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The asymptotic safety scenario

Goal: predictive quantum field theory of gravity

The Asymptotic Safety (AS) hypothesis: high-energy completion of gravity
is provided by an interacting RG fixed point
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The role of scaling dimensions in the AS approach

The AS scenario implies non-trivial quantum corrections to the scaling
dimensions of operators (and correlation functions) that are characteristic for
the corresponding universality class.

Given an interacting UV fixed point has been identified,

1. How many relevant parameters does the theory have?

2. How do we construct meaningful observables?

Both questions can be probed:

via the Wetterich equation, a Functional Renormalization Group Equation
(FRGE)

via a composite-operator FRGE
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The role of scaling dimensions in the AS approach

Consider the following scaling argument (cf. Codello, d’Odorico ’15):
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We need to compute the UV scaling properties of the geometric operators

The Functional Renomalization Group (FRG) offers two avenues for their
computation: the Wetterich equation (for (quasi-)local operators) and via
composite operators

Analogy: scaling dimensions from the KPZ equation
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The Asymptotic Safety mechanism

The Wetterich equation:

k∂kΓk =
1

2
Tr


Γ
(2)
k + Rk

−1

k∂kRk



Typically solved with a truncation ansatz of the form Γk =


i ūi (k)Mi

The RG equations take the form k∂kui (k) = βi (u(k))

The UV fixed point

A UV fixed point u∗ is given by βi (u
∗) = 0

Solution for the linearized theory: ui (k) = u∗
i +


I cIV

I
i (k0/k)

θI

The universal critical exponents θI are the eigenvalues of the stability
matrix B, given by



j

BijV
I
j = −θIVI and Bij =

∂

∂uj
βi


u=u∗

The relevant (attractive) directions are those with Re θI > 0
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Flow equation for composite operators

The composite-operator FRGE (Cf. Pawlowski ’07; Igarashi, Itoh, Sonoda ’10;
Pagani ’16):

∂t [Ok ]i = −1
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A set of composite (geometric) operators [Ok ]1, . . . , [Ok ]n can be
incorporated into the FRG framework via the simple substitution
Γk → Γk +


i εi · [Ok ]i

Expand the renormalized composite operators in terms of the basis of bare
composite operators, [Ok ]i [g , ḡ ] =


j Zij(k)Oj [g , ḡ ]

Then,

n
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Anomalous dimension matrix γ̄ij(k) =


l(Z
−1)il(k)∂tZlj(k)

Renormalization behavior: The full scaling dimensions of the family of
operators {[Ok ]i} are given by the eigenvalues of −Dij + γij
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Flow equation for composite operators

Two approximations are required to solve the composite-operator flow equation,

n
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γ̄ij(k)Oj = −1
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Solution strategy:

The first truncation is the usual one for the EAA:

Γk =


i

ūi (k)Mi

The second truncation is the one for the basis of composite operators:

[Ok ]i =


j

Zij(k)Oj

In general, the size of the anomalous dimension matrix depends on the
second, while its arguments depend on the first truncation:

γij(k) ≡ γij(ū(k))
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A comparison of the two approaches in the f (R)-truncation

The Wetterich equation:

k∂kΓk =
1

2
STr


Γ
(2)
k + Rk

−1

k∂kRk



with Γk = Γk [hµν , ghosts; ḡµν ]. Standard ansatz:

Γk = Γk [hµν , ghosts; ḡµν ] = Γ̄k [g ] + Γ̂[g , ḡ ]  
=0

+Sgf [g − ḡ ; ḡ ] + Sgh[g − ḡ , ghosts; ḡ ] .

York decomposition, and rescale the field to be orthonormal on Einstein spaces:

hµν → (hTT
µν , ξ̂µ, σ̂, ĥ)
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A comparison of the two approaches in the f (R)-truncation

With Sgf =
1
2α


ddx

√
ḡ ḡµνFµFν on has in the limit α → 0 (cf. Machado,

Saueressig ’15, Codello et al. ’08):

∂t Γ̄k =
1

2
TrTT


Γ̄k

(2)
TT + RkTT

−1

∂tRkTT



+
1

2
Trĥĥ


Γ̄k

(2)

ĥĥ
+ Rk ĥĥ

−1
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+ Γk -independent terms from ghost terms/Jacobians

Ansatz:

Γ̄k =


ddx

√
g fk(R) =


ddx

√
g kdFk(ρ)

with the dimensionless function/radius

Fk(ρ) = k−d fk(R) , ρ = k−2R .
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A comparison of the two approaches in the f (R)-truncation

Then, the LHS of the Wetterich equation has the structure

LHS = ∂t Γ̄k = Ṽ

(∂tFk)(ρ) + dFk(ρ)− 2ρF ′

k(ρ)


