Towards understanding the predictivety of asymptotically safe f(R)-gravity

Maximilian Becker¹

¹IMAPP, Radboud University Nijmegen

In collaboration with A. Kurov, and F. Saueressig

Quantum Spacetime and the Renormalization Group 2023

October 3, 2023

通 と く ヨ と く ヨ と

-

The asymptotic safety scenario

- Goal: predictive quantum field theory of gravity
- The Asymptotic Safety (AS) hypothesis: high-energy completion of gravity is provided by an interacting RG fixed point

The AS scenario implies non-trivial quantum corrections to the scaling dimensions of operators (and correlation functions) that are characteristic for the corresponding universality class.

Given an interacting UV fixed point has been identified,

- 1. How many relevant parameters does the theory have?
- 2. How do we construct meaningful observables?

Both questions can be probed:

- via the Wetterich equation, a Functional Renormalization Group Equation (FRGE)
- via a composite-operator FRGE

• Consider the following scaling argument (cf. Codello, d'Odorico '15):

$$G_{12}(r) \equiv \frac{1}{Z} \int \mathcal{D}g \, e^{-S} \int_{x,y} \frac{1}{\text{Vol}} \sqrt{g_x} O_1(x) \sqrt{g_y} O_2(y) \,\delta\left(d_g(x,y) - r\right)$$

$$\Rightarrow G_{12}(\lambda r) = \lambda^{\frac{\Delta_1^g + \Delta_2^g - \Delta_{\text{Vol}}^g - 1}{\Delta_{g_g}^g}} G_{12}(r)$$

- We need to compute the UV scaling properties of the geometric operators
- The Functional Renomalization Group (FRG) offers two avenues for their computation: the Wetterich equation (for (quasi-)local operators) and via composite operators
- Analogy: scaling dimensions from the KPZ equation

• • = • • = •

-

The Wetterich equation:

$$k\partial_k \Gamma_k = \frac{1}{2} \mathsf{Tr} \left[\left(\Gamma_k^{(2)} + \mathscr{R}_k \right)^{-1} k \partial_k \mathscr{R}_k \right]$$

- Typically solved with a truncation ansatz of the form $\Gamma_k = \sum_i \bar{u}_i(k) M_i$
- The RG equations take the form $k\partial_k u_i(k) = \beta_i(u(k))$

The UV fixed point

- A UV fixed point u^* is given by $\beta_i(u^*) = 0$
- Solution for the linearized theory: $u_i(k) = u_i^* + \sum_l c_l V_l^{\prime} (k_0/k)^{\theta_l}$
- The universal critical exponents θ_l are the eigenvalues of the stability matrix B, given by

$$\sum_{j} B_{ij} V_{j}^{I} = -\theta_{I} V_{I} \text{ and } B_{ij} = \frac{\partial}{\partial u_{j}} \beta_{i} \Big|_{u=u^{*}}$$

• The relevant (attractive) directions are those with $\operatorname{Re} \theta_l > 0$

向 ト イヨ ト イヨ ト

э.

Flow equation for composite operators

The composite-operator FRGE (Cf. Pawlowski '07; Igarashi, Itoh, Sonoda '10; Pagani '16):

$$\partial_t \left[\mathscr{O}_k\right]_i = -\frac{1}{2} \mathsf{Tr} \left[\left(\Gamma_k^{(2)} + R_k \right)^{-1} \left[\mathscr{O}_k \right]_i^{(2)} \left(\Gamma_k^{(2)} + R_k \right)^{-1} \partial_t R_k \right]$$

- A set of composite (geometric) operators [𝒪_k]₁,..., [𝒪_k]_n can be incorporated into the FRG framework via the simple substitution Γ_k → Γ_k + Σ_i ε_i · [𝒪_k]_i
- Expand the renormalized composite operators in terms of the basis of bare composite operators, [𝒫_k]_i[g, ḡ] = ∑_j Z_{ij}(k) 𝒫_j[g, ḡ]

Then,

$$\sum_{j=1}^{n} \bar{\gamma}_{ij}(k) \mathscr{O}_{j} = -\frac{1}{2} \operatorname{Tr} \left[\left(\Gamma_{k}^{(2)} + R_{k} \right)^{-1} \mathscr{O}_{i}^{(2)} \left(\Gamma_{k}^{(2)} + R_{k} \right)^{-1} \partial_{t} R_{k} \right]$$

