2Y (3)

k zkz
′
k Q1 +

[
3(η − 2)3zkz

′′
k+

+
(
(η − 2)2 + 4(5η − 9)(η − 2) + 16(η − 1)

)
(z′

k)2
]
Q2

1

}
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n → ∞

In this limit, the two flow equations read:

∂tYk(x) = −4Yk + 1
2ηxY

′
k + x4e

−
Y ′′

k
x2zk (34)

and

∂tzk(x) = (η − 2)zk + 1
2ηxz

′
k − e

−
Y ′′

k
x2zk

3(η − 2)3x2z2
k

×

×
[
(η − 2)2(η − 1)(Y (3)

k )2+

+ 2
(
−3η3 + 13η2 − 20η + 12

)
x2Y

(3)
k z′

k+

+ x4
(
3(η − 2)3zkz

′′
k +

(
21η2 − 64η + 60

)
(z′

k)2
) ]

(35)
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Fixed points

It is easy to check that the functions

z = − 1
w

(36)

Y = u

w
x4 (37)

are such that all dependence on x gets canceled both in Eqs. (34)
and (35), so that the two differential equations reduce to simple
algebraic equation:

e12 u + 2u (−2 + η)
w

= 0 (38)

2 − η

w
− 192 e12 u u2 (−1 + η)

−2 + η
= 0 (39)
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phase diagram
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Eigendirections and critical exponents

The stability of the FP is studied by assuming:

Y (x, t) = Y ∗(x) + δ e−t θh(x) , (40)
z(x, t) = z∗(x) + δ e−t θf(x) . (41)

We consider f(x) = s xp and h(x) = r xq, with non-negative
integers p and q and with constant s and r.
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First order equations

The linearized equations become

4 − ηq

2 − e12u∗
w∗

(
12 s u∗ x−q+p+4

r
+ (q − 1) q

)
= θ (42)

16 (η − 1) (q − 1) q r e12u∗
u∗w∗ (q + 12u∗ − 2)xq−p−4

(η − 2)s

+
[
384(η − 2)(η − 1) (u∗)2 (6u∗ + 1) + 16(η (3η − 7) + 6) p u∗

+ (η − 2)2p− (η − 2)2p2
]
e12u∗

w∗

(η − 2)2 − 2 − η

2 (p+ 2) = θ (43)

if q = p+ 4 these two equations become independent of x and we
have:
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Stability
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Stability
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UV critical manifold

▶ For −5 < η < ηc = 0.96 (the blue strip) the only relevant
operator is the couple (s, rx4), all higher powers are irrelevant

▶ For 1 < η < 2 the critical exponents are both reals
▶ For 2 < η < 10 infinitely many relevant operators are

generated
▶ The theory is predictive, despite the existence of a continuous

line of fixed points.
▶ There does exist a phase of unbroken diffeomorphism

invariance
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Gauge invariance reloaded

▶ When delving into the realm of gauge transformations, it’s
customary not to explicitly specify whether they should be
interpreted as active transformations, where the system
undergoes modification, or passive transformations. This
ambiguity arises from the inherent difficulty of distinguishing
between active and passive gauge transformations in many
cases.

▶ In the context of General Relativity, a similar conundrum
exists with respect to differentiating between diffeomorphisms
(active point transformations) and coordinate transformations
(passive point transformations). Initially, there is no clear-cut
method for making this distinction.
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GI

▶ In the realm of physics, it’s common practice to perceive
gauge transformations as passive alterations. This perspective
leads physicists to consider gauge symmetry as a mere
redundancy within the mathematical description of a physical
system.

▶ Conversely, mathematicians tend to view gauge
transformations as active changes. From this viewpoint, gauge
symmetry is seen as a genuine physical property of the
system, not merely a mathematical artifact. This difference in
perspective highlights the diverse ways in which physicists and
mathematicians approach the concept of gauge symmetry and
its role in understanding physical systems.

▶ This is true as long as one deals only with dynamical fields.
But when one introduces a background field into the
game this equivalence does not hold anymore!
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GI

▶ Weak Gauge Invariance: invariance under passive
transformation

▶ Strong Gauge Invariace: invariance under Strong and Weak
gauge transformation

Measurable quantities, i.e. quantities that can be extracted from
experimental data, must be gauge invariant, but WGI or SGI?
Cross sections are clearly observables and must be SGI, but we can
introduce a class of "pseudo-observables" which can only be
observed via a controlled expansion on a BF. (see parton
distribution in QCD).
BF as it stands represents somehow a reference configuration. The
choice of a particular background is essentially a matter of
convenience. In Cosmology this amounts to the choice of a
preferred foliation (see also S-W lemma).
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Conclusions

▶ CR R+R2 theory is AS -
▶ Not clear if this is due to the choice of the background or to

the search domain in the parameter space
▶ The structure of the UV critical mfd is finite dimensional in a

controlled BF expansion.
▶ SGI can be problematic in QG
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