,

with

ddx

√
ḡ = V and Ṽ = Vk+d ∝ ρ−d/2. Since Rk in generell depends

affinely on f ′k and f ′′k , the RHS has the structure

RHS = Ṽ

I0[Fk ](ρ) + (k−d+2∂t f

′
k )I1[Fk ](ρ) + (k−d+4∂t f

′′
k )I2[Fk ](ρ)


,

with

I0[Fk ](ρ) = I ind0 (ρ) + ITT
0 [Fk ](ρ) + I ĥĥ0 [Fk ](ρ)

I1[Fk ](ρ) = ITT
1 [Fk ](ρ) + I ĥĥ1 [Fk ]

I2[Fk ] = I ĥĥ2 [Fk ] .
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A comparison of the two approaches in the f (R)-truncation

Next, the further ansatz is to expand Fk in ρ, i.e., Fk(ρ) =


i=0 ui (k)ρ
i .

Then the LHS becomes

LHS/Ṽ =


i=0

{∂tui + (d − 2i)ui} ρi ,

while the ingredients of the RHS become

I0[Fk ](ρ) =


i=0

ωi (u)ρ
i

(k−d+2∂t f
′
k )I1[Fk ](ρ) =



i,j=0

[(d − 2j + ∂t)uj ] ω̃ji (u)ρ
i

(k−d+4∂t f
′′
k )I2[Fk ] =



i,j=0

[(d − 2j + ∂t)uj ] ω̌ji (u)ρ
i .

Note: ω̃0i = ω̌0i = ω̌1i ≡ 0.
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A comparison of the two approaches in the f (R)-truncation

With ω̄ = ω̃ + ω̌ and ci (u) := −(d − 2i)ui , the RHS is thus

RHS/Ṽ =


i=0


ωi (u)−



j=0

cj(u)ω̄ji (u)


ρi +



i,j=0

(∂tuj)ω̄ji (u)ρ
i .

Setting LHS=RHS, we have in matrix notation

∂tu − c(u) = ω(u)− c(u)ω̄(u) + (∂tu)ω̄(u) .

Solving for ∂tu, we arrive at the flow equation (cf. Falls et al. ’14)

∂tu = βu = c(u) + ω(u)(1− ω̄(u))−1 = classical β + quantum corrections .

The fixed points are given by

βu = 0 ⇔ ω(1− ω̄)−1 = −c (cf. η = D) .

The stability matrix is given by

B = ∂β

FP

= (∂ω − c∂ω̄)(1− ω̄)−1

u=u∗

+ ∂c ,

where ∂c = −D
d=4
= diag(−4,−2, 0,+2, . . . ).
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Relationship with the composite operator formalism

Take the u-derivative of the RHS of the Wetterich equation:
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.

Evaluate at the fixed point and expand around ρ = 0:

∂

∂ui
RHS


FP

= Ṽ




j

γij(u
∗) + δγij(u

∗)


ρj .
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Relationship with the composite operator formalism

Thus we have,

1

Ṽ

∂

∂ui
RHS


FP

=




j

γij(u
∗) + δγij(u

∗)


ρj ,

and on the other hand,

1

Ṽ

∂

∂ui
RHS


FP

=


∂iωj


u∗

−


k

∂i (ck ω̄kj)

u∗


ρj .

Consequently, with ω′ := ω − cω̄, we have the relations

∂ω′ ≡ γ + δγ

and (note: ∂c = −D),

B := ∂β = (∂ω − c∂ω̄) (1− ω̄)−1 + ∂c

=

∂c + ∂ω′ (1− ω̄)−1

= (∂c + γ + δγ) (1− ω̄)−1
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Relationship with the composite operator formalism

Hence, there are two different ways of obtaining the theory’s critical exponents,
depending on whether the couplings’ anomalous dimensions η(u) on the RHS is
differentiated or not:

1. Eigenvalues of B ≡ ∂β(u∗) – here, η(u) on the RHS is differentiated

2. Eigenvalues of −D + γ(u∗) – here, η(u) ≡ η∗ on the RHS is fixed

Here, with an f (R)-type first and second truncation (with ρ = k−2R):

Γk =

ddx

√
gfk(R) =


ddx

√
gkd Nprop

n=0 un(k)ρ
n

On =

ddx

√
gRn with n = 0, 1, . . . ,Nscal

An important feature is that the negative eigenvalues θn of B behave as (Falls
et al. ’14)

θn = θGn +∆θn with ∆θn → 0

as n,N → ∞ and with θGn = d − 2n. Then, there are 3 relevant directions in
the f (R)-truncation: θ1 = θ′ ± θ′′i and θ2.
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Results