- Anomalous dimension matrix $\bar{\gamma}_{ij}(k) = \sum_{l} (Z^{-1})_{il}(k) \partial_t Z_{lj}(k)$
- Renormalization behavior: The full scaling dimensions of the family of operators {[*O_k*]_i} are given by the eigenvalues of -D_{ij} + γ_{ij}

6/21

Two approximations are required to solve the composite-operator flow equation,

$$\sum_{j=1}^{n} \bar{\gamma}_{ij}(k) \mathcal{O}_{j} = -\frac{1}{2} \operatorname{Tr} \left[\left(\Gamma_{k}^{(2)} + R_{k} \right)^{-1} \mathcal{O}_{i}^{(2)} \left(\Gamma_{k}^{(2)} + R_{k} \right)^{-1} \partial_{t} R_{k} \right]$$

Solution strategy:

• The first truncation is the usual one for the EAA:

$$\Gamma_k = \sum_i \bar{u}_i(k) M_i$$

• The second truncation is the one for the basis of composite operators:

$$[\mathscr{O}_k]_i = \sum_j Z_{ij}(k) \, \mathscr{O}_j$$

• In general, the size of the anomalous dimension matrix depends on the second, while its arguments depend on the first truncation:

$$\gamma_{ij}(k) \equiv \gamma_{ij}(\bar{u}(k))$$

The Wetterich equation:

$$k\partial_k \Gamma_k = \frac{1}{2} \operatorname{STr} \left[\left(\Gamma_k^{(2)} + \mathscr{R}_k \right)^{-1} k \partial_k \mathscr{R}_k \right]$$

with $\Gamma_k = \Gamma_k[h_{\mu\nu}, \text{ghosts}; \bar{g}_{\mu\nu}]$. Standard ansatz:

$$\Gamma_{k} = \Gamma_{k}[h_{\mu\nu}, \text{ghosts}; \bar{g}_{\mu\nu}] = \bar{\Gamma}_{k}[g] + \underbrace{\hat{\Gamma}[g, \bar{g}]}_{=0} + S_{\text{gf}}[g - \bar{g}; \bar{g}] + S_{\text{gh}}[g - \bar{g}, \text{ghosts}; \bar{g}].$$

York decomposition, and rescale the field to be orthonormal on Einstein spaces:

$$h_{\mu
u}
ightarrow (h_{\mu
u}^{\mathrm{TT}}, \hat{\xi}_{\mu}, \hat{\sigma}, \hat{h})$$

イロト イ団ト イヨト イヨト 二ヨー

With $S_{\rm gf} = \frac{1}{2\alpha} \int d^d x \sqrt{g} \bar{g}^{\mu\nu} F_{\mu} F_{\nu}$ on has in the limit $\alpha \to 0$ (cf. Machado, Saueressig '15, Codello et al. '08):

$$\partial_t \bar{\Gamma}_k = \frac{1}{2} \mathsf{Tr}_{\mathrm{TT}} \left[\left(\bar{\Gamma}_{k_{\mathrm{TT}}^{(2)}} + \mathscr{R}_{k_{\mathrm{TT}}} \right)^{-1} \partial_t \mathscr{R}_{k_{\mathrm{TT}}} \right] \\ + \frac{1}{2} \mathsf{Tr}_{\hat{h}\hat{h}} \left[\left(\bar{\Gamma}_{k_{\hat{h}\hat{h}}^{(2)}} + \mathscr{R}_{k_{\hat{h}\hat{h}}} \right)^{-1} \partial_t \mathscr{R}_{k_{\hat{h}\hat{h}}} \right]$$

 $+ \Gamma_k$ -independent terms from ghost terms/Jacobians

Ansatz:

$$\bar{\Gamma}_k = \int \mathrm{d}^d x \sqrt{g} f_k(R) = \int \mathrm{d}^d x \sqrt{g} k^d \mathcal{F}_k(\rho)$$

with the dimensionless function/radius

$$\mathcal{F}_k(\rho) = k^{-d} f_k(R) \quad , \quad \rho = k^{-2} R \, .$$

Then, the LHS of the Wetterich equation has the structure

$$\text{LHS} = \partial_t \bar{\Gamma}_k = \tilde{V} \left\{ (\partial_t \mathcal{F}_k)(\rho) + d\mathcal{F}_k(\rho) - 2\rho \mathcal{F}'_k(\rho) \right\} \;,$$

with $\int d^d x \sqrt{g} = V$ and $\tilde{V} = V k^{+d} \propto \rho^{-d/2}$. Since \mathscr{R}_k in generell depends affinely on f'_k and f''_k , the RHS has the structure

$$\operatorname{RHS} = \tilde{V} \left\{ I_0[\mathcal{F}_k](\rho) + (k^{-d+2}\partial_t f'_k) I_1[\mathcal{F}_k](\rho) + (k^{-d+4}\partial_t f''_k) I_2[\mathcal{F}_k](\rho) \right\} ,$$

with

$$\begin{split} l_0[\mathcal{F}_k](\rho) &= l_0^{\text{ind}}(\rho) + l_0^{\text{TT}}[\mathcal{F}_k](\rho) + l_0^{\hat{h}\hat{h}}[\mathcal{F}_k](\rho) \\ l_1[\mathcal{F}_k](\rho) &= l_1^{\text{TT}}[\mathcal{F}_k](\rho) + l_1^{\hat{h}\hat{h}}[\mathcal{F}_k] \\ l_2[\mathcal{F}_k] &= l_2^{\hat{h}\hat{h}}[\mathcal{F}_k] \,. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Next, the further ansatz is to expand \mathcal{F}_k in ρ , i.e., $\mathcal{F}_k(\rho) = \sum_{i=0} u_i(k)\rho^i$. Then the LHS becomes

$$\mathrm{LHS}/\tilde{V} = \sum_{i=0} \left\{ \partial_t u_i + (d-2i)u_i \right\} \rho^i \,,$$

while the ingredients of the RHS become

$$\begin{split} & l_0[\mathcal{F}_k](\rho) = \sum_{i=0} \omega_i(u) \rho^i \\ & (k^{-d+2} \partial_t f'_k) l_1[\mathcal{F}_k](\rho) = \sum_{i,j=0} \left[(d-2j+\partial_t) u_j \right] \tilde{\omega}_{ji}(u) \rho^i \\ & (k^{-d+4} \partial_t f''_k) l_2[\mathcal{F}_k] = \sum_{i,j=0} \left[(d-2j+\partial_t) u_j \right] \check{\omega}_{ji}(u) \rho^i \,. \end{split}$$

Note: $\tilde{\omega}_{0i} = \check{\omega}_{0i} = \check{\omega}_{1i} \equiv 0.$

(本部) (本語) (本語) (王) (王)

A comparison of the two approaches in the f(R)-truncation

With $\bar{\omega} = \tilde{\omega} + \check{\omega}$ and $c_i(u) := -(d - 2i)u_i$, the RHS is thus

$$\mathrm{RHS}/ ilde{\mathcal{V}} = \sum_{i=0} \left\{ \omega_i(u) - \sum_{j=0} c_j(u) ar{\omega}_{ji}(u)
ight\}
ho^i + \sum_{i,j=0} (\partial_t u_j) ar{\omega}_{ji}(u)
ho^i \, .$$

Setting LHS=RHS, we have in matrix notation

$$\partial_t u - c(u) = \omega(u) - c(u)\overline{\omega}(u) + (\partial_t u)\overline{\omega}(u)$$

Solving for $\partial_t u$, we arrive at the flow equation (cf. Falls et al. '14)

 $\partial_t u = \beta_u = c(u) + \omega(u)(1 - \bar{\omega}(u))^{-1} = \text{classical } \beta + \text{quantum corrections}$

The fixed points are given by

$$\beta_u = 0 \quad \Leftrightarrow \quad \omega(\mathbb{1} - \bar{\omega})^{-1} = -c \quad (\text{cf. } \eta = D).$$

The stability matrix is given by

$$B=\partialetaig|_{\mathrm{FP}}=(\partial\omega-c\partialar\omega)(\mathbbm{1}-ar\omega){-1}ig|_{u=u^*}+\partial cig|,$$

where $\partial c = -D \stackrel{d=4}{=} \operatorname{diag}(-4, -2, 0, +2, \dots)$.