B := ∂β = (∂ω − c∂ω̄) (1− ω̄)−1 + ∂c

= (∂c + γ + δγ) (1− ω̄)−1

The results differ vastly – e.g., for Nscal = Nprop = 6 we have

B =





−0.567615 −7.42554 0.0225945 −3.50096 9.57729 10.5702 5.27183
1.78037 −5.23758 −0.94019 −4.94022 5.66781 9.55175 8.17227

−0.149968 4.02842 −4.00389 −8.85596 −4.79984 11.4452 18.4268
−0.567917 1.77611 0.75612 2.0677 −9.68653 −0.174769 4.20415
−0.0406642 −0.874394 0.754532 3.05935 5.79338 −8.28503 −4.63791

0.14956 −0.512764 −0.167635 −0.33753 2.60899 7.08364 −5.49057
−0.0464313 0.374747 −0.0986957 −0.526183 −1.70664 0.424809 10.7684





Eigenvalues: {−2.391± 2.384i,−1.512, 4.161, 4.681± 6.085i, 8.677}

−D + γ(u∗) =





−2.03863 −6.10938 24.0098 −249.086 2590.25 −26300.5 267992.
1.28713 −4.98407 14.2126 −141.618 1139.79 −8161.99 48955.9
0.798176 −5.69927 55.7601 −364.884 1188.24 13484.7 −397450.

0. 2.39453 −20.9592 180.194 −1143.4 4013.58 36785.8
0. 0. 4.78906 −44.4927 368.318 −2321.34 8334.4
0. 0. 0. 7.98176 −76.2996 620.131 −3898.69
0. 0. 0. 0. 11.9726 −116.38 935.633





Eigenvalues: {−41.065± 21.204i,−6.824,−0.084± 3.964i, 588.102, 1654.03}
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Results

Negative eigenvalues of B and −D + γ at the UV fixed point, sorted by their
real part, for selected values of Nscal and Nprop. Relevant directions are those
with Re θ > 0. Results have been obtained in the physical gauge (for d = 4).

B −D + γ B −D + γ B −D + γ B −D + γ −D + γ

(Nscal,Nprop) (2,2) (2,2) (3,3) (3,3) (4,4) (4,4) (6,6) (6,6) (6,4)

Re θ1 1.26 4.03 2.67 1.96 2.83 3.17 2.39 0.084 1.06

Im θ1 -2.44 -1.40 -2.26 -1.61 -2.42 -3.14 -2.38 -3.96 -4.13

θ2 27.02 0.89 2.07 -6.39 1.54 -5.09 1.51 6.82 16.83

θ3 -4.42 -305.82 -4.28 -64.03 -4.16 -588.10 24.06

Re θ4 -5.09 -534.47 -4.68 41.06 41.44

Im θ4 0 0 6.08 -21.20 0

θ5 – – -651.07

θ6 -8.68 -1654.03 -1586.38
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Results – Observations

Both methods agree qualitatively for small Nscal = Nprop ≲ 2

The results are sensitive to the full information carried by the propagator

Solving the Wetterich equation:

The critical exponents derived from B become Gaussian,
θn

n→∞−−−→ θGaussiann = 4− 2n (cf. Falls et al. ’14)

Solving the composite-operator flow equation:

The critical exponents derived from −D + γ become (unacceptably) large

The two points above have a technical origin: For N ≥ 3, the 2-point
function evaluated at the fixed point has a pole in R inside the unit circle,
symbolically:

1

Γ
(2)
k + Rk


FP

∼ 1

1− 10ρ

expand around ρ = 0
=



n=0

10nρn =


n=0

(γ,ω, ω̄)nρ
n

In B, the “ratio” of these larges coefficients drives the critical
exponents into a Gaussian regime, whereas for −D + γ these coefficients
are taken at face value
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Results – Observations

At this stage, we can ask some

Is the Gaussian scaling limit in the f (R)-truncation a truncation artefact?

Or, on the other hand, is it a more general property of a wider class of
theories? (cf. design of the Wetterich equation)

A comprehensive study of the f (R)-truncation with

fk(R) =


i

ūi (k)(R − R0)
i

could be insightful (How to choose R0?)

What is the meaning of the unexpectedly large values of γ?
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Scaling of geometric operators

The eigenvalues of −D + γ(u∗) can also be interpreted as the full
geometric scaling dimensions of the operators [Ok ]1(r), . . . , [Ok ]n(r) in the
fixed point regime (given that these depend on some length scale r). (Cf.
Pagani ’16)

In particular, for a single composite operator one has:

[Ok ]k→∞(r) ∼ rd−γ(u∗)

Applied to the volume operator,

ddx

√
g , i.e., Nscal = 0, we obtain a

stable result in the physical gauge for Nprop ≥ 3 of

γ = 1.9614

Thus for the full spacetime volume, we observe a dimensional reduction
from d = 4 down to 4− γ ≈ 2
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Thanks for your attention.
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