Relationship with the composite operator formalism

Take the *u*-derivative of the RHS of the Wetterich equation:

$$\begin{split} \frac{\partial}{\partial u_{i}} \mathrm{RHS} &= \sum_{I=\mathrm{TT},\hat{h}\hat{h}} \frac{1}{2} \mathrm{Tr}_{I} \left[\frac{\partial}{\partial u_{i}} \frac{\partial_{t} \mathscr{R}_{kI}}{\left(\bar{\Gamma}_{k}^{(2)}{}_{I} + \mathscr{R}_{kI}\right)} \right] \\ &= \sum_{I} \left\{ -\frac{1}{2} \mathrm{Tr}_{I} \left[\left(\bar{\Gamma}_{k}^{(2)}{}_{I} + \mathscr{R}_{kI}\right)^{-1} \left(\frac{\partial}{\partial u_{i}} \underbrace{\bar{\Gamma}_{k}^{(2)}{}_{I}}_{=\mathscr{O}_{k}^{(2)}{}_{I} = \left(\int \mathrm{d}^{d} x \sqrt{\mathfrak{g}} \, k^{d} \rho^{i}\right)^{(2)}} \right) \left(\bar{\Gamma}_{k}^{(2)}{}_{I} + \mathscr{R}_{kI}\right)^{-1} \right] \\ &- \frac{1}{2} \mathrm{Tr}_{I} \left[\left(\bar{\Gamma}_{k}^{(2)}{}_{I} + \mathscr{R}_{kI}\right)^{-1} \left(\frac{\partial}{\partial u_{i}} \mathscr{R}_{kI} \right) \left(\bar{\Gamma}_{k}^{(2)}{}_{I} + \mathscr{R}_{kI}\right)^{-1} \right] \\ &+ \frac{1}{2} \mathrm{Tr}_{I} \left[\frac{\partial}{\partial u_{i}} \partial_{t} \mathscr{R}_{kI}}{\left(\bar{\Gamma}_{k}^{(2)}{}_{I} + \mathscr{R}_{kI}\right)} \right] \right\}. \end{split}$$

Evaluate at the fixed point and expand around $\rho = 0$:

$$\left. rac{\partial}{\partial u_i} \mathrm{RHS} \right|_{\mathrm{FP}} = ilde{V} \left\{ \sum_j \gamma_{ij}(u^*) + \delta \gamma_{ij}(u^*)
ight\}
ho^j \, .$$

Relationship with the composite operator formalism

Thus we have,

$$rac{1}{ ilde{
u}} rac{\partial}{\partial u_i} \mathrm{RHS} \Big|_{\mathrm{FP}} = \left\{ \sum_j \gamma_{ij}(u^*) + \delta \gamma_{ij}(u^*)
ight\}
ho^j ,$$

and on the other hand,

$$\frac{1}{\tilde{V}} \frac{\partial}{\partial u_i} \text{RHS}\Big|_{\text{FP}} = \left\{ \partial_i \omega_j \Big|_{u^*} - \sum_k \partial_i (c_k \bar{\omega}_{kj}) \Big|_{u^*} \right\} \rho^j \,.$$

Consequently, with $\omega':=\omega-c\bar{\omega},$ we have the relations

$$\partial \omega' \equiv \gamma + \delta \gamma$$

and (note: $\partial c = -D$),

$$B := \partial \beta = (\partial \omega - c \partial \bar{\omega}) (\mathbb{1} - \bar{\omega})^{-1} + \partial c$$
$$= (\partial c + \partial \omega') (\mathbb{1} - \bar{\omega})^{-1}$$
$$= (\partial c + \gamma + \delta \gamma) (\mathbb{1} - \bar{\omega})^{-1}$$

2

14/21

Image: 1 million of the second sec

Hence, there are two different ways of obtaining the theory's critical exponents, depending on whether the couplings' anomalous dimensions $\eta(u)$ on the RHS is differentiated or not:

- 1. Eigenvalues of $B \equiv \partial \beta(u^*)$ here, $\eta(u)$ on the RHS is differentiated
- 2. Eigenvalues of $-D + \gamma(u^*)$ here, $\eta(u) \equiv \eta^*$ on the RHS is fixed

Here, with an f(R)-type first and second truncation (with $\rho = k^{-2}R$):

• $\Gamma_k = \int \mathrm{d}^d x \sqrt{g} f_k(R) = \int \mathrm{d}^d x \sqrt{g} k^d \sum_{n=0}^{N_{\mathrm{prop}}} u_n(k) \rho^n$

•
$$\mathcal{O}_n = \int \mathrm{d}^d x \sqrt{g} R^n$$
 with $n = 0, 1, \dots, N_{\mathrm{scal}}$

An important feature is that the negative eigenvalues θ_n of *B* behave as (Falls et al. '14)

$$heta_n = heta_n^{
m G} + \Delta heta_n \quad {
m with} \quad \Delta heta_n o 0$$

as $n, N \to \infty$ and with $\theta_n^G = d - 2n$. Then, there are 3 relevant directions in the f(R)-truncation: $\theta_1 = \theta' \pm \theta''$ and θ_2 .

$$B := \partial \beta = (\partial \omega - c \partial \bar{\omega}) (\mathbb{1} - \bar{\omega})^{-1} + \partial c$$
$$= (\partial c + \gamma + \delta \gamma) (\mathbb{1} - \bar{\omega})^{-1}$$

The results differ vastly – e.g., for $N_{\rm scal} = N_{\rm prop} = 6$ we have

B = (-0.567615 1.78037 -0.149968 -0.567917 -0.0406642 0.14956	-7.42554 -5.23758 4.02842 1.77611 -0.874394 -0.512764	$\begin{array}{r} 0.0225945 \\ -0.94019 \\ -4.00389 \\ 0.75612 \\ 0.754532 \\ -0.167635 \end{array}$	-3.50096 -4.94022 -8.85596 2.0677 3.05935 -0.33753	9.57729 5.66781 - 4.79984 - 9.68653 5.79338 2.60899	10.5702 9.55175 11.4452 -0.174769 -8.28503 7.08364	5.27183 8.17227 18.4268 4.20415 -4.63791 -5.49057	
(0.14956	-0.512764 0.374747	-0.167635 -0.0986957	-0.33753 -0.526183	2.60899 	7.08364 0.424809	-5.49057 10.7684)

Eigenvalues: $\{-2.391 \pm 2.384i, -1.512, 4.161, 4.681 \pm 6.085i, 8.677\}$

-2.03863	-6.10938	24.0098	-249.086	2590.25	-26300.5	267992.
1.28713	-4.98407	14.2126	-141.618	1139.79	-8161.99	48955.9
0.798176	-5.69927	55.7601	- 364.884	1188.24	13484.7	- 397450.
0.	2.39453	-20.9592	180.194	-1143.4	4013.58	36785.8
0.	0.	4.78906	-44.4927	368.318	-2321.34	8334.4
0.	0.	0.	7.98176	-76.2996	620.131	-3898.69
0.	0.	0.	0.	11.9726	-116.38	935.633
	-2.03863 1.28713 0.798176 0. 0. 0. 0. 0. 0.	$ \begin{pmatrix} -2.03863 & -6.10938 \\ 1.28713 & -4.98407 \\ 0.798176 & -5.69927 \\ 0. & 2.39453 \\ 0. & 0. \\ 0. & 0. \\ 0. & 0. \\ 0. & 0. \\ 0. & 0. \\ \end{pmatrix} $	$ \left(\begin{array}{cccc} -2.03863 & -6.10938 & 24.0098 \\ 1.28713 & -4.98407 & 14.2126 \\ 0.798176 & -5.69927 & 55.7601 \\ 0. & 2.39453 & -20.9592 \\ 0. & 0. & 4.78906 \\ 0. & 0. & 0. \\ 0. & 0. & 0. \\ 0. & 0. &$	$ \left(\begin{array}{ccccccc} -2.03863 & -6.10938 & 24.0098 & -249.086 \\ 1.28713 & -4.98407 & 14.2126 & -141.618 \\ 0.798176 & -5.69927 & 55.7601 & -364.884 \\ 0. & 2.39453 & -20.9592 & 180.194 \\ 0. & 0. & 4.78906 & -44.4927 \\ 0. & 0. & 0. & 0. & 7.98176 \\ 0. & 0. & 0. & 0. & 0. \\ \end{array} \right) $	$ \left(\begin{array}{ccccc} -2.03863 & -6.10938 & 24.0098 & -249.086 & 2590.25 \\ 1.28713 & -4.98407 & 14.2126 & -141.618 & 1139.79 \\ 0.798176 & -5.69927 & 55.7601 & -364.884 & 1188.24 \\ 0. & 2.39453 & -20.9592 & 180.194 & -1143.4 \\ 0. & 0. & 4.78906 & -44.4927 & 368.318 \\ 0. & 0. & 0. & 0. & 7.98176 & -76.2996 \\ 0. & 0. & 0. & 0. & 0. & 11.9726 \\ \end{array} \right) $	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$

Eigenvalues: $\{-41.065 \pm 21.204i, -6.824, -0.084 \pm 3.964i, 588.102, 1654.03\}$

- < ロト < 卸 ト < 注 ト < 注 ト 三 - のへで 16/21

Results

Negative eigenvalues of *B* and $-D + \gamma$ at the UV fixed point, sorted by their real part, for selected values of $N_{\rm scal}$ and $N_{\rm prop}$. Relevant directions are those with $\operatorname{Re} \theta > 0$. Results have been obtained in the physical gauge (for d = 4).

	В	$-D + \gamma$	$-D + \gamma$						
$(\textit{N}_{\rm scal},\textit{N}_{\rm prop})$	(2,2)	(2,2)	(3,3)	(3,3)	(4,4)	(4,4)	(6,6)	(6,6)	(6,4)
$\operatorname{Re} \theta_1$	1.26	4.03	2.67	1.96	2.83	3.17	2.39	0.084	1.06
$\operatorname{Im} \theta_1$	-2.44	-1.40	-2.26	-1.61	-2.42	-3.14	-2.38	-3.96	-4.13
θ_2	27.02	0.89	2.07	-6.39	1.54	-5.09	1.51	6.82	16.83
θ_3			-4.42	-305.82	-4.28	-64.03	-4.16	-588.10	24.06
$\operatorname{Re} \theta_4$					-5.09	-534.47	-4.68	41.06	41.44
$\operatorname{Im} \theta_4$					0	0	6.08	-21.20	0
θ_5							_	_	-651.07
$ heta_6$							-8.68	-1654.03	-1586.38
	1		1		1				

- ・ロト ・ 御 ト ・ 臣 ト ・ 臣 ・ の 9 (* 17/21

- \bullet Both methods agree qualitatively for small $\textit{N}_{\rm scal}=\textit{N}_{\rm prop}\lesssim2$
- The results are sensitive to the full information carried by the propagator

Solving the Wetterich equation:

• The critical exponents derived from *B* become Gaussian, $\theta_n \xrightarrow{n \to \infty} \theta_n^{\text{Gaussian}} = 4 - 2n$ (cf. Falls et al. '14)

Solving the composite-operator flow equation:

• The critical exponents derived from $-D + \gamma$ become (unacceptably) large

• The two points above have a technical origin: For $N \ge 3$, the 2-point function evaluated at the fixed point has a pole in R inside the unit circle, symbolically:

$$\frac{1}{{\textstyle \textstyle \Gamma_k^{(2)} + \mathscr{R}_k}} \Bigg|_{\rm FP} \sim \frac{1}{1-10\rho} \stackrel{\text{expand around } \rho = 0}{=} \sum_{n=0} 10^n \rho^n = \sum_{n=0} (\gamma, \omega, \bar{\omega})_n \rho^n$$

• In *B*, the "ratio" of these larges coefficients drives the critical exponents into a Gaussian regime, whereas for $-D + \gamma$ these coefficients are taken at face value

《日》 《圖》 《日》 《日》 - 日

シマペ 18/21

At this stage, we can ask some

- Is the Gaussian scaling limit in the f(R)-truncation a truncation artefact?
- Or, on the other hand, is it a more general property of a wider class of theories? (cf. design of the Wetterich equation)
- A comprehensive study of the f(R)-truncation with

$$f_k(R) = \sum_i \bar{u}_i(k)(R-R_0)^i$$

could be insightful (How to choose R_0 ?)

• What is the meaning of the unexpectedly large values of γ ?

A B K A B K

Scaling of geometric operators

- The eigenvalues of -D + γ(u*) can also be interpreted as the full geometric scaling dimensions of the operators [O_k]₁(r),...,[O_k]_n(r) in the fixed point regime (given that these depend on some length scale r). (Cf. Pagani '16)
- In particular, for a single composite operator one has:

 $\left[\mathscr{O}_k\right]_{k\to\infty}(r)\sim r^{d-\gamma(u^*)}$

• Applied to the volume operator, $\int d^d x \sqrt{g}$, i.e., $N_{\text{scal}} = 0$, we obtain a stable result in the physical gauge for $N_{\text{prop}} \ge 3$ of

 $\gamma = 1.9614$

• Thus for the full spacetime volume, we observe a dimensional reduction from d = 4 down to $4 - \gamma \approx 2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで、

Thanks for your attention.

Literature about composite operators in the AS approach:

- C. Pagani, 1603.07250
- C. Pagani and M. Reuter, 1611.06522
- M. Becker and C. Pagani, 1810.11816
- M. Becker, C. Pagani, and O. Zanusso, 1911.02415
- W. Houthoff, A. Kurov, and F. Saueressig, 2002.00256
- A. Kurov and F. Saueressig, 2003.07454

Contact: Maximilian Becker, M.Becker@hef.ru.nl

글 에 에 글 에 다